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ABSTRACT 
A methodology is introduced for the analysis of small problems of elasticity in which the stress 
solutions, displayed in conventional contour form, are updated in real time as the engineer deforms the 
geometry of the object under analysis. The underlying mathematical technique is the Boundary 
Element Method, and we show how the method can be adapted for continuous update of stress 
solutions as the geometry evolves. Two performance enhancement strategies are presented, and an 
illustrative example shows a typical usage of the software tools produced during this project. 
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1 INTRODUCTION 
The role of computational stress analysis as part of the mechanical design process has been firmly 
established for several decades. However, the current methodologies for preparation of finite element 
models and interpretation of the results mean that largely this technology is used in the detailed design 
stages. Thus these tools are used to validate designs rather than to guide the design. There have been 
moves over the last decade to bring the stress analysis forward in the design cycle, and it is now 
common to see some finite element analysis capability available through Computer Aided Design 
(CAD) systems. This paper describes work that takes a different approach to bringing computational 
analysis into early stages of the design process, by increasing the level of interactivity in the stress 
analysis such that stress results may be displayed in real time (currently for small models) on a 
dynamically updating geometry driven by the engineer. 
Real time update of stress information being displayed to the user during a geometric operation (for 
example, while a fillet radius is being changed dynamically) requires a very rapid simulation. Margetts 
et al. [1] suggest that providing feedback at a rate of 0.01 s constitutes “real-time”, while 1 s 
constitutes “interactivity”. There are different approaches to providing acceleration of analysis codes 
such that this type of performance may be possible. One approach is to make use of Graphics 
Processing Unit (GPU) processing, e.g. Joldes et al. [2], who apply finite elements to neurosurgical 
simulation and achieve a factor of 1000 acceleration in finite element computations. 
The approach described in the current paper is based on the use of the Boundary Element Method 
(BEM), which offers some advantages in particular for analysis of evolving geometries in early stage 
design. The method is described in Section 2. The fundamental difference between BEM and the 
better known Finite Element Method (FEM) is that in BEM the elements are restricted to the boundary 
of the object. For example, for the 2D objects considered in this work, boundary elements are simply 
line segments describing the perimeter of the object and of any holes. Moreover, the problem is cast as 
one of “re-analysis”, i.e. the stress analysis of a model which is similar to one that has already been 
analysed in full. This is particularly appropriate in BEM modelling because many geometric changes 
can be accommodated in analysis models by perturbing very few elements from their initial positions, 
allowing considerable re-use of previous computations. 
Reanalysis methodologies for BEM have been presented by other authors. Kane et al. [3] present an 
iterative approach, while Leu [4] uses a reduced basis in which to express the solution. Both express 
the solutions as perturbations from the previous solution and performance is likely to degrade after 
several such perturbations since the original model can end up bearing little resemblance to the latest 
geometry under analysis. However, the methods do offer good acceleration in re-analysis for small 
perturbations. Castillo et al. [5] use updating matrix inverses through the Sherman-Morrison 



algorithm, and this can work well but is efficient only for low rank changes to the matrix, which limits 
its effectiveness to small perturbations. 
Before going on to express the methodology used in the current work, it is worth mentioning also an 
increasing body of work aimed at real-time simulations of deformation of elastic objects. Wang et al. 
[6] considered this in a BEM context, while FEM is considered by Kerfriden et al. [7], and Farhat et 
al. [8]. None of these works updates the matrix description to correspond to an evolving geometry, but 
they offer extremely rapid feedback of stress and displacement results for different load cases 
operating on the same geometry. It is noted that in order to provide for realism in haptic (i.e. touch-
sensitive) feedback, a much shorter re-analysis time of the order of 1 ms is required, which currently 
precludes the updating of matrices to reflect an evolving geometry. This has applications in, for 
example, surgical training and surgical mission planning. 
This paper describes a methodology and its implementation for providing rapidly updated stress 
contour information to the engineer while he/she is updating the geometry dynamically. The key 
unique features not present in the works reviewed above are: (i) use of surface fits to approximate 
boundary integrals, (ii) use (and regular update) of an available LU decomposition with which to 
precondition iterative solution of the updated system, and (iii) the assembly of these features into an 
integrated system that enables real-time stress updates to be fed back to the engineer. Section 2 
describes the BEM and the implementation for re-analysis problems. Section 3 is used to present an 
illustrative example, and some concluding remarks are made in Section 4. 
 

2 METHODOLOGY 
 
2.1 Underlying numerical method 
The numerical analysis method adopted for this application is the Boundary Element Method (BEM). 
This shares some characteristics of the better known Finite Element Method (FEM), in that it makes 
use of elements to discretise the geometry, describes the displacements and stresses over those 
elements in terms of the point values of those quantities at node points, and assembles the system of 
governing equations in matrix form for solution. However, there are important differences that 
combine to make the BEM very suitable for interactive and reactive analysis as part of the design 
process. The method is standard and is described in numerous text books, including Becker [9]. In this 
paper the method is extended for interactive analysis and re-analysis. 
A BEM solution is formed by assembling, and then solving, a system of simultaneous equations in 
which each is an expression of a boundary integral equation (BIE). The BIE may be derived in 
different ways, e.g. virtual work, Maxwell-Betti reciprocity, a weighted residual statement, Green’s 
identities, to arrive at the expression giving displacement component ui
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integrals over the boundary Γ of the object under analysis, i.e. 
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in which ui and ti are (respectively) the displacement and traction components in the direction given 
by index i, and these are the unknowns we seek as the solution.  Uij and Tij
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 are (respectively) the 
displacement and traction fundamental solutions, i.e. the displacement and traction components at 
point Q resulting from the application of a Dirac delta function point force at point p. The term c(p) is 
a function of the local geometry at point p, taking the value 0 if p lies outside the object, 1 if it is 
inside the object, and θ/2π for points on the boundary (where θ is the angle subtended by the object at 
point p). The fundamental solutions for the 2D simulations described in this paper are given by the 
plane strain expressions 
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Here r is the distance from point p to Q, G is the shear modulus, ν is Poisson’s ratio, δ is the 
Kronecker delta and n = (nx, ny

GtHu =

) is the unit outward pointing normal at Q. Plane stress cases are 
accommodated by simply taking a modified set of material properties. Expressing displacements and 
tractions as shape function interpolations, the unknowns can be expressed as nodal values and 
removed from the integrals, which can then be evaluated numerically. Taking p as each nodal point in 
turn, the resulting equations of the form (1) can be written in the matrix form 
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where H and G are matrices containing terms computed by evaluating boundary integrals over 
elements, i.e. 
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where Nk is the shape function for node k on element n, and Jn

bAx =

 is the Jacobian of the mapping between 
(x,y) and local parametric coordinate ξ. Both N and ξ operate in the same fashion as in the FEM, with 
ξ defined such that –1 < ξ < 1 describes the element. In (4) u and t are vectors containing the nodal 
displacements and tractions. By specifying a sufficient number of boundary conditions, (4) can be 
rearranged as 

                                                                                                                                          (7) 

where A is a square matrix formed from columns of H and G, x is the vector of unknowns (some 
displacements and some tractions) and b is a known vector. Equation (7) can be solved for x, and then 
(1) used to find results at points p inside the object, ready for contouring.  
The BEM offers considerable benefits over the FEM for interactive re-analysis for the following 
reasons: 

• The elements lie only on the surface, as illustrated in Figure 1, and so meshing and re-meshing 
are rapid and robust processes throughout the evolving geometric description. 

• Geometric changes result in meshes being modified only locally. 
• The matrix A is considerably smaller than the finite element stiffness matrix that would 

otherwise be needed for the equivalent FEM solution. 

                        
   
    (a) Mesh A (original mesh)           (b) Mesh B (after hole moved)       (c) Mesh C (after fillet change) 

Figure 1. Three boundary element meshes of evolving geometry (quadratic elements are used with 
element mid-nodes removed from the plots for clarity) 

 
2.2 Implementation for interactive re-analysis 
The software Concept Analyst [10] has been developed to exploit the suitability of the BEM for re-
analysis. Its graphical user interface is designed for the rapid and simple creation of small elasticity 
problems, and geometries can be entered either through accurately entered coordinates or through 
rapid dynamic sketching operations. Analysis may be conventional or h-adaptive. The focus in the 



current paper is the re-analysis capabilities. This is introduced by considering three meshes1

Each term a in the matrix A, in equation (7), is calculated by evaluating a boundary integral of the 
form given in equations (5) or (6). The integral is a function of the material properties, the point p and 
the element, n, over which the integral is taken. The point p dictates the row in the matrix, and the 
index k and the element n determine the column, into which the term a is inserted. Thus in performing 
the re-analysis of mesh B with only the elements on the hole that are changed, considerable re-use may 
be made of the large majority of matrix terms, calculated in the analysis of mesh A, which relate nodes 
and elements on the exterior boundary and which are therefore unchanged from the previous run. 
Similarly, the matrix for mesh C may be considered as a local perturbation of that for mesh B, 
enabling more re-use of terms. In this way, the evolving geometry during early-stage design may be 
accompanied by the corresponding updates to the governing boundary element matrix. 

 labelled 
A, B and C, which are presented in Figures 1(a), 1(b) and 1(c) respectively. Mesh A is developed to 
simulate the stress and displacement fields in a plate that contains a hole and a fillet under some 
prescribed boundary conditions. The boundary elements are line segments displayed around the 
perimeter of the plate and hole. Mesh B considers the same problem with the hole moved to a new 
location, and then the fillet radius is modified to arrive at the mesh C. The key feature is that the 
perturbations to the mesh remain local. 

Having generated the matrix system (7) and solved the equations for the stresses and displacements, 
the updated matrix system for a perturbed geometry may be stated 

bbxAA ∆+=∆+ 1][                                                                                                                   (8) 

where ∆A and ∆b are perturbations to A and b respectively. Matrix ∆A consists of non-zero terms in a 
compact set of rows and columns in an otherwise zero matrix. The new unknown vector x1 resembles 
vector x in many cases, especially for small geometric perturbations. (It is noted that when 
undertaking re-analysis during dynamic update of the geometry, such as dragging the hole using 
mouse motion in transitioning from mesh A to mesh B, the re-analysis is initiated frequently and each 
geometric perturbation is of pixel order). We can use the fact that x approximates x1

Following solution of (8) the updated results may be displayed, and the system is ready for the next 
geometric perturbation. 

 by using x as the 
initial approximation in an iterative solution of (8). The matrix [A + ∆A] is formed as the new 
governing matrix, and the GMRES scheme [11] is effective for the solution of these dense, 
unsymmetric systems. 

 
2.3 Acceleration of computational performance 
The BEM may be accelerated in both of its major numerically intensive phases, i.e. the evaluation of 
the boundary integrals of the form (5) and (6) to assemble A, and the solution of the system (8). In our 
implementation Concept Analyst, the following strategies are used. 
Integrations are accelerated by rejecting Gauss-Legendre quadrature in favour of approximate surface 
fits for many boundary integrals. The procedure is summarized here, but is described in Trevelyan & 
Scales [12]. For a flat line boundary element, each integral may be parameterized by two variables. 
Denoting using v1 the vector from the start of the element to the end of the element, and by v2

 

 the 
vector from the middle of the element to the collocation point, p, we parameterize the integral using: 

• an angular variable describing the angle between the vectors v1 and v2, i.e. cos–1(v1⋅v2/|v1||v2

• a scaling variable |v
|) 

2|/|v1
 

| 

We computed the boundary integrals (5) and (6) for many values of the parametric variables, and 
devised a procedure by which a least squares fit to the surface is produced in an optimally small 
number of terms. The procedure was repeated to produce 24 surface fits for the 24 different 
combinations of indices i,j,k and the kernels Tij, Uij

                                                      
1 The term “mesh”, used for the pattern of elements defined to discretise the geometry, is borrowed from finite 
element modelling in which the elements resemble a net. 

. The integration process for a flat element is then 
reduced to finding the values of the parametric variables and substituting those into a simple 
expression for the surface fit. This was done to ensure errors no greater than 0.1% in each matrix term, 



which is found to propagate through the solution process to give reasonable (c. 1%) error in the peak 
value of maximum principal stress in the model. 
The solution of the system of equations (8) is accelerated using a preconditioning strategy specific to 
the re-analysis problem. We solve the initial system (7) using LU-decomposition, and store the LU 
factorization. In solving the perturbed system (8) using GMRES, we not only have a good first 
approximation to the solution, but can also precondition the iterative solver using the stored LU 
factorization. In this way our preconditioner is A–1, which is a good approximation to the perfect 
preconditioner [A + ∆A]–1. For small perturbations (which are commonly of pixel order) this provides 
an excellent preconditioner, and convergence to the new solution x1

After several geometric perturbations the LU factorization of the original matrix degrades as a 
preconditioner because it deteriorates as an approximation to [A + ∆A]

 is achieved in a very small 
number of iterations (usually 2 to 5 iterations). 

–1

 

. In order to refresh the 
preconditioner periodically, an LU decomposition of the latest matrix is computed in a low-priority 
thread, and this replaces the old preconditioner when it becomes available. 

3 ILLUSTRATION 
The algorithms presented in section 2 are interactive by their nature and do not lend themselves well to 
illustration in paper form. However, an example problem is presented here, in which a 200x100mm 
plate containing two 20mm diameter holes, is placed in uniform uniaxial tension of 100 MPa in the 
horizontal direction. The component is analysed initially as shown in Figure 2(a), and then undergoes 
various geometric changes (each through dynamic mouse-click-and-drag operations) to arrive finally 
at Figure 2(e). All contour plots display maximum principal stress distributions in a range from zero 
(dark blue) to 400 MPa (red); stresses exceeding 400 MPa are displayed in grey. The types of 
geometric operation, number of re-analysis runs and run times (on a standard PC) are given in Table 1. 
 

        
 

        
 

 
Figure 2. Stress contours displayed on evolving geometry (contour scale is the same in each plot) 

(a) (b) 

(c) (d) 

(e) 



The mean re-analysis time, including contour display, is 0.078 seconds, providing a refresh rate that is 
suitably fast for virtual reality update of stress solutions to the engineer in a dynamic design 
environment. 

Table 1. Re-analysis computational performance 
 
Transition Geometric 

operation 
Number of re-
analysis runs 

Total run time (s) Mean run-time 
per re-analysis (s) 

Fig. 2(a) → 2(b) Move 1st 50  hole 3.346 0.067 
Fig. 2(b) → 2(c) Move 2nd 25  hole 2.080 0.083 
Fig. 2(c) → 2(d) Resize hole 44 3.203 0.073 
Fig. 2(d) → 2(e) Move plate corner 107 9.138 0.085 
 
The performance relative to other reanalysis approaches reviewed in section 1 is rather problem 
dependent, but we find that, for all but the smallest changes on the smallest problems, this approach 
outperforms those of Leu, Kane and Castillo, which are the other algorithms that aim to update the 
matrix representation and are therefore directly comparable. 

4 CONCLUSIONS 
This paper has introduced an analysis and re-analysis methodology based on the Boundary Element 
Method. The BEM is well suited to this application because mesh perturbations are confined to a local 
region when a geometric design change is implemented. Both major numerically intensive phases of 
the BEM elasticity analysis has been accelerated, by the use of least-squares surface fits to 
approximate boundary integrals and by the use of a preconditioned iterative solver specially developed 
for this application. The timings show that for small problems of plane elasticity the feedback of stress 
contours to the engineer is sufficiently fast to give a real-time animated appearance that provides 
valuable information in early-stage design. The resulting tool is also an invaluable aid in design 
education, since it is very quick and easy to display dynamically the development and interaction of 
stress concentrations. Work is under way on the extension of these ideas to three-dimensional objects. 
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