
13TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’11
CAMBRIDGE, MASSACHUSETTS, USA, SEPTEMBER 14 – 15, 2011

MDM-BASED SOFTWARE MODULARIZATION BY
ANALYSING INTER-PROJECT DEPENDENCIES
Alexander Mirson1, Oleg Skrypnyuk2, Fatos Elezi1 and Udo Lindemann1
1Institute for Product Development, Technische Universität München, Germany
2Teseon GmbH, Germany

ABSTRACT
In this paper we explore the possibilities of improving software architecture by eliminating inter-
project dependencies and extracting subprojects into plugins. A new approach is proposed to improve
the modularization process and to support software architects to reach better decisions on how to
reorganize the software system and to get loosely connected architecture in a way that the subprojects
of the system are extracted into standalone plug-ins. This method is using the MDM model and has
been implemented in software called LOOMEO as a standalone plugin to illustrate its applicability. As
a case study we used the software LOOMEO itself to proof our concept. This method provides a solid
framework for improving the refactoring process in multi-project environment.

Keywords: Software architecture, software modularity, dependency, model, matrix, MDM

1 INTRODUCTION
Bringing new software products to the market faster than the competitors has become a strategic
imperative in many industrial sectors. Most of the time in the software product lifecycle is wasted on
support and integration of changes in already existing code. The keys to successful maintenance of
applications are a technique of extracting parts of the code and principles and methods of extracting
modules of the system. Software systems with a great number of dependencies between their
components restrict their further development and extension possibilities. Even the slightest changes
in them have a strong impact on the whole system, since they cannot be contained (Sangal et al. 2005).
Change propagation and change management in general are current topics in the research area.
Sullivan et al. (2001) show the importance of the software modularity and propose an approach for
evaluating software structure and modularity during the software development process and during
usage of the software. This paper describes an approach to handle complex software system consisting
of a large number of subprojects and to extract them into standalone plugins using dependencies
between different subsystems.
One of the approaches to map the complex software system is the matrix-based model, which are
being increasingly used to manage engineering systems and complex product development processes.
The main benefit offered by these models is an enhanced visibility of the systems’ structure, which is
suitable for recognizing specific structural elements of the system and providing a holistic view of the
entire system. The Design Structure Matrix (DSM) (Browning 2001) has proven to be an effective
matrix-based mapping tool. Although the DSM lacks high level of detail, it illustrates complex system
in a simple and useful way for both qualitative and quantitative analysis. In our approach we represent
different subsystems of the software through separate domains. As DSM is limited into the analysis of
one single domain, it does not take into consideration other domains and their interconnectivity.
Therefore, a more appropriate tool for managing complex systems is the Multiple-Domain Matrix
(MDM). The MDM was first mentioned by Maurer and Lindemann (2007) from the Institute of
Product Development at Technische Universität München. This tool is an extended version of DSM,
which allows representing the structure of multiple domains at a time (Lindemann et al. 2008, 2009).

2 PROBLEM
It is almost certain that, at some point during a software system’s lifecycle, there will be a need to
reorganize its modularity following numerous changes to functionality and structure. Changes can

143

arise at any place along the software development process. Increasingly, however, change requests
occur at the end of the development process. One of the main causes for implementing changes is the
shortened product life cycles. Changes cost money, are in most cases time-critical and can have
unexpected impact on the end product. Therefore, if a certain change occurs, the propagation of
changes should be transparent, manageable and the implementation should be executed in a cost-
efficient way. As we mentioned above the one way of improving the software system considering
change impacts is extracting modules of the system and building loosely connected software.
Software modules provide resources to other modules which are specified through the interfaces.
Modularity is one of the basic principles of building software systems. In general, the software module
is a single functionally completed software unit which can be identified and combined with other
parts. Other benefits of using modules are the reuse of these modules in a new context and exactly
mapping the structure of the system.
Different authors propose many approaches to improve software modularity. Huynh and Cai (2007)
suggest an automatic approach for comparing the source code modularity and design modularity by
using DSM. Huynh et al. (2008) compare source code and software structure during design phase.
Arseneau and Spracklen (1994) propose a software tool for supporting the software engineers by
planning the modules of the system, which uses artificial neural network applied to procedure shared
information and combine it to the single modules. Sangal et al. (2005) describe different software
architectural patterns in DSM and how they can be applied to improve the system structure.
The approach proposed in this paper intends to reduce complexity of splitting up software into
separate plugins, thus reducing time and costs of this process. The following method aims to support
this activity by assessing the involvement of each functional unit in the entire software project. This
information helps software architects to make better decisions on how to organize software modules
extracting them in standalone software plugins.

3 APPROACH
In this section, a step-by-step approach is going to be proposed, which will serve as a resolution guide
for the research problems posed in the introduction of the paper. The ultimate goal to be achieved by
applying this method is to improve software architecture by splitting up a program into separate
plugins by finding relationships between the subprojects on the class level and removing them through
refactoring. Methods of modular and structural analysis are used to perform this task.

Figure 1. Steps of the MDM-based software modularization approach

The proposed method consists of the following steps, which are shown in Figure 1:
1. Read source code
2. Create MDM

Read source code

Create MDM

Compare SW
structure based on

CLASSPATH and
class level

Remove
unnecessary

dependencies

Improve structure
by applying
refactoring

144

3. Co
4. Re
5. Im

During t
our use
modules
created M

The firs
depende
based pr
inaccura

1. A
p
w

2. La
3. D

e
The follo
In this r
between
that repr

We deter
has at le

ompare SW
emove unnec

mprove struct
the first step
case we ap

s. At the nex
MDM, which

st domain is
ncies betwe
roject). Thes

ate. The caus
dding the m
passible “ne
where the m
ack of knowl
angling depe
evolution are
owing domai
research we
 classes have

resent depend

rmine a depe
ast one refer

structure bas
cessary depe
ture by apply
the system i

pplied Jar Ja
xt step the w
h represents

Fig

s called Proj
en subprojec
se dependen
es for this pr

maximum nu
eeds” in the
odelling of t
ledge of the
endencies, w
e no longer n
ins represent
work on the
e been omitt
dencies betw

Fi

endency betw
rence to anot

sed on CLAS
endencies
ying refactor
is being load
ar Links uti
whole system
dependencie

gure 2. MDM –

ojects and co
cts on the C
ncies are giv
roblem could
umber of dep

future, beca
the whole sys
program com

which were p
needed and w
t subprojects
e inter-projec
ted in this stu

ween differen

igure 3. DMM

ween two cla
ther class. W

SSPATH and

ring and go to
ded by readin
ility (JarJarL
m is built up
es between in

– Overview of

ontains all s
CLASSPATH
ven manuall
d be:
pendencies i
ause of usin
stem does no
mponents,
reviously req

were not rem
s themselves,
ct dependenc
udy. Thus, a

nt subprojects

M – inter-proje

asses of diffe
We do not tak

d class level

o step 1
ng the source
Links 2011)
p by using M
nvolved subp

f the whole sys

subprojects o
H level (we
y by the so

into the CLA
ng agile softw
ot have the hi

quired, but d
oved.
, which are th
cies, therefo

all attention i
s.

ect dependenc

erent projects
ke into accou

e code of dif
to load jar-

MDM-appro
projects.

stem

of the syste
applied our

oftware deve

ASSPATH i
ware develo
ighest priorit

during the pr

he parts of th
re the intra-

in this paper

cies

s (an edge in
unt the closen

fferent subpr
-libraries of
oach. Figure

em. Its DSM
r approach to
elopers and

in order to
opment meth
ty,

rocess of the

he entire syst
-project depe
is devoted t

n DMM) whe
ness of classe

rojects. In
different
2 shows

M depicts
o a java-
could be

cover all
hodology,

 program

tem.
endencies
to DMMs

en a class
es, which

145

could be evaluated on the number of references to the imported class. The total number of
dependencies in DMM is assigned to edge weights of the first domain’s DSM. The exemplary DMM
is represented in Figure 3.
Thus, comparison of dependencies on the CLASSPATH level with dependencies on the class level
allows us to identify the so-called dead-dependencies. Figure 4 shows DSM with inter-project
dependencies. We use this matrix to distinguish between dependencies on the different levels. If there
is a dependency on the CLASSPATH level, the DSM edges are highlighted in grey. The real
dependencies are displayed through the weights of the corresponding edges. As a result, all coloured
edges without weights can be removed without changing the program code and any additional efforts.

Figure 4. DSM – before modularization

Further program modularization happens through the shading of the DSM edges according to their
weights. This highlighting allows us to obtain instantly a general overview of the strongly and weakly
coupled parts of the system. In this way we get a qualitative view of the software system structure. The
red edges with the highest weights in Figure 4 represent strongly linked subprojects, which hardly
could be removed. Much more attention should be paid to the green edges with the lowest weights.
They symbolize the potential for extracting program modules.

Figure 5. DSM – after modularization

146

Additionally, triangularization and descending sorting according to the active sum were also applied.
These methods reorder the matrix in such a manner that the entries below the diagonal represent
dependencies, which could be removed. Refactoring is used to reduce the number of dependencies:

1. Common variables, e.g. static variables or constants can be moved in the so-called general
usage area.

2. Dependencies on the method level can be removed by moving corresponding methods into
separate interfaces of a new plug-in project.

So, a new second sub-core could be identified. The first element in Figure 5 represents the new project
and is strong connected with other subprojects.
At the last step subprojects that do not have any dependencies any more can be extracted into separate
plug-ins.
This method is applied iteratively. After removing unnecessary dependencies a new version of the
system is being reviewed. During this inspection an improvement of the system structure and
occurence of new unnecessary dependencies are evaluated.

Figure 6. Identified core of the system

As a positive side effect, the core of the system can be identified by looking on double edges of the
DSM shown in Figure 6. Other techniques like clustering can be applied for identifying the system
core. Anquetil and Lethbridge (1999) give a brief overview of clustering techniques and their
application. Wiggerts (1997) presents clustering algorithms for modularization of legacy software and
uses Reverse Engineering technique.

4 CONCLUSION AND OUTLOOK
This section provides a summary of the software modularization MDM-based method, which has been
presented on the previous pages.
Because of rapidly increasing complexity of software products, the need of improving their structure is
raising. Well-structured software is easier to develop and to debug. It provides a set of reusable
modules, which reduces the programming costs in the future.
The main advantage of the approach proposed in this paper is the illustrative idea for improving
modularity of software systems by extracting subprojects into standalone plugins. This method has the
following benefits:

1. Explicit representation of the system structure
2. Simplifying maintenance and modification of the software
3. New opportunities to reuse the source code

147

This method can be also applied recursively to analyse dependencies within the project on the class
level for the package optimization. In this work we did not take into consideration the closeness of the
different classes. This value could be evaluated on the number of references to the imported classes. It
should be mentioned, that this method is not considered to replace the prevailing paradigm of different
refactoring techniques and performs the role of extension to provide a better way for modularization of
software products. However, this method provides the ability to deal with the complexity of very large
software systems.

REFERENCES
Anquetil, N. and Lethbridge, T.C. (1999). Experiments with clustering as a software

remodularization method. In Proceedings of Sixth Working Conference on Reverse
Engineering, IEEE, Atlanta, GA, USA (pp. 235-255).

Arseneau, J.B. and Spracklen, T. (1994). Reengineering software modularity using artificial
neural networks. In Proceedings of WCNN (pp. 467-470).

Browning, T.R. (2001). Applying the design structure matrix to system decomposition and
integration problems: A review and new directions. Transactions on Engineering
Management, IEEE, 48(3), 292-306.

Huynh, S. and Cai, Y. (2007). An evolutionary approach to software modularity analysis. In
AcoM’07 Proceedings of the First International Workshop on Assessment of
Contemporary Modularization Techniques, IEEE Computer Society, Washington, DC,
USA (p. 6).

Huynh, S., et al. (2008). Automatic modularity conformance checking. In Proceedings of the 30th
International Conference on Software Engineering, ACM (pp. 411-420).

JarJarLinks (2011). JarJar, http://code.google.com/p/jarjar/, accessed 19 January 2011.
Lindemann, U., Maurer, M., and Braun, T. (2008). Structural Complexity Management: An

Approach for the Field of Product Design. Springer Verlag.
Maurer, M. and Lindemann, U. (2007). Structural awareness in complex product design – The

Multiple-Domain Matrix. In Proceedings of 9th International Design Structure Matrix
Conference (pp. 16-18).

Sangal, N., et al. (2005). Using dependency models to manage complex software architecture.
ACM SIGPLAN Notices, 40(10), 167-176.

Sullivan, K.J., et al. (2001). The structure and value of modularity in software design. ACM
SIGSOFT Software Engineering Notes, 26(5), 99-108.

Wiggerts, T.A. (1997). Using clustering algorithms in legacy systems remodularization. In
Proceedings of the Fourth Working Conference on Reverse Engineering, IEEE,
Amsterdam, The Netherlands (pp. 33-43).

Contact: Alexander Mirson
Institute for Product Development
Technische Universität München
Boltzmannstrasse 15
86748 Garching
Germany
Tel.: +49 (0)89 289.15121
Fax: +49 (0)89 289.15144
e-mail: alexander.mirson@pe.mw.tum.de
www.pe.mw.tum.de

148

INVEST ON VISUALIZATION

MDM-Based Software Modularization
by Analyzing Inter-Project

DependenciesDependencies
Alexander Mirson1, Oleg Skrypnyuk2, Fatos Elezi1 and

Udo Lindemann1

1Technische Universität München, Germanyec sc e U e s tät ü c e , Ge a y
2Teseon GmbH, Germany

INVEST ON VISUALIZATION

IndexIndex

• Problem• Problem

• Software Development Process and Software Modularization

• MDM-based software modularization approach

• Case Study – Software LOOMEO

C l i d O tl k• Conclusion and Outlook

13th International DSM Conference 2011- 2

149

INVEST ON VISUALIZATION

ProblemProblem

• Software systems are complex creations• Software systems are complex creations
– Perform different and often conflicting objectives
– Consist of many components
– Many participants from different disciplines
– Development process spans many years

• Software development projects are subject to constant change
– Update of requirements

T h l i l h– Technological changes
– Human factor

13th International DSM Conference 2011- 3

INVEST ON VISUALIZATION

Software Development ProcessSoftware Development Process

• An iterative and
Requirements

Analysis andPlanning
Initial Planning

incremental
process.
Adapted from
K ht (2004)DesignPlanning Kruchten (2004)

ImplementationEvaluation

Test
Each iteration results

Deploymentin an executable
release

13th International DSM Conference 2011- 4

150

INVEST ON VISUALIZATION

Architectural Design and Software ModularizationArchitectural Design and Software Modularization

• Architectural design
Description of a system in terms of its modules– Description of a system in terms of its modules

13th International DSM Conference 2011- 5

INVEST ON VISUALIZATION

Architectural Design and Software ModularizationArchitectural Design and Software Modularization

• Objectives of software modularization
Loosely connected software– Loosely connected software

– Reducing the complexity
– Improving the software system considering change impacts
– Flexible extension of the software

• The Law of Demeter (describes targets that are allowed for the messagesThe Law of Demeter (describes targets that are allowed for the messages
within the class methods)

• Other Refactoring techniques
Moving features between objects– Moving features between objects

– Organizing data
– Simplifying conditional expressions
– Making method calls simpler

13th International DSM Conference 2011- 6

151

INVEST ON VISUALIZATION

Architectural Design and Software ModularizationArchitectural Design and Software Modularization

• Kernel consists of microkernel
ith b j twith subprojects

• Well-defined API for connecting g
external Plugins

• Loosely coupled PluginsLoosely coupled Plugins

13th International DSM Conference 2011- 7

INVEST ON VISUALIZATION

MDM-Based Software Modularization ApproachMDM Based Software Modularization Approach

• Software modularization approach
consists of the following steps:

Read source code

consists of the following steps:
– Read source code
– Create MDM

• First DSM contains

Create MDM

• First DSM contains
dependencies between
subprojects on the
CLASSPATH level

Compare software
structure

R

• DMMs represent
dependencies between
different subprojects on the
class level Remove

dependencies

Improve
architecture

class level
– Compare SW structure based on

CLASSPATH and class level
Remove unnecessary architecture– Remove unnecessary
dependencies

– Improve structure by applying
refactoring and go to the first step

13th International DSM Conference 2011- 8

g g p

152

INVEST ON VISUALIZATION

Case Study – Software LOOMEOCase Study Software LOOMEO

• Java-based software for visualization and analysis of network-like
structures

• Over 20 subprojects, approximately 192,000 lines of code

13th International DSM Conference 2011- 9

Over 20 subprojects, approximately 192,000 lines of code

INVEST ON VISUALIZATION

Case Study – Read Source CodeCase Study Read Source Code

• Reading the jar-libraries of different modules using Jar Jar Links utility
(JarJarLinks 2011)(JarJarLinks 2011)

• Collecting all dependencies between classes based on import statement
without taking into account the closeness of classes

13th International DSM Conference 2011- 10

153

INVEST ON VISUALIZATION

Case Study – Create MDMCase Study Create MDM

• Creating MDM
• First DSM contains• First DSM contains

dependencies between
subprojects on the CLASSPATH
levellevel
– Given manually by the

software developers
C ld b i t (l k f– Could be inaccurate (lack of
knowledge, dangling
dependencies)

DMM t d d i• DMMs represent dependencies
between different subprojects on
the class level

13th International DSM Conference 2011- 11

INVEST ON VISUALIZATION

Case Study – DSM of the first domainCase Study DSM of the first domain

D d iDependencies on
CLASSPATH level

Number of classes
used by the project

Dependencies on
class level

usesuses

13th International DSM Conference 2011- 12

154

INVEST ON VISUALIZATION

Case Study – Create DMMCase Study Create DMM

• DMM shows classes of two subprojects sorted according to active and
passive sumpassive sum

• Green elements represent loosely coupled classes

13th International DSM Conference 2011- 13

INVEST ON VISUALIZATION

Case Study – RefactoringCase Study Refactoring

Before applying the method After applying the method

Plugin API

Microkernel

Kernel

13th International DSM Conference 2011- 14

Kernel

155

INVEST ON VISUALIZATION

ConclusionConclusion

• Well-structured software is easier to develop and to debug
• It provides a set of reusable modules which reduces the programming• It provides a set of reusable modules, which reduces the programming

costs in the future

B fit f th h• Benefits of the approach
– Automatic and explicit representation of the system structure
– Simplifying maintenance and modification of the softwarep y g
– New opportunities to reuse the source code

13th International DSM Conference 2011- 15

INVEST ON VISUALIZATION

OutlookOutlook

• Method can be applied recursively to analyze dependencies within the• Method can be applied recursively to analyze dependencies within the
project on the class level for the package optimization

M th d d t t k i t id ti th l f th diff t• Method does not take into consideration the closeness of the different
classes

13th International DSM Conference 2011- 16

156

INVEST ON VISUALIZATION

ReferencesReferences

• JarJarLinks (2011). JarJar, http://code.google.com/p/jarjar/, accessed 19
JanuaryJanuary.

• Kruchten, P. (2004). The Rational Unified Process: An Introduction.
Addison-Wesley Professional.

13th International DSM Conference 2011- 17

157

