
DESIGN STRUCTURE OF SCIENTIFIC SOFTWARE –  
A CASE STUDY 
Shahadat Hossain and Ahmed Tahsin Zulkarnine 
Department of Mathematics and Computer Science, University of Lethbridge, AB T1K 3M4, 
Canada 

In this paper we report results from an exploratory study of design structures in scientific research 
software. Dependency Structure Matrix (DSM) is used as a modelling tool to capture and analyze 
dependencies among system elements such as functions. We compute several architectural complexity 
metrics and present preliminary results from two open-source scientific computing software 
applications. 
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1 INTRODUCTION 
The utility of properties e.g., modularity and information hiding (Parnas, 1972) in complex software 
design is now widely recognized in software engineering community. An evolving software system 
needs to have a design architecture that allows easy accommodation of functional changes and 
asynchronous (re-)development of parts of the system. The dependency structure matrix has been used 
as a tool to analyze and compare alternative design decisions and quantify structural metrics e.g., 
modularity in large and complex software systems (MacCormack et al., 2006; Sosa et al., 2007a; Sosa, 
2008; Sangal et al., 2005; LaMantia et al., 2008).  
In this paper we study software systems architecture specifically designed for problems arising in 
scientific and engineering applications (Kelly and Sanders, 2008; Marques and Drummond, 2005). 
While some scientific computing software applications are primarily designed as a proof-of-concept 
tool, with the advent of more powerful hardware resources e.g., supercomputers, a growing number of 
scientific applications are being developed to perform large-scale simulation runs that were previously 
intractable (Trillinos, 2011; SciDAC, 2011). Unlike the one-time throwaway computer code, these 
simulation software applications are highly complex and large (IPSL-CM5, 2011) (millions of lines of 
code). The applications involve substantial investment in time and other expensive resources and tend 
to have lifecycles measured in tens of years. Some of the main concerns in the design of research 
software are to do with the correctness of the computed output and scalability of the software, 
especially with regard to high-performance and emerging hardware technology (Marques and 
Drummond, 2005). A distinguishing feature of the designers of such software applications is that they 
are highly trained scientists with little or no formal background in modern software engineering 
practices. The main objective of such software is to produce new scientific knowledge. The finished 
products typically are of very high quality and efficient (Heroux and Willenbring, 2009; Kelly and 
Sanders, 2008). On the other hand, being very focused on narrowly defined application domains, 
important software quality metrics e.g., usability (user interface), extensibility etc., may not be among 
the list of primary design objectives (Heroux and Willenbring, 2009; Morris, 2008).  
The main purpose of this work is to examine and understand the design structure of scientific 
computing research software by analyzing the interactions between design elements, with particular 
emphasis on metrics that quantify the modularity of design, the effect of changes in system’s 
architecture due to the need for porting the application to emerging high-performance computing 
system or the integration with external systems. 
In MacCormack et al. (2006) the DSM technique is applied to study dependencies among system 
elements of two large-scale software applications.  It is noted that there exists a strong correspondence 
between the design structure of the software and the organization in which it is developed. The 
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geographically distributed nature of the development team is reflected in the more modular 
architecture of the open-source  compared with the proprietary , in which the 
developers have direct face-to-face interactions.  The identification of dominant subsystems or 
modules of software systems and their dependency analysis constitute key considerations in managing 
architectural evolution of complex software products (MacCormack et al., 2006; Sangal et al., 2005; 
Sosa et al., 2007a, 2007b). As noted earlier, the design goals of scientific research software systems 
and the organization in which they are developed are somewhat different from that of commercial or 
general-purpose software systems (MacCormack et al., 2006) and therefore present itself as an 
important and interesting case-study. In our work we choose automatic differentiation (AD) software 
(see Griewank and Walther, 2008) – software applications that are concerned with the automatic 
computation of derivatives or sensitivities of mathematical functions that are given as computer 
programs. Our choice for this particular application type is influenced by the observation that 
computation or estimation of derivatives or sensitivities of outputs of a mathematical model with 
respect to its input parameters, is a frequently required step in many algorithms for solving scientific 
and engineering problems. Therefore, software tools implementing automatic differentiation of 
computer programs constitute appropriate test cases for scientific software applications that are 
intended to be a part of other major scientific applications. We choose ADOL-C (Griewank et al., 
1996) and CppAD (Bell, 2011) as representative AD software that are built utilizing ‘operator 
overloading’ technique. We note that the other main implementation technique for AD software, 
‘source transformation’, is not considered in this paper. Both the applications are available from 
COIN-OR (COIN-OR, 2011) project as open-source software under public license. 

2 METRICS FOR ANALYZING DESIGN STRUCTURE 
Given below is a description of structural metrics we use in this work.  
 

1. Characteristic path length. In an undirected graph, the average distance between nodes  

and  is defined by, � , where  is the shortest path length (minimum number of 

edges) connecting the nodes.  
2. Clustering co-efficient. A measure of degree to which nodes in a graph tend to cluster 

together in an undirected graph is defined by, , where , denotes the 

clustering coefficient of node , with  being the number of nodes connected to node , and  
being the actual number of edges between those  adjacent nodes. 

3. Nodal degree. The average degree of the nodes in the graph  where  is the 
number nodes adjacent to node  (also the degree of node ). For directed graphs the degree of 
node  is the sum of its in-degree (number of directed edges pointing to node ) and out-degree 
(number of directed edges pointing away from node  to other nodes).  

4. Strongly connected Components. A directed graph is called strongly connected if there is 
a directed path from each vertex in the graph to every other vertex. The strongly connected 
components of a directed graph are its maximal strongly connected sub-graphs. 

5. Propagation Cost. This is a measure of the proportion, on average, of design elements that 
are affected due to a change to a specific design element and is given by , where 

 is the number of nodes reachable from node  using a directed path with minimum number 
of edges. 

 
We distinguish between functions that are explicitly implemented in the software under consideration 
(denoted user function) and the functions that are part of the software libraries (e.g., input/output 
functions). In our work user functions are the basic design elements (nodes in the associated directed 
graph, henceforth the call graph), and function  is said to depend on function  if it calls  from within 
its body, which is denoted by a mark in row  and column  of the associated DSM  (by a directed edge 
from node  to node  in the call graph). In order to extract the dependency information and to generate 
the static call graph we have used the gcc-based call-and-structure extractor developed by a research 
team from The University of Groningen, the Netherlands (Telea et al., 2009).  
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Table 1. Structural properties of ADOL-C and CppAD 
 

Software 
Nodes Directed Edges 

Files 
User 

Functions Files User Functions 

ADOL-C 60 271 66 703 
CppAD 66 80 67 175 

 
Table 1 displays the number of system elements (nodes) and the number of links (directed edges) in 
the two software tools under consideration. The column labelled ‘Files’ represent the number of files 
the functions are contained in. It is readily apparent that both the call graphs are very sparse i.e., only a 
small fraction of the possible edges are present. After constructing the DSM we use a strongly-
connected component partitioning tool (Hossain, 2010) to rearrange the DSM into block triangular 
form.  
 

  
ADOL-C CppAD 

Figure 1 Partitioned DSM of ADOL-C and CppAD 

 
In Figures 1 and 2, the DSM for ADOL-C and CppAD are displayed after the partitioning algorithm is 
applied to the user function call graph. An important observation that can be made from the figures is 
the absence of any feedback mark in the respective DSMs. This is also indicated by the number of 
strongly connected components being the same as the number of design elements in Table 2. From a 
graph-theoretic viewpoint, a triangular DSM is manifested in the acyclic (directed) nature of the 
associated function call graph. We note that ADOL-C project involves multiple (about ten) developers 
while CppAD is a one-person project. In scientific software development where computational 
efficiency is one of the main goals, running-time profiling is a necessary step.  Profiling tools e.g. 
‘gprof’ (Graham et al., 2004) usually provide information on whether a function is part of a cycle in 
the static call graph of the program.  In the context of static function call DSM, the presence of feed-
back marks complicates the accurate profiling (computing time values). For example, functions  and 

 are mutually dependent in the call graph if function  calls function  which in turn calls function . 
The execution time incurred in function  will include the time incurred in the called function , 
whose running time, in turn, must include the time for executing function  – thereby invalidating the 
profiling procedure. Generally speaking, circular dependencies (direct or indirect recursions) are 
avoided to enable certain code optimization features in the compiler. We conjecture that for the 
software tools studied, circular dependencies have most likely been discovered early and reworked at 
the initial design phase.   
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Table 2. Design structure metrics 
 

Software Characteristic 
Path length, l 

Clustering co-
efficient, C 

Nodal 
Degree 

Number of 
Components 

Propagation 
Cost (%) 

ADOL-C 2.05005 0.080382 5.18819 271 3.41635 
CppAD 2.37373  0.0342364  4.375  80 6.64062 

 
Table 2 displays a suite of structural metrics and their values from the two DSMs. The propagation 
costs of 3.4 and 6.6 indicate that, on average, a change in the implementation of any function in the 
software has the potential of affecting only 3.4% and 6.6%, respectively, of functions. A similar 
observation with regard to propagation cost has been made in MacCormack et al. (2006). Following 
Braha and Bar-Yam (2007) we ignore the direction of the edges in the respective call graphs 
concerning the metrics ‘characteristic path length’ and ‘clustering coefficient’. This is a reasonable 
assumption since, in general, the caller and the called functions may exchange information via in- and 
out-parameters. Viewing the call-graph as an information flow network (Braha and Bar-Yam, 2007), 
structural metrics such as characteristic path length, clustering co-efficient, and nodal degree and its 
distribution provide useful information about the architecture of the underlying product. From Table 2, 
we observe small average nodal degree and shorter average distance between any two nodes in the 
networks. On the other hand, the tendency of the related functions being highly interacting (measured 
by the clustering coefficient), is almost an order of magnitude smaller than that of the operating 
system software reported in Braha and Bar-Yam (2007).  
 

 
Figure 3. Cumulative frequency vs. degree (in-degree/out-degree) of ADOL-C 

 

 
Figure 4. Cumulative frequency vs. in-degree and out-degree of CppAD 

 
Figures 3 and 4 present cumulative (in-, out-) degree distributions of call graph nodes.  We note that 
the total nodal degree varies from 1 to 62 for ADOL-C and from 1 to 29 for CppAD with 
approximately 80% of the nodes having degree less than or equal to 8 for ADOL-C and 6 for CppAD. 
In other words, only a small fraction of the functions in both software tools are most relevant with 
regard to the functioning of the software. The degree distribution analysis provides local information 
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only. To obtain global information on how function elements exert their influence on other functions 
we use an index that measures the centrality of a node by the number of shortest paths in the call graph 
containing that node.  For ADOL-C, function fail has been found to be included in the maximum 
number (16398) of shortest paths (directed) between any pair of nodes while for CppAD the 
corresponding function is constructor-special which is included in 2238 shortest paths. This 
observation is not surprising since ‘correctness’ of computed values is one of the main design goals in 
scientific computing software (Kelly and Sanders, 2008; Heroux and Willenbring, 2009). In case of 
CppAD, we note it heavily uses object-oriented features compared with ADOL-C and a constructor 
function is one of the most frequently called member function.  

3 CONCLUDING REMARKS 
In this paper we perform dependency analysis of function call graphs for two scientific research 
software tools. Unlike projects (e.g., computer operating systems) where formal software engineering 
practices are perceived important for their success, the main goal in scientific research software is the 
creation and validation of new scientific knowledge. The call graphs for the studied software tools 
display shorter characteristic path lengths, small nodal degrees, and small propagation costs, similar to 
general-purpose software such as operating systems (Braha and Bar-Yam, 2007; MacCormack et al., 
2006). On the other hand, a relatively small clustering coefficient in ADOL-C and CppAD points to a 
less modular design structure. Furthermore, absence of circular dependencies in the studied software 
can be attributed to the strong emphasis placed on the computational performance of the code (noting 
that recursive function calls, in general, are considered a hindrance to the performance enhancing code 
optimization e.g. ‘in-lining’ of functions, regularly performed by modern optimizing compilers).  
In addition to performing more detailed analyses of the structural metrics, there are a number of 
extensions to this work that we envision in future. First, it will be interesting to perform design 
structure analysis to compare and contrast scientific software from multiple application domains. 
Secondly, to obtain a better understanding of the architecture of software products from multiple 
application domains, it is helpful to develop domain-specific centrality metrics. For example, natural 
inquiries in this regard could be ‘how well does this software integrate into a larger and complex super 
system?’, ‘how sensitive is the software to new or emerging hardware technologies?’.  
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Scientific Research SoftwareScientific Research Software

• General-purpose Commercial Software
• Employ formal methods from software engineering discipline• Employ formal methods from software engineering discipline
• Problem domains are generally well-understood so that mature algorithms

are readily available
• Trained engineers familiar with tested ‘best practices’• Trained engineers familiar with tested best-practices

• Scientific Research Software
• Design new algorithms or models for scientific problems or processes

• ‘Proof-of-concept’ code is most likely a one-time exercise verifying a
hypothesis vs.

• Modelling natural phenomena by building simulation codebase that are
highly complex and large and involves experts from multiple scientifichighly complex and large, and involves experts from multiple scientific
domains with software lifecycle measured in decades

• Software applications are generally designed by highly trained scientists
who may not have formal training in software engineering Main concernswho may not have formal training in software engineering. Main concerns
are:

– Narrow focus impedes with a) integration in larger systems b) future
extension or modification
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Objectives and MethodologyObjectives and Methodology

• Study and analyze design structure of representative scientific software
systems with suitable design structural metrics and DSMsystems with suitable design structural metrics and DSM.

• ADOL-C and CppAD are open-source software that compute first- and
higher order mathematical derivatives of functions given as computerhigher-order mathematical derivatives of functions given as computer
programs written in C/C++.

– ADOL-C: Developed by a team of researchers from Argonne National
Lab, Dresden University of Technology, and Humboldt University over
a period of 20+ years.

– CppAD: Developed as a one-person effort at the University of
Washington, Seattle.g ,
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Structural PropertiesStructural Properties

In our analysis functions are the nodes in the associated directed graph, and function i
i id t d d f ti j if it ll j f ithi it b dis said to depend on function j if it calls j from within its body.

Software
Nodes Directed Edges

Software
Files User functions Files User functions

ADOL-C 60 271 66 703

CppAD 66 80 67 175

• Graphs are sparse - approximately 0.95% and 2.74% of the possible edges of
ADOL-C and CppAD, respectively, are present.

• We distinguish between functions that are explicitly implemented denoted as user
f ti d th f ti th t t f ft lib ifunction and the functions that are part of software libraries.
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Metrics for Analyzing Design StructureMetrics for Analyzing Design Structure

• Characteristic path length (undirected graph):,

)1(

∑
= ≠

NN
ji

ijd
l

where is the length of the shortest path connecting the nodes i and j

)1( −NN

ijd

• Clustering co-efficient (undirected graph) :
∑=
N

iC
N

C
1

1

where  

=iN 1

)1(
*2

−
=

ii

i
i kk

nC

denotes the clustering co-efficient of node i,      is the number of nodes i is 
adjacent to and     is the actual number of edges between its adjacent nodes. 

)( ii

ik
in
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Metrics for Analyzing Design Structure (contd )Metrics for Analyzing Design Structure (contd.)

• Average nodal degree:
∑=
N

kk 1

where is the number of nodes adjacent to node i. For a directed graph,

∑
=

=
i

ikk
N 1

ik

, where is the number of directed edges pointing into i and

is the number of directed edges pointing away from i.
outin kkk += ink

outk

• Propagation cost:
∑
=

N

i ip
N 1

1

where is the number of nodes reachable from node i using the directed path
with minimum number of edges.

=iN 1

ip
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Partitioned DSMPartitioned DSM

ADOL-C CppAD
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ObservationsObservations

• Absence of feedback mark is also indicated by the function call graph
being directed and acyclicbeing directed and acyclic.

• Performance profiling is a frequently performed design step in many
scientific software development
• profiling tool e g gprof usually indicates if a function is included in a directed• profiling tool e.g., gprof, usually indicates if a function is included in a directed

cycle (direct or indirect recursion) in the call graph
• cycles are labeled for easy identification
• recursive function calls are considered computationally expensive due to the• recursive function calls are considered computationally expensive due to the

book-keeping cost associated with run-time stack
• code optimization e.g., in-lining of functions cannot be performed in presence

of recursionof recursion
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MetricsMetrics

Software Characteristic 
P th l th l

Clustering co-
ffi i t C

Nodal 
D

Propagation 
C t (%)Software Path length, l efficient, C Degree Cost (%)

ADOL- C 2.05005 0.080382 5.18819 3.41635

CppAD 2 37373 0 0342364 4 375 6 64062

• Characteristic path length and clustering co-efficient are computed using
the undirected version of the call graph

CppAD 2.37373 0.0342364 4.375 6.64062

the undirected version of the call graph
• during function call and return information is exchanged in both directions via

in- or out-parameters and return values
• Small propagation cost and short characteristic path length are consistent with theSmall propagation cost and short characteristic path length are consistent with the

observations made with regard to operating systems software by other researchers
• Clustering coefficient is an order of magnitude smaller indicative of less modular

designg
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Cumulative Frequency vs IN-Degree and OUT-DegreeCumulative Frequency vs. IN Degree and OUT Degree 

• The figures display cumulative
f l tt d i t i dfrequency plotted against in-degree
(circles) and out-degree (triangle)
distribution of ADOL-C (top) and
CppAD (bottom).pp ( )

• The total nodal degree varies from 1
to 62 for ADOLC and from 1 to 29 for
CppAd with approximately 80% of the
nodes having degree less than or
equal to 8 for ADOL-C and 6 for
C ADCppAD.

• Only a small fraction of the functions
i b th ft t l h lin both software tools have large
degrees (central tasks/functions)
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Comparison between ADOL-C VersionsComparison between ADOL C Versions

• We compared 10 different version of ADOL-C.
• Major change observed between v1.10.0 and V2.1.0

Nodes Directed Edges
Versions

Files User functions Files User functions

V 1.10.0 60 320 77 1037

User function changes from the immediately preceding version

V 2.1.0 60 271 66 703

User function changes from the immediately preceding version

ADOLC Version
User Functions

Added Droppedpp

V 1.10.0 6 1

V 2.1.0 60 109
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Comparison between ADOL-C Versions (contd )Comparison between ADOL C Versions (contd.)

Changes in design structure metrics from the immediately preceding versions

ADOL-C 
Versions

Characteristic 
Path length, l

Clustering co-
efficient, C

Nodal 
Degree

Number of 
Components

Propagation 
Cost (%)

V 1.10.0 3.25725 0.106083 6.48125 320 3.43262

V 2.1.0 2.05005 0.080382 5.18819 271 3.41635
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Concluding Remarks and Future WorkConcluding Remarks and Future Work

•The call graphs for the studied software tools display shorter characteristic pathThe call graphs for the studied software tools display shorter characteristic path
lengths and small nodal degrees consistent with the observations made with regard to
general-purpose software system.
•The results indicates that the design structure of a product is highly influenced by theg p g y y
environment in which it is developed (in addition to correctness, performance of the
system is a major design objective). Also, the results seem to agree with the notion
that research software efforts usually generate high-quality products.
•There appears to be marked change in characteristic path length and nodal degree
between major version changes of ADOL-C.

•There are a number of extensions to this work that we envision in future:
– perform design structure analysis to compare and contrast software from

multiple scientific application domains.
– Develop domain-specific metrics to obtain a better understanding of the

architecture of software products from multiple application domains.
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