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ABSTRACT 
Modular product strategies are very popular in product development, especially for variant-rich 
products where modularity benefits economies of scale due to commonality. In weight-driven sectors 
such as aviation, modularity is not pursued consequently. Developers fear a performance loss caused 
by additional design constraints and weight. This paper demonstrates a way to effectively reduce this 
performance deficit in lightweight modular designs. Components or modules with high sensitivity to 
weight propagation across the product family system are traced using a DSM-based system model. 
This allows specific optimization of these modules.  
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1 MOTIVATION 
Modularity is a gradual property (Pahl and Beitz, 2007), therefore most products use hybrid 
modular-integral designs (Ulrich, 1993). In the range between modular and integral, modular design is 
not the ideal solution for performance-driven products (Hölttä et al., 2005). Despite the increasing use 
of modularization methods in product development, it is not used in the design of products where size, 
weight and efficiency are important (Whitney, 2004) but is used in products of mass customization 
with a high number of variants.  
Both design drivers meet in the design of aircraft interiors. A highly customizable product that 
requires high weight performance is usually requested by airlines. Currently, interiors are individually 
designed and tested. Manufacturers face an ever-increasing demand for flexibility while retaining low 
shipping quantities per variant. They seek to meet this demand with modularization concepts. Blees 
introduced a modular concept for an aircraft galley in 2009 (Blees et al., 2009). The concept garnered 
broad acceptance, but the manufacturer was concerned about weight increase. Hence, the performance 
trade-off due to modularization should be efficiently reduced. A way to identify key modules for 
weight reduction by tracing module weight propagation is presented here. 

2 MODULAR PRODUCT FAMILIES AND LIGHTWEIGHT DESIGN 
The question of whether modularity inhibits the lightweight design of a product is the focus of this 
research. Modularisation alters characteristics of a product family’s components so that they become 
modular. Salvador relates product system modularity to the following definitional perspectives found 
in literature: Component separability, component commonality and component combinability, which 
requires interface standardization and packaged function binding (Salvador, 2007). Interferences can 
be recognized when principle lightweight design rules (Wiedemann, 2007) are compared to the 
physical transformation of modularity perspectives. A modular structure adds weight because of 
additional interfaces, over-sizing (dimensioning) of the structure, and increasing complexity in 
requirement definition. 
For many products, this weight increase can be tolerated, but for lightweight products, additional mass 
is critical. Extra mass in accelerated objects causes additional load, causing a reinforcement of the 
secondary structure, thus more weight is added. In aviation, such propagation of weight typically 
causes a four-fold weight increase over the original weight increase (Hertel, 1980; Wiedemann, 2007). 
For example, Figure 1 shows a cantilever composed of four modules. Variant 1 is designed for load F 
with no over-sizing of the modules. In variant V2, the force increases (F’) so module M4 has to be 
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reinforced. Ultimately, all other modules have to be adapted, with a weight increase across all 
modules. A snowballing of weight propagation occurs.  
This module may be reused across products in a product family. In Variant 3, Module 4 has switched 
position with Module 3. In this case, M 3 influences M 4, hence a recursion occurs when reused within 
the product family. Therefore, instead of limiting the weight increase to one product, the whole 
product family is affected. In Figure 1, three steps of weight propagation of module M4 are shown. 
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Figure 1. Weight propagation of a modular product family 

This effect of weight propagation is the same for weight reduction: decreasing the weight of one 
module can positively affect other modules (an analogy can be seen in risk propagation cf. Clarkson et 
al. 2001). 
Lightweight design is not an end in itself, it has to fulfil a purpose (Klein, 2007). Hence, almost any 
product can be weight-optimized further. To optimize a modular product family’s weight efficiently, 
the modules with the highest sensitivity to the whole system have to be identified. The weight 
propagation of each module has to be traced. 

3 TRACING WEIGHT PROPAGATION 
In this approach, the modules have been defined by a previous modularization (Blees et al., 2009). The 
focus is on finding an efficient weight reduction approach by selecting weight sensitive modules. 
The load exchanged between modules is critical to describe the system. A DSM with the modules as 
elements and mechanical loads as relations is created. Figure 2 shows a simplified aircraft galley and 
the corresponding DSM. 
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Figure 2. Simplified aircraft galley with modules and corresponding DSM 

For an initial estimation, a transmitted load (FtB->A) from Module B to Module A is defined by a 
dynamic load due to acceleration (a) of the module’s mass (MmB) and transferred load (FtB). Factor � is 
needed when the load is split into more modules. 
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FtB->A = MmB · a · �1 + FtB · �2 (1) 

This is used for a simplified description of the load interrelation between two modules. A row of the 
DSM gives the total load of a module in a specific variant. This DSM is carried out for each product 
family variant. Figure 3 shows an example of simplified aircraft galleys, the corresponding digraph 
network and DSMs. 

Digraph networkModule Interface Graph representation DSMs

 

Figure 3. Simplified aircraft galley model 

To relate the variants to each other, more information regarding the modules is needed. It is necessary 
to know how an increasing load leads to module weight change due to reinforcement. To accomplish 
this, an initial design of the modules is done. The designers have to estimate the module’s weight 
reaction to a change in induced force. This can be either a factor (weight/force) or a table of force and 
corresponding weight. For more in-depth analyses, this can be a computational model (e.g. FEM). 
The maximum load value per module is derived from the complete set of variants (Figure 4). 
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Figure 4. Relation of module definition and DSMs of variants 
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This guarantees that the highest requirements are included in the development of the modules. As the 
maximum load has an impact on the structural weight, a higher load increases the module’s weight. 
The interface loads in the variants are module weight sensitive; a higher weight increases the interface 
load. Because of this correlation, a circular dependency between the matrices occurs. For a stable 
system, this circular reference has to converge. In most cases, the initial modularisation is over-sized, 
therefore all modules fulfil the maximum requirement and the system is valid. 
The matrices represent the weight and load dependencies between the modules across the variants. 
Because the modules are globally defined, a change propagates through all variants of the 3D DSM 
(analogies see Shooter et al. 2007). The specific sensitivity of the product family to weight change can 
then be determined (Figure 4). Tracing the weight propagation is carried out by carefully reducing the 
weight of a module. Due to interrelations, the variants respond to the change. All affected modules 
adjust their weight according to the induced load. The initial weight reduction and resulting reduction 
is correlated. A weight reduction gradient for each module is derived.  
To evaluate the effect on the product family more objectively, the predicted sales numbers are taken 
into account to calculate a fleet weight. The modules with highest efficiency can be traced and are 
candidates for further weight optimization. 

4 CONCLUSION 
When technical constraints are dominant, modular products are at a performance disadvantage. 
However, modularity benefits the product and, with increased effort, these disadvantages can be 
reduced. In this approach, a way to trace weight propagation throughout a product family is described, 
creating the possibility of finding modules with high weight sensitivity to the product family. 
Optimizing these modules promises a higher overall reduction of weight because of the snowballing 
effect of weight propagation.  
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Connecting the VariantsConnecting the Variants
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Weight Sensitivity and TracingWeight Sensitivity and Tracing
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