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ABSTRACT 
This paper explores the possibility of supporting automated function-based reasoning in the conceptual 
design phase, specifically, reasoning needed to perform physics-based concept validation.  Eleven 
atomic tasks of topologic reasoning, divided in two categories, connectedness and derivation, are 
identified that could be used to check graph-based function structures against conservation laws using 
only the count and types of flows attached to the functions.  This reasoning is illustrated by simulating 
the sequential actions of a designer developing a new mechanical device.  The algorithms are validated 
by implementing them in a function modeling software that first allows the designer to construct a 
function model and then detects violations of conservation laws in the model appropriately.   
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1 MOTIVATION AND APPROACH 
This paper explores the possibility of using formalized function-based representations of mechanical 
systems to support automated analytical reasoning in conceptual design, specifically those required in 
physics-based concept validation.  As the major objective of conceptual design is to synthesize 
solutions, much of previous research in function-based reasoning attempt to automate synthesis tasks 
such as solution search [1, 2] and concept generation [1, 3, 4].  In complement, designers could also 
benefit from automated analysis support at the conceptual level.  Conceptual analysis could help with 
assessing feasibility, exploring working principles or solutions, estimating number of parts, assembly 
time, and cost, or analyzing the possible modes and probabilities of failure.  Presently, these tasks are 
performed with limited automation, using manual understanding of the physical principles that govern 
mechanical systems.  Answering these questions through automation in the conceptual phase will 
expose more facts about the merits of a concept early in the process, and thus could enable better 
informed, more objective, and earlier decisions—a process referred to as “Front Loading” [5].  
Exploring and articulating these early reasoning possibilities is the overall aim of this research.   

Specifically, this paper identifies reasoning necessary to support checking concept models against the 
laws of conservation of material and energy.  This conservational reasoning could help to determine, 
for example, (1) if a flow or function that is a necessary part of the concept’s functionality has been 
overlooked in a model (correctness), (2) if the concept or any of its subsets implies more than 100% 
efficiency (validity), (3) how many residual flows does the concept produce and how much energy or 
material is wasted through those (emissions), or (4) if the concept is realizable within the given energy 
or material constraints (feasibility).   

In this paper, a set of atomic reasoning actions are first identified and used to support basic, qualitative 
conservational reasoning.  The algorithms are validated by implementing them in a function modeling 
software that first allows the designer to construct a function model and then detects violations of 
conservation laws in the model appropriately.  Before exploring these possibilities, the advances in 
function representation and reasoning are briefly reviewed next. 

2 FUNCTION REPRESENTATIONS AND REASONING IN DESIGN 
Historically, research in the function representation has been driven between two viewpoints.  In 
Artificial Intelligence (AI), multiple models exist mainly to support device description and design 
synthesis.  The second viewpoint, named here the engineering design view, primarily uses the graph-
based function structure to support different design reasoning.  These views are briefly discussed next. 



 

 

 

2.1 The AI Views of Function 
The automation of function-based thinking is an active AI research area and multiple approaches, 
ranging from representations [6, 7], languages [8, 9], ontologies [10, 11], and software tools [12, 13] 
have been proposed.  Device function is described as the interaction between several elements such as 
the artifact’s structure and behavior, the artifact’s interaction with its environment, and the user’s 
intent [2, 6, 7, 14, 15].  For example, function is defined as “the relation between the goal of a human 
user and the behavior of a system” [16].  The Function-Behavior-Structure model [17] describes 
function as requirements that the device performs.  This model has been used to explain creativity [18] 
and later extended to include situatedness [14]: the dynamic situation where the information available 
to and represented in design influences the designer’s decisions.  Similarly, the Function-Behavior-
State model defines functions as “a description of (the device’s) behavior abstracted by human through 
recognition of the behavior in order to utilize it” [7].  This model supports problem decomposition and 
is implemented as the FBS-modeler tool that has been experimentally used in reducing functional 
redundancy of devices [13].  A related model, Structure-Behavior-Function, defines function as a set 
of the device’s input and output states and the behavior that causes state change [1].  Using design 
patterns to capture these information, this model simulates “learning of high-level abstractions and 
their use in reminding and adaptation” [19], thus supporting analogical reasoning.  It is implemented 
in case-based reasoning tools named IDeAL [2, 20] and Kritik [1].  Finally, Functional Representation 
(FR) defines function as the device’s effect on the environment [21] and using a “device-centric view” 
[6].  This model supports failure diagnosis through causal analysis [22] and was implemented in the 
Causal Functional Representation Language (CFRL) that describes function as the triple {DF,CF,GF

8
}, 

indicating the device, the context of the device’s application, and the goal or desire of the user [ ].  
CFRL can describe how a device works using causal process descriptions [23].  In summary, the AI 
models include the complex interaction between multiple entities, are primarily descriptive, and are 
subject to the difficulties of modeling intentionality [24].  By contrast, the engineering design view, 
described next, adopts a transformational view of functions to support design reasoning. 

2.2 The Engineering Design View 
The engineering design view defines function as transformations of a set of material, energy, or signal 
flows into another set [25, 26].  A graph-based representation, the function structure, where the nodes 
are functions and the edges are the flows, is widely used [25-27].  Figure 1 shows a functions structure 
for a commercial hairdryer product, where the flow name abbreviations are clarified in the legend.  
This representation is discussed as a potential means to solve conceptual design tasks such as problem 
decomposition [25, 26], solution search [27], and concept generation [3, 4], and also for reverse and 
engineering tasks such as design understanding and archiving [28, 29].   
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Figure 1: Function structure of a hairdryer product stored in the Design Repository1

Controlled vocabularies of function terms have been proposed with the aim to improve the consistency 
of term usage in function structures and the possibility of automated reasoning.   Examples are the 46 
function verbs and 40 flow adjectives discovered through engineering forensic studies [

 

30], the 
vocabulary of motion, control, power, and enclose, [31], the vocabulary compiled by Szykman et al. 
[32], and the Functional Basis vocabulary [33, 34], which contains 53 function verbs and 45 flow 
nouns.  The terms in the Functional Basis were identified through tear-down of electromechanical 
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consumer products following reverse engineering guidelines [26] and used to catalogue functional 
information of more than 165 products that are stored in the Design Repository [35].  The function 
structure shown in Figure 1 is obtained from this archive.  

The engineering design viewpoint supports reasoning mainly by reusing knowledge found in previous 
solutions to solve new problems.  For example, the product information archived in the Design 
Repository has been used to develop a concept generator tool [3], a tool to computes the functional 
similarity between products [36], a failure-prediction tool [37], a graph grammar tool to synthesize 
function structures from a black box [4], and a tool to configure components for new design [38].   

In summary, two interrelated gaps in function-based reasoning are identified by reviewing these tools.  
First, reasoning based on the knowledge of the governing physics of engineering systems has not been 
explored.  Rather, the existing tools generally rely on analogical reasoning.  For example, the graph 
grammar tool [4] uses trends of flow transformations found in the Repository models to derive its 
rules, the concept generation tool [3] uses functions and flows that satisfied a function previously to 
generate new solutions, and the failure-prediction tool [37] uses the historical failure data of function-
flow modules for its algorithms.  While this analogical approach may be adequate or even appropriate 
for these tools, essentially their propositions are rendered acceptable because they are predicted by the 
trends, rather than because they are mandated by a physical law or its implications.  Second, design 
reasoning based on the meanings or definitions of functional terms is not supported.  For example, the 
above three tools use the names of the functions and flows to establish the trends used for analogy.   

These two gaps are interrelated, as physics-based functional reasoning would require capturing the 
physical laws in a function representation, which in turn would require formalizing the terms used in 
that representation.  However, while such formalization could potentially support advanced physics-
based reasoning at the quantitative level, some qualitative yet useful conservation-based reasoning can 
be performed purely based on the topology of the function structure graphs.  Identifying these 
reasoning needs, reducing them to the elementary reasoning tasks, and algorithmically implementing 
them in software for demonstration are the major deliverables of this paper.       

3 TOPOLOGICAL CONSERVATION  REASONING ON FUNCTION MODELS 
This section identifies atomic reasoning actions that can be combined to check function models for 
conservational validity at a qualitative level.  This reasoning uses only the topological information of 
the model, i.e., the number and types of flows attached to the functions.  Consequently, it supports 
only qualitative checks.  For example, it can reason that if a function consumes some energy, it must 
also produce some energy or store all of it in a device, requiring a state based representation that is out 
of scope of this paper.  However, it cannot reason that the quantity of energy at input and output must 
also equate.  Consequently, it only provides low-resolution, qualitative reasoning.  This topological 
reasoning is presented below in two parts – connectedness and derivation.   

3.1 Connectedness Rules of Topological Conservation 
The connectedness rules check if the model elements (functions and flows) are adequately connected 
and provide feedback to the modeler about open-ended elements in three possible ways (Table 1).  The 
first column of Table 1 names these three erroneous situations, the second column shows graphical 
versions of these errors, while the last column shows anticipated feedback produced by an automated 
reasoning tool in response to these errors.  The first row shows reasoning when a redundant function 
block is found that is included in the model but is “doing nothing”, as it is not transforming any flow.  
The last two rows show reasoning when the tool finds flows in the model, the origin or destination of 
which are not identified.  As implied by the messages, it is idealized that in a valid model, each flow 
must originate from and terminate to a function or the device’s environment.  In this manner, these 
rules can prevent the accidental modeling of flows with unaccounted existence, thus supporting 
conservation.  Notably, the last two rules have already been implemented in a function modeling tool 
presented in previous research [39].  However, none of the other reasoning activities under the 
connectedness and the derivation category are presently supported. 

Table 1: Connectedness rules for topological conservation 
Situation Name Model State Expected Feedback 



 

 

 

Situation Name Model State Expected Feedback 
Redundant Function F1

 
Redundant function: “F1” 

Dangling tail Flow1
 

Dangling tail: Flow1 

Dangling head F2 Flow2
 

Dangling head: Flow2 

3.2 Derivation Rules of Topological Conservation 
The derivation rules accounts for how one flow is derived from or into other flows across a function.  
Table 2 shows eight atomic rules that can be combined to support topological conservation.  Since 
topological reasoning implies checking flow types attached to functions, a vocabulary of flow types is 
needed.  Here, a basic, two-term vocabulary is used to provide the lowest possible resolution in the 
flow domain:  Material (M) and Energy (E), which are distinguished in the figures in the table by thick 
and thin arrows, respectively.  Signal flows are not included here as they are not conservable entities, 
rather they are captured as parameter values associated with material and energy flows to which an 
appropriately designed agent shows a specific behavior, which constitutes “sensing”.  For example, 
electrical signals are often interpreted by sensors using its voltage.  Without the sensor, the signal does 
not exist, despite the electrical energy flow, and while a signal is sensed, there is no requirement for 
the sensor to produce a signal to obey conservation laws.   

Table 2: Derivation rules for topological conservation  
# Situation Name Model State Expected Feedback 
1 Orphan flow Flow1F1

 
Orphan flow: Flow1 

2 Barren flow Flow2 F2
 

Barren flow: Flow2 

3 One In – Many Out 
M2

M3

E1

F3M1

E2 E3

 

Conservation inferred: 
{M1} → {M2, M3} 
{E1} → {E2, E3} 

4 Many In – One Out 
M5

M6F4
M4

E5E4

E6

 

Conservation inferred: 
{M5, M5} → {M6} 
{E5, E5} → {E6} 

5 Many In – Many Out 
M8

M9
F5

M7

M10  

Out of date: Unable to infer 
conservation.  Please specify.   

6 
Many In – Many Out 
with User-Defined 
Derivation M8

M9
F5

M7

M10  

Conservation inferred: 
{M7} → {M10} 

7 Energy 
Transformation 

F6E7 E8
 

Conservation inferred: {E7} → {E8} 
Warning: Transformation of energy 
without residue in “F6”. 

8 Material 
Transformation 

F7M11 M12
 

Warning:  Material transformation 
may need enabling energy flow. 

The reasoning can be extended to individual flow sub-types within these major flow classes, but that 
exercise is reserved for future work.  However, as indicated earlier, this reasoning does not need or use 
any function verb vocabulary.  Thus, when using the function modeling software tool (Section 5) to 
construct a model, the modeler must instantiate every flow from one of the two classes, M or E, or 
their sub-classes, while she can use any plain-text description for the functions.   



 

 

Here modeling scope is limited to conservation within the major flow types, i.e., material cannot be 
converted into energy and vice-versa.  Thus, all material input must be derived into material output 
and all energy input must be conserved as energy across a function.  A parent-child relation is 
provided between the flows within a model to describe the derivation relations.  For example, when 
Flow1 is input to a function and is derived into Flow at output, Flow1 is a parent of Flow2 and Flow2 
is a child of Flow1.  In general, a flow can have one or more children and one or more parents, as long 
as they are of the same type as the flow itself.  The eight reasoning rules are explained next, with 
reference back to the rows in Table 2. 

(1) Orphan Flow and (2) Barren Flow:  A flow without parents is called an orphan flow (row 1), 
while a flow without children is called barren (row 2).  The orphan flow rule triggers when a function 
produces an output flow without consuming at least one input flow of the same type.  Similarly, the 
barren flow rule triggers when a function consumes a flow of M or E, but produces no flow of the 
same type.  Accordingly, both F1 and F2 in the table have conservational errors, since F1 produces 
Flow1 without consuming any flow of the same type, while F2 receives Flow2 but does not produce 
any flow of that type.  The only exceptions to these rules are for a function that supplies a flow (such 
as Flow2) from storage or stores receives a flow (e.g., Flow1) without any loss.  For reference, the 
Functional Basis vocabulary [34] has two verbs, Store and Supply, for this purpose.  These exceptions 
can be built into the reasoning algorithms as the definitions of these verbs are formalized, which is 
also reserved for future extensions.   

(3) One In–Many Out:  This rule triggers when a function receives only one input of a given type (M 
or E) and produces multiple flows of the same type.  As a result, assuming that the model is complete 
with no other input flow of that type, the rule assigns an inferred parent-child relation, where all the 
output flows of a major type are inferred to be derived from the single input of that type.  Since 
material and energy are conserved separately, both inferences in the third row can be supported from 
the shown model.   

(4) Many In–One Out:  This rule triggers when a function receives multiple flows of a given type (M 
or E) and produces only one flow of that type.  In this case, the tool infers that all the input flows of a 
give type join up to form the only output flow of that type.   

 (5) Many In–Many Out and (6) User-Defined Derivation:  This rule triggers when a function both 
receives and produces multiple flows of the same type (M or E).  In this condition, an appropriate 
inference about their derivations cannot be conclusively drawn and hence the rule sets the model state 
to “out of date” and asks the user to explicitly define the derivation relations.  As soon as the user 
defines enough explicit relations so that inference can be drawn between the remaining flows (row 6), 
the system draws those inferences and reports as a message.  In row 6, the diagonal arrow through the 
function block implies this user-defined assignment of a derivation relation from M8 to M9.   

(7) Energy Transformation:  This rule triggers whenever a function processes energy flows at input 
and output.  This rule works on the premise that most energy transformations incur some loss.  
However, this premise is not universally true, as the concept of loss is not formalized and may vary 
between different applications of a function.  Therefore, the message is presented as a warning, rather 
than an error.  The purpose of this rule is to draw the modeler’s attention to the possible error, so that 
the inferences can include both the useful output flow and the residual flow, when applicable.   

(8) Material Transformation:  This rule produces a warning message to alert the modeler that any 
time material flows are being transformed across a function, the function may need to consume some 
form of energy to support that action.  Similar to the previous rule, the premise of this rule is also not 
universal, although it is typical.  For example, a fan that converts static air to moving air, or a heater 
that converts cold water to hot water, does so by consuming some energy and adding a converted form 
of that energy to the material flow.     

A notable limitation of these derivation rules is seen in the case of splitting and recombining of 
multiple input flows into multiple output flows, as shown in Figure 2.  As both input flows are split 
into multiple components that are subsequently joined to form the two output flows, no inference can 
be drawn about the conservational validity of the function unless quantitative data about the input, 
output, and the proportions of the split flows are available.  As indicated earlier, this type of reasoning 
could be addressed if the shown function was decomposed using functions that are instances of 



 

 

 

formalized verb classes.  However, that extension is out of this paper’s scope and is reserved for future 
extension.  In the next section, the topological reasoning rules (connectedness and derivation) are used 
to illustrate how they could support useful model checking reasoning.  Considering three discrete 
options for flow count (Zero, One, Many) at the two sides of a function (Input, Output), there are only 
nine permutations possible.  While the permutation {Zero input, Zero Output} is covered by the first 
row of Table 1, the other eight are captured in Table 2.   

M8

M9
F5

M7

M10  
Figure 2: A topological case unsupported by the qualitative derivation rules 

4 ILLUSTRATION OF TOPOLOGICAL CONSERVATION REASONING 
The seven steps in Figure 3 represent in-process states of a black-box function structure that is under 
construction for exploring possible functional architectures, using a function modeling software that 
captures these reasoning algorithms.  A black-box model shows the overall functionality of a design, 
typically using only one function [25].  The design problem states “Design an air heating device that 
intakes air from one location in a house and delivers hot air to another location”.  As the designer adds 
functions and flows to the model, the software performs real-time model checks using the 
conservation rules and provides feedback, as described next.   

AHD
 

Step 1 

AHD Air2
 

Step 2 

AHDAir1 Air2
 

Step 3 

AHDAir1 Air2

ThE1  
Step 4 

AHDAir1 Air2

E2

ThE1  
Step 5 

AHDAir1 Air2

E2

ThE1
E(R)1

 
Step 6 

Figure 3:  Modeling steps of an Air Heating Device 

(1) D
esigner adds a function named AHD (air heating device), representing the overall action of 
the design.  In response, the system identifies it as a redundant function.  At this point, this 
reasoning is trivial, although valid.  The designer ignores this message and proceeds to draw 
the flows that she thinks necessary.   

(2) T
he designer adds a material flow, named Air2, to indicate that the function must produce a 
flow of air.  As typical of concept exploration, she may not be concerned about the source of 
this flow at this time and only wants to model that a flow is necessary.  However, the system 
identifies that Air2 has a dangling head and is an orphan flow.  The designer is less concerned 
about the dangling head message, as she knows that all outgoing flows of a black-box model 
must be eventually released to the environment, which she saves for later.   

(3) T
he designer adds an input material, Air1, in response to the orphan flow message.  The 
system infers {Air1} → {Air2} as both are material instances and eliminates the orphan flow 
message.  However, it adds that Air1 has a dangling tail and a warning message that the 
material transformation from Air1 to Air2 may need input energy.  Notably, the parents of 
Air1 and the children of Air2 are not included in the model, but the system does not identify 
them as orphan or barren flows.  This is because the derivational checks trigger only on the 
flows that pass the appropriate connectedness checks.  For example, the orphan check runs 
only on flows that do not have a dangling tail and the barren flow check runs on flows that do 
not have a dangling head, as otherwise many of the orphan or barren messages would be 



 

 

trivial.  The designer ignores the connectedness messages and the warning, and proceeds to 
the next step.    

(4) T
he designer adds an energy flow, ThE1 (Thermal Energy 1), in order to express the idea 
that the overall function must somehow produce heat as output and add that to the outgoing 
energy flow.  Notably, the designer uses the carrier-carried relationship between flows [40] to 
express this idea.  Here the heat (ThE1) is carried by the carrier, Air2.  However, in addition to 
the warning message, the system identifies that ThE1 is an orphan, as no parent flow has been 
modeled yet.  This prompts the designer to model an input energy flow, as shown next. 

(5) T
he designer adds E2, an energy input, in response to the orphan message.  In response, the 
system eliminates the orphan message and the warning from step 3, and infers {E2} → 
{ThE1}.  However, the system now warns the designer that although the inferred relation 
satisfies conservation of energy, she probably forgot to model residual energy flows during 
energy transformation.  The designer reflects upon this warning and realizes that the system 
will most likely produce some wasted energy, such as heat, sound, mechanical vibration.  Note 
that heat produced by the device that is not added to the air flow must be modeled as residual.   

(6) T
he designer models a residual flow, E(R)1, in response to the previous message.  The system 
now only returns the connectedness messages that say that every flow except ThE1 has either 
a dangling head or a dangling tail, as seen from step 6 in Figure 3.   

(7) T
he designer adds environment instances to the dangling edges (not shown in Figure 3), in 
response to the messages.  The system now accepts the model as “conservation-wise” valid.  

The above steps illustrate, through an example modeling session, how real-time model checks could 
assist the exploration of design concepts that are conservation-wise valid.  The implementation of the 
software is likely to involve peripheral issues such as the distraction from conceptual thinking caused 
by the software’s messages.  These issues can be addressed during implementation by providing the 
flexibility to turn off real-time feedback and allowing on-request model checking, where all the checks 
would be executed on the current state of the model.  

Figure 4 shows a partially developed concept of the air heater, derived by decomposing the black-box 
model using the software.  The steps of this decomposition are omitted for conciseness.  However, the 
topological rules (connectedness and derivation) could be applied to each step of this process.  The 
messages produced by these rules run on this model are shown to the right of the model and can be 
verified by checking the model against the rules in Table 2.  As seen here, the model is accepted by the 
system, given the inferred conservation relations.  Thus, it is illustrated that the topological rules not 
only apply to simple models such as a single-function black-box, but also suffices to check the validity 
of larger, decomposed models.  The limitation arising from the splitting and recombining situation is 
anticipated—although not proven—as rare and therefore these rules form a comprehensive set of 
topological validation rules for the majority of modeling situations.    

Drive Air Heat Air Deliver 
Air

Env 
3

Distribute 
1

EE3

EE2EE1

Env 
1 Air1 Air3 Air4 Air2 Env 

2

ThE1ME1
E(R)1

Env 
4

E(R)2

Env 
5

ME2

E(R)3

Env 
6  

Inferred conservation: 
{EE3} → {EE1, EE2} 
{EE1} → {ME1, E(R)1} 
{EE2} → {ThE1, E(R)2} 
{ME2} → {E(R)3} 
{Air1} → {Air3} → {Air4} 
→ {Air2} 

Figure 4:  Partially developed model of the air heating device and output messages 



 

 

 

Further, the benefit of this topological reasoning toward validating concepts against the conservation 
laws can be illustrated by comparing this model (Figure 4) with the model of the hairdryer (Figure 1), 
which is also essentially an air heating device with similar sub-functions.  Notably, none of the 
functions in Figure 1 show any residual flow, thus implying 100% efficiency.  Further, the Guide Gas 
function in Figure 1, analogous to the Deliver Air function in Figure 4, violates conservation laws, as 
its two energy input flows (ThE and PnE) are not balanced at its output.  Overall, the model in Figure 
1 does not objectively describe that the incoming flow of EE (top left corner of Figure 1) is ultimately 
manifested as two usable energy flows (ThE and PnE) that are carried away by the outgoing Hot Air 
flow, plus residual flows lost through the system boundary.  The model in Figure 1 was created 
through reverse engineering, where the physical product was examined in order to identify its 
functions, and yet, the residual flows were omitted.  It is anticipated that by using a reasoning system 
such as the topological reasoning mentioned here, these accidental omission can be avoided and the 
fidelity of the reverse engineered models can be improved.  

By contrast, Figure 4 would explicitly account for energy conservation through the inferences, even 
during concept exploration in forward design.  Since the four air flows are connected by the derivation 
relation (the last inference in Figure 4), it is possible to reason that the air flow, which is identified by 
four different names at four functional states, picks up ME1 from the Drive Air function, picks up 
ThE1 from the Heat Air function, and loses ME2 to the Deliver Air function.  The last component, 
ME2 is the part of the flow energy in Air4 that is spent to drive the air against the frictional resistance 
of the delivery conduit and ultimately released to the environment as frictional heat (ER3).  Thus, the 
energy added to Air2, compared to Air 1, must be (ME1.Energy + ThE1.Energy – ME2.Energy).  
Here, the suffix “.Energy” indicates the energy parameter of the preceding flow name.  Further, since 
all functions are modeled with residual flows, it is further computable from the first three inferences 
that the energy content of ME1 is (EE1.Energy – ER1.Energy) and the energy content of ThE1 is 
(EE2.Energy – ER2.Energy).  Finally, since {EE3} → {EE1, EE2}, it can be reasoned that the overall 
efficiency of this device concept is (ME1 + ThE1 – ME2).Energy / EE3.Energy.   

5 VALIDATION THROUGH SOFTWARE IMPLEMENTATION 
The purpose of the software implementation is only to demonstrate that the reasoning algorithms 
discussed above are actually implementable and do return the anticipated results.  The usability of the 
tool is not under investigation yet and hence the user interface and graphics of the software are not 
examined.  For the same reason, designer studies to test the usability and overall design benefit of this 
reasoning are reserved for the future.  Figure 5 shows the modeling interface, while Figure 6 shows the 
reasoning output.  Although the modeling steps discussed earlier are used to obtain Figure 5, for 
brevity, only the final model is shown.  The forms for creating function and instances are also omitted.  
As can be inferred from Figure 5, function names, environment names, flow names, flow types within 
brackets, and the residual status of flows in red arrows are user input.  The reasoning function is called 
from the menus, and returns Figure 6.  As seen here, each inference discussed in Figure 4 is returned 
by the software.  In addition, the function Distribute1 is identified to have 100% efficiency, on the 
ground that while this function operates on energy, no residue is produced.  This detection is actually 
realistic, since if this function is executed through a junction box, some energy will be lost through 
Joule heating.  This warning message can be removed by showing a residual energy flow from the 
Distribute1 function (not shown in Figure 5).  



 

 

 
Figure 5: Software implementation for demonstration of topologic reasoning 

 
Figure 6: Topologic Conservation Reasoning Results from Software Implementation 

6 CLOSURE AND FUTURE WORK  
This paper illustrates the ability to support qualitative conservation-based reasoning suitable for early 
stage mechanical design using topological rules for function structure graphs.  To illustrate this 
reasoning, the paper also presents a software implementation of the algorithms.  Three connectedness 
reasoning rules and eight derivation reasoning rules are defined and illustrated.  These qualitative 
reasoning rules are not predicated on any formal vocabulary for function verbs.  This is a first step 
towards providing computational reasoning for concept analysis in engineering design.   

As indicated previously, this paper presents a first step in this research project, which is to identify the 
possibility of supporting automated conservation reasoning in early design.  An immediate next step is 
to extend this reasoning to the quantitative level.  This paper identifies that the function model and its 
underlying function representation must capture quantifiable flow attributes for to energy and mass 



 

 

 

properties in order to support quantified calculations and error-checking.  Development of this formal 
representation of function verbs is currently underway.  With this formalization, additional reasoning 
could be written to perform decomposition validation and detect if the quantity of input and output 
energy flows obey the balance laws of transport phenomena (quantitative model checking).  For 
example, Figure 7 shows a possible decomposition of the Heat Air function from Figure 4.   
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Figure 7:  Decomposition of the Heat Air subfunction of Figure 4 

The two functions are instances of two verbs to be formalized, Convert_Energy and Energize_Material 
and describe the conversion of EE into ThE in a heater and the addition of that heat to the Air3 flow, 
thus producing Air4 at a different state.  The designer assigns numeric values of function and flow 
attributes that are known or under examination for feasibility.  In Figure 7, these values are the 
efficiencies of the two functions (0.6 and 0.8), the temperatures of the incoming and the outgoing air 
flows (22C and 45C), the mass flow rate of the air (0.1 Kg/s), and some thermodynamic properties 
such as specific heat (Cp = 1.005 KJ/KgK) and density (1.3 Kg/m3

(1) T
he software checks for decomposition validity between the Heat Air function of 

).  Using this model, the following 
information can now be automatically computed by the software. 

Figure 4 
and the overall model in Figure 7.  This would detect that the flows attached to the boundary 
of both models are identical, except that both functions in the decomposed version 
(Convert_E2 and En_Mat2) incur residual flows.  Thus, by comparison, E(R)2.Energy = 
E(R)6.Energy + E(R)7.Energy can be inferred.   

(2) T
he software computes the energy needed in EE2, using the following reasoning. 

( )

( )

( )

1. 3. 3. 4. 3.
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= × × −
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=
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∴ =
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Quantitative calculations of the above type would require, in addition to flow attributes (e.g., mass, 
energy, specific heat) and function attributes (e.g., efficiency), formal representation and algorithmic 
application of the laws of thermodynamics and transport phenomena.  While the example only 
illustrates reasoning for assessing feasibility or power requirements, the existing formalism of function 
modeling can be significantly enhanced to support formal reasoning in conceptual design by (1) first 
developing formal representations of the function verbs and flow nouns and (2) then extending that 
representation by adding information elements such as function and flow attributes.  Work in direction 
is currently underway. 
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