
EXPRESSING AND ANALYSING GOAL MODELS IN
DESIGN STRUCTURE MATRICES
Ralf Laue
Chair of Applied Telematics and E-Business, University of Leipzig, Germany

ABSTRACT
Goal-oriented models describe the actors within a complex system, dependencies between system
elements and organizational goals. Large models in goal-oriented graphic languages like i* are very
difficult to comprehend. In this paper, we propose to model the relations within a design structure
matrix which is easier to read. We show how existing analysis methods can be used for such matrices.

Keywords: Goal modelling, i*, design structure matrix

1 INTRODUCTION

Goal-oriented models are frequently used in the early stages of system development, in particular for
requirements engineering. Such models describe the intentions, capabilities, requirements and
collaboration of actors that are involved in a system. They help to understand the goals of human
actors that influence the functional and non-functional requirements of a system and the dependencies
between social actors. Also, they help to identify alternatives to achieve organizational goals.
Nowadays, the i* language (Yu et al., 2011) is one of the most adopted frameworks in the
requirements engineering community. The i*-based User Requirement Notation (URN) has been
adapted as recommendation Z.150 by the International Telecommunication Union.
i* is a graphical language that aims to depict the influence that a design decision has on the
achievement of various goals. i* models of complex systems can have a few hundred elements which
are connected with different kinds of arcs. In (Matulevicius, 2008), it has been stated that i* goal
models have one problem – “they quickly become difficult to comprehend”. Franch (2010) complains
that “since the model is a monolithic unit …, the reader has more difficulties than ever to comprehend
the full meaning of the system modelled”.
This statement is illustrated by Figure 1 which shows an excerpt from a real-life i* model.
This paper suggests the use of design structure matrices (DSM) as a non-graphical way to model all
the relations that can be found in i* models.

Figure 1. Relations between elements become very difficult to read (from Horkoff, 2006)

2 THE MODELLING LANGUAGE i*
This section provides a very short overview of the main concepts of i* More details can be found in
Yu (1995) and Yu et al. (2011).

229

13TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’11
CAMBRIDGE, MASSACHUSETTS, USA, SEPTEMBER 14 – 15, 2011

2.1 Actors
Actors (depicted by a circle) in an i* model can be human actors (“claims manager”), groups of human
actors (“accounting department”) or non-human actors such as computer systems (“central database”).
Human and non-human actors have in common that they are able to execute tasks and to provide
resources to other actors. The i* framework includes two kinds of models:
The Strategic Dependency (SD) model includes actors and the dependencies between them: One actor
(depender) has a strategic dependency to another actor (dependee) if the depender can achieve its goals
only if the dependee provides a resource, completes a task or achieves a goal.
The Strategic Rationale (SR) model describes how an actor can achieve the goals.

2.2 Goals and softgoals
Goals (symbol:) inside an actor can be used to model an intentional desire of the actor. Goals are
precise non-functional requirements such as “Products be sold online”. Softgoals (symbol:) are
used for quality attributes or non-functional requirements such as “High availability”.

2.3 Tasks
Tasks (depicted by a hexagon) inside an actor model activities that can be performed by this actor.
They can also be used for modelling design decisions, for example “use a failover system”.

2.4 Resources
Resources (depicted as rectangle) are physical or informational entities that can be provided by an
actor. Examples are “Confirmation letter” or “Internet access”.

 2.4 Relations between actors, goals, softgoals, tasks and resources
Several kinds of relations between the model elements can be expressed in an i* diagram:
� Dependencies between actors: In i*, there are four possibilities to model a strategic dependency

between actors: The depender can depend on the dependee to perform an task (Task dependency),
for the availability of a resource (Resource dependency) or to fulfill a goal or subgoal (Goal /
Subgoal dependency).

� Task decomposition: A task can be decomposed into a sub-task, a sub-goal, a resource and a
goal. This means that the task is broken into several sub-tasks and other prerequisites that must all
be fulfilled in order to complete the task.

� Means-end links can be used to show different ways to achieve a goal. They show a relationship
between an end (the goal to achieve) and the means (tasks) for attaining it. Usually, there is more
than one way to achieve a goal, i.e. means-end links have to be regarded as alternatives. For
example, a goal “transaction authentication number must be known to the banking customer” can
be achieved either by the task “sent TAN by SMS” or “Use an one-time TAN generator”.

� Contribution links: Any modelling element can influence a softgoal positively or negatively. For
example, the availability of a resource “Failover System” as well as the execution of the task
“Perform Data Backup” can have a positive contribution to the softgoal “System Availability”.
On the other hand, the availability of the resource “Failover System” can have a negative
contribution to the softgoal “Keep IT Costs Low”.

Quantitative information about the kind of contribution is assigned to a contribution link from
element X to softgoal S. These labels can be “make” (if X is executed/provided/fulfilled, softgoal
S will be met), “some+”, “help” (both mean that if X is executed/provided/fulfilled, this has a
positive contribution on softgoal S), “some-”, “hurt” (modelling a negative contribution), “break”
(if X is executed/provided/fulfilled, softgoal cannot be met) and “unknown”.

Figure 2 shows an example of a very small i* model with two actors: The user's goal “have up-to date
information available” depends on the data resource that is provided by the software application if it
meets its goal “provide running system”. For doing so, three design decisions on the selection of a
programming language can be made, all of them have different effects (contributions) on the softgoals
“Short Response Times” and “Platform Independence”. For the sake of simplicity, the model does not
contain task-decomposition links.

230

Figure 2. Example of an i* model

3 EXPRESSING A GOAL MODEL AS DESIGN STRUCTURE MATRIX
Formally, a graphical i* model is a finite directed labelled graph with nodes of various types. Such a
graph can be expressed by a matrix in a natural way: The adjacency matrix of a graph with n nodes is
an n�n matrix where the entry at position (x,y) is 1 if there is a directed edge from node x to node y
(assuming that the nodes are numbered), 0 otherwise.
However, we have to take into account that in i* models, there can be several kinds of edges (see
Section 2.4) and tasks, resources, goals and subgoals can be part of an actor. These facts require to
include more information than a binary “1=there is an edge” / “0=there is no edge” into the DSM.
In theory, it would be possible to model all kinds of relations in Multiple Domain Matrices (MDM)
containing only 1’s and 0’s (similar to the transformation of process models into MDM proposed in
Kreimeyer (2009). However, this breakdown into binary relationships would make the model more
difficult to read. Instead, we propose to include all information into one matrix as follows:
� All tasks, resources, goals and subgoals become column headings and row headings of the

DSM. The element types (task, resource, goal, subgoal) and the actors to which the elements
belong to become part of the element name in the row/column headings. This means that a
relationship like “task A can be performed by actor B” can easily be seen from the name of the
task. An example for such a name would be “Task – Intrusion Detection System: Generate
Alert”.

� The row/column headings are ordered such that all tasks (regardless to which actor they belong
to) are placed first, followed by all resources, goals, subgoals and finally those actors which do
not contain other elements.

� The type of relationship is documented by the entry in the matrix:
for a dependency: If depender X depends on dependee Y on provide dependum Z (which can
be a task, resource, goal or softgoal), the matrix contains the entry Z at position (X,Y). Note that
Z does not have to appear as a row/column heading once again, it is rather a description of a
relation between the elements that can be found in the row/column headings.

� for a task decomposition: If task X is decomposed into sub-elements Y1, … Yn, the elements
(X,Y1), … (X,Yn) are marked with � (symbolising that all preconditions must be fulfilled in
order to execute task X).

� for a means-ends link: If goal G can be achieved by one of the tasks T1, … Tn, the elements
(G,T1), … (G,Tn) are marked with � (symbolising that at least one task must be executed in
order to meet goal G).

231

� for a contribution link: Contribution links have one of the labels “make”, “some+” “help”,
“some-” “hurt”, “break” and “unknown”. In accordance with the meanings of these labels, we
mark the corresponding matrix element as follows:
1 for a “make” contribution (if the element shown in the row heading is executed/ provided/
fulfilled, the softgoal in the column heading will always be fullfilled),
0 for a “break” contribution (the softgoal in the column heading cannot be fulfilled),
+ for a “some+” or “help” contribution (showing the positive influence),
- for a “some-” or “hurt” contribution (showing the negative influence),
? for an “unknown” contribution.

� If there is no edge between model elements, the according matrix element is left blank.

Table 1. The i* model shown in Figure 2 as DSM

Ta
sk

 “
Im

pl
. U

si
ng

A

ss
em

bl
er

”
(A

pp
.)

Ta
sk

 “
Im

pl
. U

si
ng

 C
”

(A
pp

.)

Ta
sk

 “
Im

pl
em

en
t U

si
ng

Ja

va
”

(A
pp

.)

G
oa

l “
Pr

ov
id

e
R

un
ni

ng

Sy
st

em
”

(A
pp

.)

G
oa

l “
H

av
e

up
-to

-d
at

e
in

fo
rm

at
io

n
av

ai
la

bl
e”

(U

se
r)

So
ftg

oa
l “

Sh
or

t
R

es
po

ns
e

Ti
m

es
”

(A
pp

.)

So
ftg

oa
l “

Pl
at

fo
rm

In

de
pe

nd
en

ce
”

(A
pp

.)

Task “Impl. Using Assembler”
(App.)

 � + 0

Task “Impl. Using C” (App.) � + +
Task “Impl. Using Java” (App.) � - +
Goal “Provide Running System”
(App.)

 Data

Goal “Have up-to-date information
available” (User)

Softgoal “Short Response Times”
(App.)

 Response
Time

Softgoal “Platform Independence”
(App.)

4 ANALYSING A GOAL MODEL EXPRESSED AS A DESIGN STRUCTURE
MATRIX
In this section we show that the analysis of a goal model expressed as a DSM can be made at least as
easy as the analysis of a graphical i* model – by avoiding the notational overhead of the latter.

4.1 Forward and backward i* analysis
For analysing an i* model, qualitative satisfaction labels can be assigned to elements. For example, in
Figure 2, the design decision to use assembler language would be modelled by attaching a “satisfied”
label to the corresponding task and a “not satisfied” label to both other tasks.
Forward analysis allows to answer the question “how effective is an alternative with respect to goals in
the model?” (Horkoff & Yu, 2010). Those labels are forwarded according to propagation rules in order
to reason about the satisfaction of goals. For example, a goal that has means-ends links to several tasks
will get the label “satisfied” if at least one of those tasks has such a label. The full set of propagation
rules is described in Horkoff and Yu (2010). When the model is represented in tabular form, this
propagation algorithm can be applied very easily: The satisfaction labels can be written both in the
row and column headers. The DSM follows the principle “row influences column”. From the fact that
a row header for row x has a satisfaction label, it can be concluded that this label has to be considered
in the forward analysis for all those elements y where element (x,y) is not empty. On the other hand, it

232

is easy to see whether a decision can be made on the satisfaction of element y – when all x with
(x,y)�empty already have a satisfaction label assigned. Both manual as automated analysis can be
done in the same way as for the graphical model (which is a result of the fact that both models contain
the same information). The same statement is true for backwards analysis which deals with questions
like “Is this goal achievable?”, “If so, how?” and “If not, why?” (Horkoff & Yu, 2010).

4.2 Correctness
It has been reported that i* models (or to be more precise: models that claim to be i* models) in
practice often have incorrect syntax (Horkoff, 2008). Often, the wrong kinds of links are used between
the elements. For example, the decomposition link that is allowed only to decompose a task could be
used wrongly to decompose a goal into a subgoal. Of course, automatic syntax checking can be
applied when a tool is used for the creation of the model (Amyot & Yan, 2008), but syntax errors in a
model drawn on a sheet of paper are difficult to spot.
The situation is much better if the goal model expressed as a DSM, because such a DSM contains 5 5
sub-matrices for each combination of the element types. For example, in the sub-matrix that shows the
edges from a task to a task, only task decomposition links and dependency links are allowed. Table 1
shows the entries that are allowed in each of the sub-matrices. It is easy to check whether the DSM
complies to the syntactical rules of i*.
It is also possible to detect forbidden cycles like: softgoal A has a positive “make” contribution to
softgoal B, while B has a negative “break” contribution to A (Gebala & Eppinger, 1991).

4.3 Structural analysis
Eben and Lindemann (2010) discuss several structural criterions for analysing the relations between
requirements that are given in a matrix-based description. The same criterions can be used for
analysing the relations between intentional elements in an i* model. For example, the product of the
number of incoming and outgoing arcs into/from a node can be a measure for how much this element
affects and is affected other elements. Elements belonging to a subset of highly interconnected
elements (which do not have to be inside the same actor!) are likely to be associated to the same class
of (sub)goals, etc.

4.4 Component selection
One application of i* models deals with the question how to define a good architecture for systems
consisting of multiple, interdependent software components. In this case, the actors in the i* model are
software components, and the i* model shows the dependencies between them.
(Franch & Maiden, 2003) give some useful heuristics for this purpose. For example, they point out
that “the flow of information from one component, shown using resource dependencies, exposes data
to potential security breaches”. From this it follows that components should be packaged into “self-
contained” modules such that dependencies between the modules should be minimised.
This minimisation can be achieved effectively by DSM clustering as discussed by McCord and
Eppinger (1993) and Pimmler and Eppinger (1994). So far, the corresponding solutions for graphical
i* models have been described at an ad-hoc level only (Franch & Maiden, 2003). The fact that the
DSM contains non-numerical values in our notation does not lead to problems, as these values can be
easily transformed into numbers before applying the algorithms.

5 CONCLUSION
Moody et al. (2010) point out that the current i* notation lacks effective complexity management
mechanisms and suggest to introduce decomposition mechanisms to improve readability. Alencar et
al. (2010) introduce an extension to the metamodel of the i* language that allows various views on a
model, but current i* modelling tools still lack support for complexity management.
The advantage of using DSM lies in the fact that such mechanisms come almost for free, given the
filtering possibilities of current spreadsheet programs. Even without filtering, dependencies between
the system elements are much easier to spot (Figure 1 would correspond to a row in the DSM), and the
notation (like the symbol for means-ends links) is intuitive with respect to the propagation rules. To
sum up, DSM provide the same access to analysis algorithms as their graphical counterparts while the
readability of large models is improved considerably.

233

REFERENCES
Alencar, F., Castro, J., Lucena, M., Santos, E. Silva, C. Arafujo, J. & Moreira, A. (2010). Towards
Modular i* Models. In Proceedings of the 2010 ACM Symposium on Applied Computing
(SAC), Sierre, Switzerland, March 22-26, 2010 (pp. 292-297).
Amyot, D. & Yan, B. (2008). Flexible Verification of User-Defined Semantic Constraints in
Modelling Tools. In: Proceedings of the 2008 Conference of the Center for Advanced Studies on
Collaborative Research (pp. 81-95).
Eben, K.G.M. & Lindemann, U. Structural Analysis of Requirements – Interpretation of Structural
Criterions. In: Proceedings of the 12th International Dependency and Structure Modelling Conference,
2010.
Franch, X. & Maiden, N.A.M. (2003). Modelling Component Dependencies to Inform Their
Selection. In: Proceedings of the Second International Conference on COTS-Based Software Systems,
London: Springer.
Franch, X. (2010). Fostering the Adoption of i* by Practitioners: Some Challenges and Research
Directions. In S. Nurcan, C. Salinesi, C. Souveyet & J. Ralyté (Eds.), Intentional Perspectives on
Information Systems Engineering. Berlin: Springer.
Gebala, D.A. & Eppinger, S.D. (1991). Methods for Analyzing Design Procedures. In: Proceedings of
3rd International ASME Conference on Design Theory and Methodology (pp. 227-233).
Horkoff, J. (2006). Using i* Models for Evaluation, Master Thesis, Department of Computer Science,
University of Toronto.
Horkoff, J., Elahi, G., Abdulhadi, S. & Yu, E. (2008). Reflective Analysis of the Syntax and
Semantics of the i* Framework. In: Advances in Conceptual Modeling – Challenges and
Opportunities, Proceedings of ER 2008 Workshops, Barcelona Spain, October 20-23, 2008 (pp. 249-
260).
Horkoff, J & Yu, E. (2010). Finding Solutions in Goal Models: An Interactive Backward Reasoning
Approach. In: Conceptual Modeling – Proceedings of ER 2010, 29th International Conference on
Conceptual Modeling, Vancouver, BC, Canada, Lecture Notes in Computer Science, Vol. 6412,
Springer (pp. 59-75)
Kreimeyer, M., Braun, S., Gürtler, M. & Lindemann, U. (2009). Extending Multiple Domain Matrices
to Allow for the Modeling of Boolean Operators in Process Models. In: Proceedings of International
Conference on Engineering Design, Stanford, August 2009.
Matulevicius, R. (2008). Improving the Syntax and Semantics of Goal Modelling Languages. In:
Proceedings of the 3rd International i* Workshop, Recife, Brazil, February 11-12, 2008 (pp. 75-78)
McCord, K. & Eppinger, S. (1993). Managing the Integration Problem in Concurrent Engineering.
Massachusetts Institute of Technology Sloan School of Management Working Paper 3594-93-MSA.
Moody, D.L., Heymans, P. & Matulevicius, R. (2010): Visual Syntax Does Matter: Improving the
Cognitive Effectiveness of the i* Visual Notation. Requir. Eng., 15(2), 141-175.
Pimmler, Thomas U. & Eppinger, Steven D. (1994). Integration Analysis of Product Decompositions.
In: Proceedings of the ASME Sixth International Conference on Design Theory and Methodology,
Minneapolis, MN, September 1994.
Yu, E. (1995). Modelling Strategic Relationships for Process Reengineering. PhD Dissertation,
University of Toronto.
Yu, E., Giorgini, P., Maiden, N. & Mylopoulos, J. (2011). Social Modeling for Requirements
Engineering. The MIT Press.

Contact: R. Laue
University of Leipzig
Chair of Applied Telematics and E-Business
Klostergasse 3
04109 Leipzig
Germany
e-mail: laue@ebus.informatik.uni-leipzig.de

234

Expressing and Analysing GoalExpressing and Analysing Goal
Models in Domain Structure Matrices

Ralf Laue

Chair of Applied Telematics and E-Business,
University of Leipzig, GermanyU e s ty o e p g, Ge a y

INVEST ON VISUALIZATION

INVEST ON VISUALIZATION

IndexIndex

• Early Requirements
• i* Modelling Concepts• i Modelling Concepts
• Simple Example

– in i* Notation
– in DSM Notation

• DSM Analysis for Answering Common Questions
• Analysing Structural Criterions (Case Study: e-News System)Analysing Structural Criterions (Case Study: e News System)
• Using DSM Clustering for Component Selection
• Summary

13th International DSM Conference 2011- 2

235

INVEST ON VISUALIZATION

Early RequirementsEarly Requirements

• Goals of human actors influence the functional and non-functional
requirements of a systemrequirements of a system.

• Understanding the goals of various actors prevents from solving the
wrong problemwrong problem.

• Often, there are several alternatives to achieve organizational goals.
Different alternatives have different advantages and disadvantages.

• i* models intend to show these dependencies and to allow an analysis of p y
the influence on alternative design decisions.

13th International DSM Conference 2011- 3

INVEST ON VISUALIZATION

i* Modelling Languagei Modelling Language

• i* language: proposed by Eric Yu (1997)

• One of the most adopted frameworks in the requirements engineering
community.

• ITU-T recommendation Z.151

• Describes:
– Dependency relations between actors

How actors achieve their goal– How actors achieve their goal

13th International DSM Conference 2011- 4

236

INVEST ON VISUALIZATION

ActorsActors

• What are my goals?
• How they can be achieved?• How they can be achieved?
• What are my abilities?
• Who do I depend on?

13th International DSM Conference 2011- 5

INVEST ON VISUALIZATION

SD-Model: Dependencies Between ActorsSD Model: Dependencies Between Actors

• Actor depend on each other…
• to achieve a goal• to achieve a goal
• to perform a task
• to get access to a ressource
• --> Three types of dependencies

• SD ModelSD Model

13th International DSM Conference 2011- 6

237

INVEST ON VISUALIZATION

SR Model: Inside an ActorSR Model: Inside an Actor

• What are the means for achieving a goal…
• Which tasks have to be performed?• Which tasks have to be performed?
• Which ressources are needed?
• How are tasks decomposed into subtasks? etc.

Alternative options to
achieve a goal

13th International DSM Conference 2011- 7

INVEST ON VISUALIZATION

What is the Best Way to Achieve a Goal?What is the Best Way to Achieve a Goal?

Softgoals

13th International DSM Conference 2011- 8

238

INVEST ON VISUALIZATION

Problem Large Models Become Difficult to UnderstandProblem… Large Models Become Difficult to Understand

13th International DSM Conference 2011- 9

INVEST ON VISUALIZATION

Task
"U Task "Use Goal Soft-

l S ft l"Use
Keycard
and
R d "

Task Use
Finger-
print Recog-
nition"

Goal
"Provide
Access
Control"

Softgoal
"Secure"

goal
"Cost
Effi-

i t"

Softgoal
"Comfor-
table"

Reader" cient"

Task "Use Keycard and
R d "Reader"
Task "Use Fingerprint
Recognition" That is where DSM come into the play…

Goal "Provide Access
Control"
S ft l "S "

Nodes in the graph – column and row headings
Vertices in the graph – matrix elements

Softgoal "Secure"
Softgoal "Cost Efficient"

Softgoal "Comfortable"

13th International DSM Conference 2011- 10

239

INVEST ON VISUALIZATION

Actor 1 Actor 2
Actor 1 Task
A t 2

depends on…
Actor 2

p

Type of Dependency

13th International DSM Conference 2011- 11

INVEST ON VISUALIZATION

240

INVEST ON VISUALIZATION

Filtering: How can the goal "Provide Access Control" be achieved?

13th International DSM Conference 2011- 14

te g o ca t e goa o de ccess Co t o be ac e ed

13th International DSM Conference 2011- 13

INVEST ON VISUALIZATION

tasks resources goals subgoals actors

tasks �,
dependency

dependency �, dependency 0, 1, +, -, ?,
dependency

dependency

resources �,
dependency

dependency �, dependency 0, 1, +, -, ?,
dependency

dependency

goals �,
dependency

dependency �, dependency 0, 1, +, -, ?,
dependency

dependency

softgoals �,
dependency

dependency �, dependency 0, 1, +, -, ?,
dependency

dependency

actors dependency dependency dependency dependency dependency

Semantical Correctness

Goal
"Provide
Access
Control"

Task "Use Keycard and
Reader"

�

Task "Use Fingerprint
Recognition"

�

241

INVEST ON VISUALIZATION

Soft-
lSoftgoal

"Secure"

goal
"Cost
Effi-

i t"cient"

Task "Use Keycard and
R d "

- +
Reader"

Filtering: How are the softgoals affected by "Use Keycard and Reader"?

13th International DSM Conference 2011- 15

te g o a e t e so tgoa s a ected by Use eyca d a d eade

INVEST ON VISUALIZATION

Soft-
lSoftgoal

"Secure"

goal
"Cost
Effi-

i t"cient"

Task "Use Keycard and
R d "

- +
Reader"
Task "Use Fingerprint
Recognition"

+ -

Analysis, for example…
•Looking for (soft)goal conflicts (see above)
• Transitive propagation ("What happens if ")• Transitive propagation (What happens if…)
•Loop analysis

Can be easier with spreadsheet software than with graphical i* modelling- Can be easier with spreadsheet software than with graphical i modelling
tools

- Concept of "user programming": Spreadsheet software allows to generate

13th International DSM Conference 2011- 16

Concept of user programming : Spreadsheet software allows to generate
own analysis queries quickly.

242

INVEST ON VISUALIZATION

Case Study: E-News SystemCase Study: E News System
Source: C.T.L.L. Silva: Separating Crosscutting Concerns in Agent Oriented Detailed
Design: The Social Patterns Case, Doctoral Thesis, Universidade Federal de
Pernambuco 2007 p 158Pernambuco, 2007, p. 158

Dependencies between:

E-News System and
News Agency
E N S t d UE-News System and User
E-News System and
Editor

DSM with 29
rows/columns and 38 non-rows/columns and 38 non
empty matrix elements

13th International DSM Conference 2011- 17

INVEST ON VISUALIZATION

Structural CriterionsStructural Criterions

• Eben and Lindemann (2010): structural criterions for analysing the
relations between requirementsrelations between requirements

• Which elements have the largest influence on other elements?
Number of incoming to outgoing relations
publish newspaper according to guideline 9publish newspaper according to guideline 9
edit news article for each category 6
...
R i Ph t Q lit 0Review Photos Quality 0

• Which (soft)goals are structurally similar to each other?
For example we find: Soft-goal “adaptability” can be seen as structurally
similar to the soft-goal “interoperability”:
They support the same goals by the same stakeholders and depend on the ey suppo e sa e goa s by e sa e s a e o de s a d depe d o e
same elements.

13th International DSM Conference 2011- 18

243

INVEST ON VISUALIZATION

Component SelectionComponent Selection

• One special usecase of i* models is concerned with defining an
architecture for systems that consist of multiple independent softwarearchitecture for systems that consist of multiple, independent software
components.

• Actors: software components, the i* model shows the dependencies
between thembetween them.

• Heuristics: The flow of information from one component (modelled as
d d i) d t t t ti l it b hressource dependencies) exposes data to potential security breaches.

Conclusion: Such dependencies should be minimised.

• When the usual graphical models are used, additional software would be
necessary. Anyway, defining the architecture is still a semi-manual tasks.

• DSM clustering provides a simple approach.

13th International DSM Conference 2011- 19

INVEST ON VISUALIZATION

SummarySummary

• i* models (as any other models that can be regarded as directed graphs)• i* models (as any other models that can be regarded as directed graphs)
can be expressed as DSM.

• Using filtering techniques, matrix-based description can be easier to
d t d d t l th hi l d l (i ti l f lunderstand and to analyse than graphical models (in particular, for large

models)
• DSM analysis techniques like clustering can be used.
• Structural analysis has commonalities with Eben and Lindemann (2010)

13th International DSM Conference 2011- 20

244

