13™ INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’11
CAMBRIDGE, MASSACHUSETTS, USA, SEPTEMBER 14 — 15, 2011

MDM-BASED SOFTWARE MODULARIZATION BY
ANALYSING INTER-PROJECT DEPENDENCIES

Alexander Mirson', Oleg Skrypnyuk?, Fatos Elezi' and Udo Lindemann’

"Institute for Product Development, Technische Universitat Minchen, Germany
*Teseon GmbH, Germany

ABSTRACT

In this paper we explore the possibilities of improving software architecture by eliminating inter-
project dependencies and extracting subprojects into plugins. A new approach is proposed to improve
the modularization process and to support software architects to reach better decisions on how to
reorganize the software system and to get loosely connected architecture in a way that the subprojects
of the system are extracted into standalone plug-ins. This method is using the MDM model and has
been implemented in software called LOOMEO as a standalone plugin to illustrate its applicability. As
a case study we used the software LOOMEUQO itself to proof our concept. This method provides a solid
framework for improving the refactoring process in multi-project environment.

Keywords: Software architecture, software modularity, dependency, model, matrix, MDM

1 INTRODUCTION

Bringing new software products to the market faster than the competitors has become a strategic
imperative in many industrial sectors. Most of the time in the software product lifecycle is wasted on
support and integration of changes in already existing code. The keys to successful maintenance of
applications are a technique of extracting parts of the code and principles and methods of extracting
modules of the system. Software systems with a great number of dependencies between their
components restrict their further development and extension possibilities. Even the slightest changes
in them have a strong impact on the whole system, since they cannot be contained (Sangal et al. 2005).
Change propagation and change management in general are current topics in the research area.
Sullivan et al. (2001) show the importance of the software modularity and propose an approach for
evaluating software structure and modularity during the software development process and during
usage of the software. This paper describes an approach to handle complex software system consisting
of a large number of subprojects and to extract them into standalone plugins using dependencies
between different subsystems.

One of the approaches to map the complex software system is the matrix-based model, which are
being increasingly used to manage engineering systems and complex product development processes.
The main benefit offered by these models is an enhanced visibility of the systems’ structure, which is
suitable for recognizing specific structural elements of the system and providing a holistic view of the
entire system. The Design Structure Matrix (DSM) (Browning 2001) has proven to be an effective
matrix-based mapping tool. Although the DSM lacks high level of detail, it illustrates complex system
in a simple and useful way for both qualitative and quantitative analysis. In our approach we represent
different subsystems of the software through separate domains. As DSM is limited into the analysis of
one single domain, it does not take into consideration other domains and their interconnectivity.

Therefore, a more appropriate tool for managing complex systems is the Multiple-Domain Matrix
(MDM). The MDM was first mentioned by Maurer and Lindemann (2007) from the Institute of
Product Development at Technische Universitdt Miinchen. This tool is an extended version of DSM,
which allows representing the structure of multiple domains at a time (Lindemann et al. 2008, 2009).

2 PROBLEM

It is almost certain that, at some point during a software system’s lifecycle, there will be a need to
reorganize its modularity following numerous changes to functionality and structure. Changes can

143

arise at any place along the software development process. Increasingly, however, change requests
occur at the end of the development process. One of the main causes for implementing changes is the
shortened product life cycles. Changes cost money, are in most cases time-critical and can have
unexpected impact on the end product. Therefore, if a certain change occurs, the propagation of
changes should be transparent, manageable and the implementation should be executed in a cost-
efficient way. As we mentioned above the one way of improving the software system considering
change impacts is extracting modules of the system and building loosely connected software.
Software modules provide resources to other modules which are specified through the interfaces.
Modularity is one of the basic principles of building software systems. In general, the software module
is a single functionally completed software unit which can be identified and combined with other
parts. Other benefits of using modules are the reuse of these modules in a new context and exactly
mapping the structure of the system.

Different authors propose many approaches to improve software modularity. Huynh and Cai (2007)
suggest an automatic approach for comparing the source code modularity and design modularity by
using DSM. Huynh et al. (2008) compare source code and software structure during design phase.
Arseneau and Spracklen (1994) propose a software tool for supporting the software engineers by
planning the modules of the system, which uses artificial neural network applied to procedure shared
information and combine it to the single modules. Sangal et al. (2005) describe different software
architectural patterns in DSM and how they can be applied to improve the system structure.

The approach proposed in this paper intends to reduce complexity of splitting up software into
separate plugins, thus reducing time and costs of this process. The following method aims to support
this activity by assessing the involvement of each functional unit in the entire software project. This
information helps software architects to make better decisions on how to organize software modules
extracting them in standalone software plugins.

3 APPROACH

In this section, a step-by-step approach is going to be proposed, which will serve as a resolution guide
for the research problems posed in the introduction of the paper. The ultimate goal to be achieved by
applying this method is to improve software architecture by splitting up a program into separate
plugins by finding relationships between the subprojects on the class level and removing them through
refactoring. Methods of modular and structural analysis are used to perform this task.

Read source code

Create MDM

Compare SW
structure based on
CLASSPATH and
class level

Remove
unnecessary
dependencies

Improve structure
by applying
refactoring

Figure 1. Steps of the MDM-based software modularization approach

The proposed method consists of the following steps, which are shown in Figure 1:
1. Read source code
2. Create MDM

144

3. Compare SW structure based on CLASSPATH and class level
4. Remove unnecessary dependencies
5. Improve structure by applying refactoring and go to step 1

During the first step the system is being loaded by reading the source code of different subprojects. In
our use case we applied Jar Jar Links utility (JarJarLinks 2011) to load jar-libraries of different
modules. At the next step the whole system is built up by using MDM-approach. Figure 2 shows
created MDM, which represents dependencies between involved subprojects.

I --------- ---___-_

Figure 2. MDM — Overview of the whole system

The first domain is called Projects and contains all subprojects of the system. Its DSM depicts
dependencies between subprojects on the CLASSPATH level (we applied our approach to a java-
based project). These dependencies are given manually by the software developers and could be
inaccurate. The causes for this problem could be:

1. Adding the maximum number of dependencies into the CLASSPATH in order to cover all
passible “needs” in the future, because of using agile software development methodology,
where the modelling of the whole system does not have the highest priority,

2. Lack of knowledge of the program components,

3. Dangling dependencies, which were previously required, but during the process of the program
evolution are no longer needed and were not removed.

The following domains represent subprojects themselves, which are the parts of the entire system.

In this research we work on the inter-project dependencies, therefore the intra-project dependencies
between classes have been omitted in this study. Thus, all attention in this paper is devoted to DMMs
that represent dependencies between different subprojects.

1 : Vertical Horizonta
F 2l i ?_ s e Active degree Passive degree
i ¥ GEERE i: E 21,00 [~ Joa,00
| -
4o -'E 5: NE E EEERE 21,00 " [20.00 ‘
- _ ; A E o
RR e EER R E R ARRE
dEAENNEEEEEEAR AN ANaaE
EEETFIETTEE 5 £ EEE (=[] [m} B EE
ETEE T A S HE ERRE A A ESEA R
ELETEECTN ks B B KE B B]
Al e B B0] O 2 A =}
EYETPRIATN 4[] v BE G
- « EBREE & B A && 1050 1450
rea |+ [[A1A] [== I | B
-l HEEDE H B B
aciee on HIEGS GSOE <]
FARG &
| [x[A] HE =]]
Al 2]] [} =} =} [}
- - B GoE <] [m} =}
........... HAE &6 B]
e
EEN EMEE tad = I ||o.00 E 0,00 .
B} | = 0,00 |~ fo00

Figure 3. DMM — inter-project dependencies

We determine a dependency between two classes of different projects (an edge in DMM) when a class
has at least one reference to another class. We do not take into account the closeness of classes, which

145

could be evaluated on the number of references to the imported class. The total number of
dependencies in DMM is assigned to edge weights of the first domain’s DSM. The exemplary DMM
is represented in Figure 3.

Thus, comparison of dependencies on the CLASSPATH level with dependencies on the class level
allows us to identify the so-called dead-dependencies. Figure 4 shows DSM with inter-project
dependencies. We use this matrix to distinguish between dependencies on the different levels. If there
is a dependency on the CLASSPATH level, the DSM edges are highlighted in grey. The real
dependencies are displayed through the weights of the corresponding edges. As a result, all coloured
edges without weights can be removed without changing the program code and any additional efforts.

.. [
[] o[e
= HE =N
. oo

d JF

- EaE |

5
i
x
i
d
|
|

S |
= d .k

Figure 4. DSM — before modularization

Further program modularization happens through the shading of the DSM edges according to their
weights. This highlighting allows us to obtain instantly a general overview of the strongly and weakly
coupled parts of the system. In this way we get a qualitative view of the software system structure. The
red edges with the highest weights in Figure 4 represent strongly linked subprojects, which hardly
could be removed. Much more attention should be paid to the green edges with the lowest weights.
They symbolize the potential for extracting program modules.

P
P

|
OB - LR
== B
HE=
[] Lo bk
|
[Lz
[= [At

EEE =EEE

e EE EEE

-

[T N

IR

n
:
a
]

e

- E

LN s

i -

=

HE SR

[TR NT

Figure 5. DSM — after modularization

146

Additionally, triangularization and descending sorting according to the active sum were also applied.
These methods reorder the matrix in such a manner that the entries below the diagonal represent
dependencies, which could be removed. Refactoring is used to reduce the number of dependencies:

1. Common variables, e.g. static variables or constants can be moved in the so-called general
usage area.

2. Dependencies on the method level can be removed by moving corresponding methods into
separate interfaces of a new plug-in project.
So, a new second sub-core could be identified. The first element in Figure 5 represents the new project
and is strong connected with other subprojects.
At the last step subprojects that do not have any dependencies any more can be extracted into separate
plug-ins.
This method is applied iteratively. After removing unnecessary dependencies a new version of the

system is being reviewed. During this inspection an improvement of the system structure and
occurence of new unnecessary dependencies are evaluated.

ii
32
FaiH

i
=

i
= 2
¥
1
d

i

z

.
ag

Figure 6. Identified core of the system

As a positive side effect, the core of the system can be identified by looking on double edges of the
DSM shown in Figure 6. Other techniques like clustering can be applied for identifying the system
core. Anquetil and Lethbridge (1999) give a brief overview of clustering techniques and their
application. Wiggerts (1997) presents clustering algorithms for modularization of legacy software and
uses Reverse Engineering technique.

4 CONCLUSION AND OUTLOOK

This section provides a summary of the software modularization MDM-based method, which has been
presented on the previous pages.

Because of rapidly increasing complexity of software products, the need of improving their structure is
raising. Well-structured software is easier to develop and to debug. It provides a set of reusable
modules, which reduces the programming costs in the future.

The main advantage of the approach proposed in this paper is the illustrative idea for improving
modularity of software systems by extracting subprojects into standalone plugins. This method has the
following benefits:

1. Explicit representation of the system structure
2. Simplifying maintenance and modification of the software
3. New opportunities to reuse the source code

147

This method can be also applied recursively to analyse dependencies within the project on the class
level for the package optimization. In this work we did not take into consideration the closeness of the
different classes. This value could be evaluated on the number of references to the imported classes. It
should be mentioned, that this method is not considered to replace the prevailing paradigm of different
refactoring techniques and performs the role of extension to provide a better way for modularization of
software products. However, this method provides the ability to deal with the complexity of very large
software systems.

REFERENCES

Anquetil, N. and Lethbridge, T.C. (1999). Experiments with clustering as a software
remodularization method. In Proceedings of Sixth Working Conference on Reverse
Engineering, IEEE, Atlanta, GA, USA (pp. 235-255).

Arseneau, J.B. and Spracklen, T. (1994). Reengineering software modularity using artificial
neural networks. In Proceedings of WCNN (pp. 467-470).

Browning, T.R. (2001). Applying the design structure matrix to system decomposition and
integration problems: A review and new directions. Transactions on Engineering
Management, IEEE, 48(3), 292-306.

Huynh, S. and Cai, Y. (2007). An evolutionary approach to software modularity analysis. In
AcoM’07 Proceedings of the First International Workshop on Assessment of
Contemporary Modularization Techniques, IEEE Computer Society, Washington, DC,
USA (p. 6).

Huynh, S., et al. (2008). Automatic modularity conformance checking. In Proceedings of the 30th
International Conference on Software Engineering, ACM (pp. 411-420).

JarJarLinks (2011). JarJar, http://code.google.com/p/jarjar/, accessed 19 January 2011.

Lindemann, U., Maurer, M., and Braun, T. (2008). Structural Complexity Management: An
Approach for the Field of Product Design. Springer Verlag.

Maurer, M. and Lindemann, U. (2007). Structural awareness in complex product design — The
Multiple-Domain Matrix. In Proceedings of 9th International Design Structure Matrix
Conference (pp. 16-18).

Sangal, N., et al. (2005). Using dependency models to manage complex software architecture.
ACM SIGPLAN Notices, 40(10), 167-176.

Sullivan, K.J., et al. (2001). The structure and value of modularity in software design. ACM
SIGSOFT Software Engineering Notes, 26(5), 99-108.

Wiggerts, T.A. (1997). Using clustering algorithms in legacy systems remodularization. In
Proceedings of the Fourth Working Conference on Reverse Engineering, IEEE,
Amsterdam, The Netherlands (pp. 33-43).

Contact: Alexander Mirson

Institute for Product Development
Technische Universitidt Miinchen
Boltzmannstrasse 15

86748 Garching

Germany

Tel.: +49 (0)89 289.15121

Fax: +49 (0)89 289.15144

e-mail: alexander.mirson@pe.mw.tum.de
www.pe.mw.tum.de

148

MDM-Based Software Modularization
by Analyzing Inter-Project

i Dependencies
p “,i
‘ - .~ Alexander Mirson’, Oleg Skrypnyuk?, Fatos Elezi! and
5 ¢ ‘f-.a-
i . *'!5' Udo Lindemann'
B ¢
B g”
%‘ Technische Universitat Miinchen, Germany
D\“ - 2Teseon GmbH, Germany
5%
P Y I
| L LT
Index
* Problem

+ Software Development Process and Software Modularization
+ MDM-based software modularization approach
* Case Study — Software LOOMEO

* Conclusion and Outlook

13th International DSM Conference 2011- 2

149

Problem

+ Software systems are complex creations

Perform different and often conflicting objectives
Consist of many components

— Many participants from different disciplines

— Development process spans many years

» Software development projects are subject to constant change
— Update of requirements
— Technological changes
— Human factor

13th International DSM Conference 2011- 3

Software Development Process

* An iterative and
Requirements incremental
process.
e Analysis and Adapted from
g Design Kruchten (2004)

Each iteration results
in an executable
release

150

Initial Planning

13th International DSM Conference 2011- 4

Architectural Design and Software Modularization

* Architectural design
— Description of a system in terms of its modules

13th International DSM Conference 2011- 5

Architectural Design and Software Modularization

» Objectives of software modularization
— Loosely connected software
— Reducing the complexity
— Improving the software system considering change impacts
— Flexible extension of the software

* The Law of Demeter (describes targets that are allowed for the messages
within the class methods)

» Other Refactoring techniques

Moving features between objects
Organizing data

Simplifying conditional expressions
Making method calls simpler

13th International DSM Conference 2011- 6

151

Architectural Design and Software Modularization

e
Fiu r;u. / « Kernel consists of microkernel
\‘\\:\ ,{ f with subprojects

* Well-defined API for connecting
external Plugins

|
il
- L I led Plugi
’ Q f - oosely coupled Plugins

a Tal

13th International DSM Conference 2011- 7

MDM-Based Software Modularization Approach

+ Software modularization approach
consists of the following steps:
— Read source code

— Create MDM
» First DSM contains
dependencies between
subprojects on the
CLASSPATH level
* DMMs represent EEERSERS
dependencies between SHECE

different subprojects on the
class level

Remove
— Compare SW structure based on
CLASSPATH and class level
Improve
- RemOVe Unnecessary architecture

dependencies

— Improve structure by applying
refactoring and go to the first step

13th International DSM Conference 2011- 8

152

Case Study — Software LOOMEO

Java-based software for visualization and analysis of network-like

structures

Over 20 subprojects, approximately 192,000 lines of code

Case Study — Read Source Code

13th International DSM Conference 2011- 9

Reading the jar-libraries of different modules using Jar Jar Links utility
(JarJarLinks 2011)
Collecting all dependencies between classes based on import statement
without taking into account the closeness of classes

frkamrae crmve " ocmmnopun T e rloamie s g e

idal b AR R i mmeb
RESEH g Bt L LR I R S

[e] P LN PR P N T

il bt P LUTEERR P R TP)
[N R] =1 [EN QR ERN ST I I PN
e e =1 - 1 [E-ES Lot cvaama,

EECRLr . RETELC RATILED
DPEELLALBRRELE, IR

TEEIFE A
THErE 28

Bpin o mummr s mmrmas s

Wihmid vABEE Al R Wi Wl B R SRR e T B BT R i e

crieate Load Jollt koL e e Lmami.

RIS ARSI LA LIS TNLL T ATAD AR CES TR AT TR F SO, JISIE JITERETLSIN DA
AREEF el SaTTIne s =y a = SrERgn omIrammEs s

wmhmrm ahmami - L L RS

W LM mEma qmpes e ampEeRe ey Eam Ly tpmm

13th International DSM Conference 2011- 10

153

Case Study — Create MDM

* Creating MDM

» First DSM contains
dependencies between
subprojects on the CLASSPATH
level

— Given manually by the
software developers

— Could be inaccurate (lack of
knowledge, dangling
dependencies)

* DMMs represent dependencies
between different subprojects on
the class level

13th International DSM Conference 2011- 11

Case Study — DSM of the first domain

Dependencies on
CLASSPATH level
]]
[|]

Dependencies on
class level

[T EN

B = aars

[=]

H -~
HEEIILIIEE
BT

Number of classes
used by the project

EEEEENEEE
ElE

13th International DSM Conference 2011- 12

154

Case Study — Create DMM

+ DMM shows classes of two subprojects sorted according to active and

passive sum

» Green elements represent loosely coupled classes

Il waal wwr |
E SELHML || W HE
- K - 1
7 ?\. ; 5 . i .,
ninﬁiéln
B BEA
man EiE B ER E! EEE
O B B H B A B AR
ueeE R] a B B .}
[T LTI [va =R] BE HR
Lo mmrin. EE ﬂE E E E EE RLA | ES
1. HBEBE EH B]
L HEJE 3 E H BH
ratup” o e CIE BE EHE .~
Lu L]]
FLim ERE o =] & =]
B HE3 B 3 E E
eer TerToN -] '] %] B
L e EIE S =]
r EE H B & o
..... - "_EH -] | =~ "
El - -

Before applying the method

Case Study — Refactoring

SM Conference 2011- 13

After applying the method

o " Il
i Plugln API]
i i t
|-]2l =n]
HB8 =
ey] | o] [EEEED
e | IIIIIII EEmEE
ST |] mE T
[- =E mEEn E N
Dreerns [] B EEE EE= Em EE
T | [| W EE 20 = [] H EE
Drmierea s T = 0 = E EEEE
Dwar T = E = EEE m ™
EETEERTE]] EEEEEE | [|
[EFE | EEENE B EEES H EE B
e ae @ HEE Fal [[3] = =-== == =
Eo B EHEEE EEEREEN
cacmr [|] -
cmian, W] FEEE EEEE -
T | [50 0 I =
Prmiera I = T =
rearTrE 20 EEEEE §EEE s
T i =
STy 1) =
T u Microkernel
Kernel /

13th International DSM Conference 2011- 14

155

Conclusion

* Well-structured software is easier to develop and to debug

+ It provides a set of reusable modules, which reduces the programming
costs in the future

+ Benefits of the approach
— Automatic and explicit representation of the system structure
— Simplifying maintenance and modification of the software
— New opportunities to reuse the source code

13th International DSM Conference 2011- 15

Outlook

* Method can be applied recursively to analyze dependencies within the
project on the class level for the package optimization

 Method does not take into consideration the closeness of the different
classes

M Conference 2011- 16

13th

156

References

JardarLinks (2011). JarJar, http://code.google.com/p/jarjar/, accessed 19
January.

Kruchten, P. (2004). The Rational Unified Process: An Introduction.
Addison-Wesley Professional.

13th International DSM Conference 2011- 17

157

