
DESIGN STRUCTURE OF SCIENTIFIC SOFTWARE –
A CASE STUDY
Shahadat Hossain and Ahmed Tahsin Zulkarnine
Department of Mathematics and Computer Science, University of Lethbridge, AB T1K 3M4,
Canada

In this paper we report results from an exploratory study of design structures in scientific research
software. Dependency Structure Matrix (DSM) is used as a modelling tool to capture and analyze
dependencies among system elements such as functions. We compute several architectural complexity
metrics and present preliminary results from two open-source scientific computing software
applications.

Keywords: Research software, network, structural property, software engineering

1 INTRODUCTION
The utility of properties e.g., modularity and information hiding (Parnas, 1972) in complex software
design is now widely recognized in software engineering community. An evolving software system
needs to have a design architecture that allows easy accommodation of functional changes and
asynchronous (re-)development of parts of the system. The dependency structure matrix has been used
as a tool to analyze and compare alternative design decisions and quantify structural metrics e.g.,
modularity in large and complex software systems (MacCormack et al., 2006; Sosa et al., 2007a; Sosa,
2008; Sangal et al., 2005; LaMantia et al., 2008).
In this paper we study software systems architecture specifically designed for problems arising in
scientific and engineering applications (Kelly and Sanders, 2008; Marques and Drummond, 2005).
While some scientific computing software applications are primarily designed as a proof-of-concept
tool, with the advent of more powerful hardware resources e.g., supercomputers, a growing number of
scientific applications are being developed to perform large-scale simulation runs that were previously
intractable (Trillinos, 2011; SciDAC, 2011). Unlike the one-time throwaway computer code, these
simulation software applications are highly complex and large (IPSL-CM5, 2011) (millions of lines of
code). The applications involve substantial investment in time and other expensive resources and tend
to have lifecycles measured in tens of years. Some of the main concerns in the design of research
software are to do with the correctness of the computed output and scalability of the software,
especially with regard to high-performance and emerging hardware technology (Marques and
Drummond, 2005). A distinguishing feature of the designers of such software applications is that they
are highly trained scientists with little or no formal background in modern software engineering
practices. The main objective of such software is to produce new scientific knowledge. The finished
products typically are of very high quality and efficient (Heroux and Willenbring, 2009; Kelly and
Sanders, 2008). On the other hand, being very focused on narrowly defined application domains,
important software quality metrics e.g., usability (user interface), extensibility etc., may not be among
the list of primary design objectives (Heroux and Willenbring, 2009; Morris, 2008).
The main purpose of this work is to examine and understand the design structure of scientific
computing research software by analyzing the interactions between design elements, with particular
emphasis on metrics that quantify the modularity of design, the effect of changes in system’s
architecture due to the need for porting the application to emerging high-performance computing
system or the integration with external systems.
In MacCormack et al. (2006) the DSM technique is applied to study dependencies among system
elements of two large-scale software applications. It is noted that there exists a strong correspondence
between the design structure of the software and the organization in which it is developed. The

13TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’11
CAMBRIDGE, MASSACHUSETTS, USA, SEPTEMBER 14 – 15, 2011

129

ABSTRACT

geographically distributed nature of the development team is reflected in the more modular
architecture of the open-source compared with the proprietary , in which the
developers have direct face-to-face interactions. The identification of dominant subsystems or
modules of software systems and their dependency analysis constitute key considerations in managing
architectural evolution of complex software products (MacCormack et al., 2006; Sangal et al., 2005;
Sosa et al., 2007a, 2007b). As noted earlier, the design goals of scientific research software systems
and the organization in which they are developed are somewhat different from that of commercial or
general-purpose software systems (MacCormack et al., 2006) and therefore present itself as an
important and interesting case-study. In our work we choose automatic differentiation (AD) software
(see Griewank and Walther, 2008) – software applications that are concerned with the automatic
computation of derivatives or sensitivities of mathematical functions that are given as computer
programs. Our choice for this particular application type is influenced by the observation that
computation or estimation of derivatives or sensitivities of outputs of a mathematical model with
respect to its input parameters, is a frequently required step in many algorithms for solving scientific
and engineering problems. Therefore, software tools implementing automatic differentiation of
computer programs constitute appropriate test cases for scientific software applications that are
intended to be a part of other major scientific applications. We choose ADOL-C (Griewank et al.,
1996) and CppAD (Bell, 2011) as representative AD software that are built utilizing ‘operator
overloading’ technique. We note that the other main implementation technique for AD software,
‘source transformation’, is not considered in this paper. Both the applications are available from
COIN-OR (COIN-OR, 2011) project as open-source software under public license.

2 METRICS FOR ANALYZING DESIGN STRUCTURE
Given below is a description of structural metrics we use in this work.

1. Characteristic path length. In an undirected graph, the average distance between nodes

and is defined by, � , where is the shortest path length (minimum number of

edges) connecting the nodes.
2. Clustering co-efficient. A measure of degree to which nodes in a graph tend to cluster

together in an undirected graph is defined by, , where , denotes the

clustering coefficient of node , with being the number of nodes connected to node , and
being the actual number of edges between those adjacent nodes.

3. Nodal degree. The average degree of the nodes in the graph where is the
number nodes adjacent to node (also the degree of node). For directed graphs the degree of
node is the sum of its in-degree (number of directed edges pointing to node) and out-degree
(number of directed edges pointing away from node to other nodes).

4. Strongly connected Components. A directed graph is called strongly connected if there is
a directed path from each vertex in the graph to every other vertex. The strongly connected
components of a directed graph are its maximal strongly connected sub-graphs.

5. Propagation Cost. This is a measure of the proportion, on average, of design elements that
are affected due to a change to a specific design element and is given by , where

 is the number of nodes reachable from node using a directed path with minimum number
of edges.

We distinguish between functions that are explicitly implemented in the software under consideration
(denoted user function) and the functions that are part of the software libraries (e.g., input/output
functions). In our work user functions are the basic design elements (nodes in the associated directed
graph, henceforth the call graph), and function is said to depend on function if it calls from within
its body, which is denoted by a mark in row and column of the associated DSM (by a directed edge
from node to node in the call graph). In order to extract the dependency information and to generate
the static call graph we have used the gcc-based call-and-structure extractor developed by a research
team from The University of Groningen, the Netherlands (Telea et al., 2009).

130

Table 1. Structural properties of ADOL-C and CppAD

Software
Nodes Directed Edges

Files
User

Functions Files User Functions

ADOL-C 60 271 66 703
CppAD 66 80 67 175

Table 1 displays the number of system elements (nodes) and the number of links (directed edges) in
the two software tools under consideration. The column labelled ‘Files’ represent the number of files
the functions are contained in. It is readily apparent that both the call graphs are very sparse i.e., only a
small fraction of the possible edges are present. After constructing the DSM we use a strongly-
connected component partitioning tool (Hossain, 2010) to rearrange the DSM into block triangular
form.

ADOL-C CppAD

Figure 1 Partitioned DSM of ADOL-C and CppAD

In Figures 1 and 2, the DSM for ADOL-C and CppAD are displayed after the partitioning algorithm is
applied to the user function call graph. An important observation that can be made from the figures is
the absence of any feedback mark in the respective DSMs. This is also indicated by the number of
strongly connected components being the same as the number of design elements in Table 2. From a
graph-theoretic viewpoint, a triangular DSM is manifested in the acyclic (directed) nature of the
associated function call graph. We note that ADOL-C project involves multiple (about ten) developers
while CppAD is a one-person project. In scientific software development where computational
efficiency is one of the main goals, running-time profiling is a necessary step. Profiling tools e.g.
‘gprof’ (Graham et al., 2004) usually provide information on whether a function is part of a cycle in
the static call graph of the program. In the context of static function call DSM, the presence of feed-
back marks complicates the accurate profiling (computing time values). For example, functions and

 are mutually dependent in the call graph if function calls function which in turn calls function .
The execution time incurred in function will include the time incurred in the called function ,
whose running time, in turn, must include the time for executing function – thereby invalidating the
profiling procedure. Generally speaking, circular dependencies (direct or indirect recursions) are
avoided to enable certain code optimization features in the compiler. We conjecture that for the
software tools studied, circular dependencies have most likely been discovered early and reworked at
the initial design phase.

131

Table 2. Design structure metrics

Software Characteristic
Path length, l

Clustering co-
efficient, C

Nodal
Degree

Number of
Components

Propagation
Cost (%)

ADOL-C 2.05005 0.080382 5.18819 271 3.41635
CppAD 2.37373 0.0342364 4.375 80 6.64062

Table 2 displays a suite of structural metrics and their values from the two DSMs. The propagation
costs of 3.4 and 6.6 indicate that, on average, a change in the implementation of any function in the
software has the potential of affecting only 3.4% and 6.6%, respectively, of functions. A similar
observation with regard to propagation cost has been made in MacCormack et al. (2006). Following
Braha and Bar-Yam (2007) we ignore the direction of the edges in the respective call graphs
concerning the metrics ‘characteristic path length’ and ‘clustering coefficient’. This is a reasonable
assumption since, in general, the caller and the called functions may exchange information via in- and
out-parameters. Viewing the call-graph as an information flow network (Braha and Bar-Yam, 2007),
structural metrics such as characteristic path length, clustering co-efficient, and nodal degree and its
distribution provide useful information about the architecture of the underlying product. From Table 2,
we observe small average nodal degree and shorter average distance between any two nodes in the
networks. On the other hand, the tendency of the related functions being highly interacting (measured
by the clustering coefficient), is almost an order of magnitude smaller than that of the operating
system software reported in Braha and Bar-Yam (2007).

Figure 3. Cumulative frequency vs. degree (in-degree/out-degree) of ADOL-C

Figure 4. Cumulative frequency vs. in-degree and out-degree of CppAD

Figures 3 and 4 present cumulative (in-, out-) degree distributions of call graph nodes. We note that
the total nodal degree varies from 1 to 62 for ADOL-C and from 1 to 29 for CppAD with
approximately 80% of the nodes having degree less than or equal to 8 for ADOL-C and 6 for CppAD.
In other words, only a small fraction of the functions in both software tools are most relevant with
regard to the functioning of the software. The degree distribution analysis provides local information

132

only. To obtain global information on how function elements exert their influence on other functions
we use an index that measures the centrality of a node by the number of shortest paths in the call graph
containing that node. For ADOL-C, function fail has been found to be included in the maximum
number (16398) of shortest paths (directed) between any pair of nodes while for CppAD the
corresponding function is constructor-special which is included in 2238 shortest paths. This
observation is not surprising since ‘correctness’ of computed values is one of the main design goals in
scientific computing software (Kelly and Sanders, 2008; Heroux and Willenbring, 2009). In case of
CppAD, we note it heavily uses object-oriented features compared with ADOL-C and a constructor
function is one of the most frequently called member function.

3 CONCLUDING REMARKS
In this paper we perform dependency analysis of function call graphs for two scientific research
software tools. Unlike projects (e.g., computer operating systems) where formal software engineering
practices are perceived important for their success, the main goal in scientific research software is the
creation and validation of new scientific knowledge. The call graphs for the studied software tools
display shorter characteristic path lengths, small nodal degrees, and small propagation costs, similar to
general-purpose software such as operating systems (Braha and Bar-Yam, 2007; MacCormack et al.,
2006). On the other hand, a relatively small clustering coefficient in ADOL-C and CppAD points to a
less modular design structure. Furthermore, absence of circular dependencies in the studied software
can be attributed to the strong emphasis placed on the computational performance of the code (noting
that recursive function calls, in general, are considered a hindrance to the performance enhancing code
optimization e.g. ‘in-lining’ of functions, regularly performed by modern optimizing compilers).
In addition to performing more detailed analyses of the structural metrics, there are a number of
extensions to this work that we envision in future. First, it will be interesting to perform design
structure analysis to compare and contrast scientific software from multiple application domains.
Secondly, to obtain a better understanding of the architecture of software products from multiple
application domains, it is helpful to develop domain-specific centrality metrics. For example, natural
inquiries in this regard could be ‘how well does this software integrate into a larger and complex super
system?’, ‘how sensitive is the software to new or emerging hardware technologies?’.

ACKNOWLEDGEMENTS
This research is supported in part by Natural Sciences and Engineering Research Council (NSERC) of
Canada Discovery Grant (Individual). The authors wish to thank the anonymous referees for many
helpful suggestions that improved the presentation of the manuscript.

REFERENCES
Braha, D., & Bar-Yam, Y. (2007). The Statistical Mechanics of Complex Product Development:

Empirical and Analytical Results. Management Science, 53, 1127-1145.
Bell, B. M. (2011). CppAD: A Package for Differentiation of C++ Algorithms. http://www.coin-

or.org/CppAD/ (accessed May 2011).
Computational Infrastructure for Operations Research (COIN-OR). http://www.coin-or.org/ (accessed

May 2011).
Graham, S.L., Kessler, P.B., & McKusick, M.K. (2004). GPROF: A Call Graph Execution Profiler.

ACM SIGPLAN Notices – Best of PLDI 1979-1999, 39(4), 49-57.
Griewank, A., Juedes, D. & Utke, J. (1996). Algorithm 755: ADOL-C: A Package for the Automatic

Differentiation of Algorithms Written in C/C++. ACM Transactions on Mathematical
Software (TOMS), 22(2), 131-167.

Griewank, A., & Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation (Second ed.), SIAM, Philadelphia, PA.

Heroux, M.A., & Willenbring, J.M. (2009). Barely Sufficient Software Engineering: 10 Practices to
Improve Your CSE Software. In Proceedings of SECSE'09, Vancouver, Canada, May, pp. 15-
21.

Hossain, S. (2010). Efficiently Computing with Design Structure Matrices. In Proceedings of 12th
International DSM Conference, Cambridge, UK, July, pp. 345-358.

133

Kelly, D., & Sanders, R. (2008). Assessing the Quality of Scientific Softwares. In Proceedings of First
International Workshop on Software Engineering for Computational Science and
Engineering, Leipzeig, Germany, May.

LaMantia, M.J., Chai, Y., & MacCormack, A. (2008). Analyzing the Evolution of Large-Scale
Software Systems using Design Structure Matrices and Design Rule Theory: Two Exploratory
Cases. In Proceedings of Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA'08). IEEE Computer Society, Washington, DC, pp. 83-92.

MacCormack, A., John Rusnak, & Baldwin, C. Y. (2006). Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code. Management
Science, 52 (July 2006), 1015-1030.

Marques, O., & Drummond, T. (2005). Building a Software Infrastructure for Computational Science
Application: Lessons and Solutions. In Proceedings of SE-HPC'05, St. Louis, Missouri, May,
pp. 40-44.

Parnas, D.L. (1972). On the Criteria to Be Used in Decomposing Systems into Modules. Commun.
ACM, 15, 1053-1058.

Sangal, N., Jordan, E., Sinha, V., & Jackson, D. (2005). Using Dependency Models to Manage
Complex Software Architecture. In Proceedings of OOPSLA'05, October, pp. 167-176.

Scientific Discovery through Advanved Computing (SciDAC). http://www.scidac.gov/ (accessed May
2011).

Sosa, M., Browing, T.R., & Mihm, J. (2007a). Dynamic, DSM-Based Analysis of Software Product
Architecture. In Proceedings of 9th International DSM Conference, October, pp. 349-362.

Sosa, M.E. (2008). A Structured Approach to Predicting and Managing Technical Interactions in
Software Development. Research in Engineering Design, 19(1), 47-70.

Sosa, M.E., Browning, T., & Mihm, J. (2007b). Studying the Dynamics of the Architecture of
Software Products. In Proceedings of ASME 2007 International Design Engineering
Technical Conferences & Computer and Information in Engineering Conference September,
pp. 329-342.

Sullivan, K.J., Griswold, W.G., Chai, Y., & Hallen, B. (2001). The Structure and Value of Modularity
in Software Design. In Proceedings of ESEC/FSE 2001, Vienna, Austria, pp. 99-108.

Telea, A., Hoogendorp, H., Ersoy, O., & Reniers, D. (2009). Extraction and Visualization of Call
Dependencies for Large C/C++ Code Bases: A Comparative Study. In Proceedings of 5th
IEEE International Workshop on Visualizing Software, Edmonton, Canada, pp. 81-88.

The Trillinos Project, http://trilinos.sandia.gov/ (accessed May 2011).

Contact: Shahadat Hossain
Department of Mathematics and Computer Science
University of Lethbridge,
Lethbridge, Alberta T1K 3M4
Canada
Tel.: (1) 403 329 2475
Fax (1) 403 317 2882
e-mail: shahadat.hossain@uleth.ca

134

INVEST ON VISUALIZATION

Design Structure of Scientific Software g
– A Case Study

Shahadat Hossain and Ahmed Tahsin Zulkarnine

University of Lethbridge, Alberta, Canada

INVEST ON VISUALIZATION

IndexIndex

• Objectives and Methodology
• Metrics for Analyzing Design Structure
• Comparison between ADOL-C versions
• Concluding remarks and future work

13th International DSM Conference 2011- 2

135

INVEST ON VISUALIZATION

Scientific Research SoftwareScientific Research Software

• General-purpose Commercial Software
• Employ formal methods from software engineering discipline• Employ formal methods from software engineering discipline
• Problem domains are generally well-understood so that mature algorithms

are readily available
• Trained engineers familiar with tested ‘best practices’• Trained engineers familiar with tested best-practices

• Scientific Research Software
• Design new algorithms or models for scientific problems or processes

• ‘Proof-of-concept’ code is most likely a one-time exercise verifying a
hypothesis vs.

• Modelling natural phenomena by building simulation codebase that are
highly complex and large and involves experts from multiple scientifichighly complex and large, and involves experts from multiple scientific
domains with software lifecycle measured in decades

• Software applications are generally designed by highly trained scientists
who may not have formal training in software engineering Main concernswho may not have formal training in software engineering. Main concerns
are:

– Narrow focus impedes with a) integration in larger systems b) future
extension or modification

13th International DSM Conference 2011- 3

INVEST ON VISUALIZATION

Objectives and MethodologyObjectives and Methodology

• Study and analyze design structure of representative scientific software
systems with suitable design structural metrics and DSMsystems with suitable design structural metrics and DSM.

• ADOL-C and CppAD are open-source software that compute first- and
higher order mathematical derivatives of functions given as computerhigher-order mathematical derivatives of functions given as computer
programs written in C/C++.

– ADOL-C: Developed by a team of researchers from Argonne National
Lab, Dresden University of Technology, and Humboldt University over
a period of 20+ years.

– CppAD: Developed as a one-person effort at the University of
Washington, Seattle.g ,

13th International DSM Conference 2011- 4

136

INVEST ON VISUALIZATION

Structural PropertiesStructural Properties

In our analysis functions are the nodes in the associated directed graph, and function i
i id t d d f ti j if it ll j f ithi it b dis said to depend on function j if it calls j from within its body.

Software
Nodes Directed Edges

Software
Files User functions Files User functions

ADOL-C 60 271 66 703

CppAD 66 80 67 175

• Graphs are sparse - approximately 0.95% and 2.74% of the possible edges of
ADOL-C and CppAD, respectively, are present.

• We distinguish between functions that are explicitly implemented denoted as user
f ti d th f ti th t t f ft lib ifunction and the functions that are part of software libraries.

13th International DSM Conference 2011- 5

INVEST ON VISUALIZATION

Metrics for Analyzing Design StructureMetrics for Analyzing Design Structure

• Characteristic path length (undirected graph):,

)1(

∑
= ≠

NN
ji

ijd
l

where is the length of the shortest path connecting the nodes i and j

)1(−NN

ijd

• Clustering co-efficient (undirected graph) :
∑=
N

iC
N

C
1

1

where

=iN 1

)1(
*2

−
=

ii

i
i kk

nC

denotes the clustering co-efficient of node i, is the number of nodes i is
adjacent to and is the actual number of edges between its adjacent nodes.

)(ii

ik
in

13th International DSM Conference 2011- 6

137

INVEST ON VISUALIZATION

Metrics for Analyzing Design Structure (contd)Metrics for Analyzing Design Structure (contd.)

• Average nodal degree:
∑=
N

kk 1

where is the number of nodes adjacent to node i. For a directed graph,

∑
=

=
i

ikk
N 1

ik

, where is the number of directed edges pointing into i and

is the number of directed edges pointing away from i.
outin kkk += ink

outk

• Propagation cost:
∑
=

N

i ip
N 1

1

where is the number of nodes reachable from node i using the directed path
with minimum number of edges.

=iN 1

ip

13th International DSM Conference 2011- 7

INVEST ON VISUALIZATION

Partitioned DSMPartitioned DSM

ADOL-C CppAD

13th International DSM Conference 2011- 8

138

INVEST ON VISUALIZATION

ObservationsObservations

• Absence of feedback mark is also indicated by the function call graph
being directed and acyclicbeing directed and acyclic.

• Performance profiling is a frequently performed design step in many
scientific software development
• profiling tool e g gprof usually indicates if a function is included in a directed• profiling tool e.g., gprof, usually indicates if a function is included in a directed

cycle (direct or indirect recursion) in the call graph
• cycles are labeled for easy identification
• recursive function calls are considered computationally expensive due to the• recursive function calls are considered computationally expensive due to the

book-keeping cost associated with run-time stack
• code optimization e.g., in-lining of functions cannot be performed in presence

of recursionof recursion

13th International DSM Conference 2011- 9

INVEST ON VISUALIZATION

MetricsMetrics

Software Characteristic
P th l th l

Clustering co-
ffi i t C

Nodal
D

Propagation
C t (%)Software Path length, l efficient, C Degree Cost (%)

ADOL- C 2.05005 0.080382 5.18819 3.41635

CppAD 2 37373 0 0342364 4 375 6 64062

• Characteristic path length and clustering co-efficient are computed using
the undirected version of the call graph

CppAD 2.37373 0.0342364 4.375 6.64062

the undirected version of the call graph
• during function call and return information is exchanged in both directions via

in- or out-parameters and return values
• Small propagation cost and short characteristic path length are consistent with theSmall propagation cost and short characteristic path length are consistent with the

observations made with regard to operating systems software by other researchers
• Clustering coefficient is an order of magnitude smaller indicative of less modular

designg

13th International DSM Conference 2011- 10

139

INVEST ON VISUALIZATION

Cumulative Frequency vs IN-Degree and OUT-DegreeCumulative Frequency vs. IN Degree and OUT Degree

• The figures display cumulative
f l tt d i t i dfrequency plotted against in-degree
(circles) and out-degree (triangle)
distribution of ADOL-C (top) and
CppAD (bottom).pp ()

• The total nodal degree varies from 1
to 62 for ADOLC and from 1 to 29 for
CppAd with approximately 80% of the
nodes having degree less than or
equal to 8 for ADOL-C and 6 for
C ADCppAD.

• Only a small fraction of the functions
i b th ft t l h lin both software tools have large
degrees (central tasks/functions)

13th International DSM Conference 2011- 11

INVEST ON VISUALIZATION

Comparison between ADOL-C VersionsComparison between ADOL C Versions

• We compared 10 different version of ADOL-C.
• Major change observed between v1.10.0 and V2.1.0

Nodes Directed Edges
Versions

Files User functions Files User functions

V 1.10.0 60 320 77 1037

User function changes from the immediately preceding version

V 2.1.0 60 271 66 703

User function changes from the immediately preceding version

ADOLC Version
User Functions

Added Droppedpp

V 1.10.0 6 1

V 2.1.0 60 109

13th International DSM Conference 2011- 12

140

INVEST ON VISUALIZATION

Comparison between ADOL-C Versions (contd)Comparison between ADOL C Versions (contd.)

Changes in design structure metrics from the immediately preceding versions

ADOL-C
Versions

Characteristic
Path length, l

Clustering co-
efficient, C

Nodal
Degree

Number of
Components

Propagation
Cost (%)

V 1.10.0 3.25725 0.106083 6.48125 320 3.43262

V 2.1.0 2.05005 0.080382 5.18819 271 3.41635

13th International DSM Conference 2011- 13

INVEST ON VISUALIZATION

Concluding Remarks and Future WorkConcluding Remarks and Future Work

•The call graphs for the studied software tools display shorter characteristic pathThe call graphs for the studied software tools display shorter characteristic path
lengths and small nodal degrees consistent with the observations made with regard to
general-purpose software system.
•The results indicates that the design structure of a product is highly influenced by theg p g y y
environment in which it is developed (in addition to correctness, performance of the
system is a major design objective). Also, the results seem to agree with the notion
that research software efforts usually generate high-quality products.
•There appears to be marked change in characteristic path length and nodal degree
between major version changes of ADOL-C.

•There are a number of extensions to this work that we envision in future:
– perform design structure analysis to compare and contrast software from

multiple scientific application domains.
– Develop domain-specific metrics to obtain a better understanding of the

architecture of software products from multiple application domains.

13th International DSM Conference 2011- 14

141

