

FOUNDATIONS FOR A NEW TYPE OF DESIGN-ENGINEERS – EXPERIENCES FROM DTU

Ulrik Jørgensen, Søsser Brodersen, Hanne Lindegaard and Per Boelskifte, DTU Management

ABSTRACT

Since 2002 a new design-engineering education has been organized at the Technical University of Denmark. It fulfils most of the requirements in the CDIO concept but builds in addition on a change in what is considered core disciplines in engineering as three fields of knowledge are represented almost equally in the curriculum: natural and technical sciences, design synthesis and socio-technical analysis. Combined with an integration and co-ordination of disciplines, a series of projects providing a progression of challenges to the students' learning, and a focus on the outcomes of the learning processes of competences needed in design engineering, the curriculum represents a radical innovation in engineering curriculum. Not least as it includes new disciplines covering socio-technical analysis and new approaches to design synthesis as well as integrates open ended project assignments in cooperation with companies and other actors in society.

The paper describes the background as well as the foundational elements constituting the educational program and presents an assessment of the key factors that has made it attract new groups of students to engineering. From 2007 candidates have finalized the education and an evaluation has been carried out based on their own and their employers experiences. This supports the visions build into the curriculum and adds important components to what might be needed to carry out reforms in engineering education.

Keywords: Design, socio-technical competences, multidisciplinary, engineering educations

INTRODUCTION

Since the 1990s questions have been raised by industry and educational planners both in the US and Europe to the scientific orientation of engineering education as it has developed since World War II. The problems include a lack of practical skills in modern engineering training, a mismatch between the need of industry and the scientific knowledge taught and the kind of analytical qualifications as objectified knowledge being awarded in engineering education compared with visions of engineers as creative designers and innovators of future technologies. With its emphasis on science and knowledge structured around technical disciplines, engineering education has developed into an education of highly technically skilled, specialized cooperative workers rather than innovative and creative engineers of technology for society. Following the continued development of technology has lead to an increasing number of specialized fields and educational program characterized as 'expansive disintegration' by Williams [1] critical accounts have pointed to a need for reforming engineering education.

From this critical outset the knowledge and broad innovative orientation needed to produce creative design engineers able to cope with contemporary technological change have been missing in engineering education. Several educational initiatives have addressed these issues in the last two or more decades outlining plans to reform engineering education. Some focus on engineering curriculum or the pedagogy and learning modes employed; some develop completely new engineering programs based on new technologies. These approaches seem to be confident in the achievements of engineers in society and argue for the continuation of a traditional science-based engineering curriculum [2,3]. Other initiatives combine business, management, and organizational understanding with engineering, or they alternatively emphasize the creative design aspects of engineering integrating aspects from other initiatives.

Common to most initiatives has been that they share the view that technology and the natural sciences are the two basic contributors of knowledge to engineering. They do not raise critical issues related to the social and institutional dependencies of technology. Engineering schools and professional institutions at large have supported the idea of a close relationship between science and technology by even asserting that natural sciences form the core foundation of engineering. Also contemporary developments in the natural sciences and engineering sciences have blurred the boundaries. New approaches of techno-science seem to be gaining ground as the characterization of the ties between modern science and technology, leaving neither one in a subsidiary role [4]. These new approaches do though recognize technology as a contributor to scientific achievements and thereby change the relationship between nature and technology. The question is whether these accounts are satisfactory in understanding and coping with the contemporary problems in engineering education in relation to the demands from engineering practices at large?

In this article the focus will be on the role of engineering design in contemporary society and the knowledge base and skills needed to perform engineering design. Based on a brief historic account of the controversies in engineering between practice and theory and concerning the core knowledge base the engineering education in design & innovation program at DTU will be introduced. The emphasis in the presentation and discussion will be on the combination of learning strategies and disciplinary knowledge components that constitute the curriculum and the program at large including its research foundation. From the outset engineering competences in design synthesis and socio-technical analysis building on the research field: Science and Technology Studies (STS) have been foundational for the reform of engineering education implied. These additional components have also been agenda setting for the teaching of mathematics and technical subjects.

ENGINEERING EDUCATIONS IN A HISTORICAL PERSPECTIVE

In order to understand today's situation in engineering education and the emphasis on scientific knowledge, we must consider one of the most important historical changes in engineering education – the construction of a science base for engineering. This development resulted partly from the increase in public and military funding of engineering research during World War II, partly from attempts to develop a more theoretically based foundation for engineering. The program to establish a science base for engineering created an elite group of theory oriented universities and technical schools of higher education in both the United States and Europe. At the outset there was a gap in engineering curricula between science classes based on high degrees of mathematically formalized knowledge, and the more descriptive and less codified technical subjects. Controversies resulted in positioning technical sciences lessened these controversies because of its increased focus on innovation and awareness of the close interactions between specific areas of science and technology.

During the first half of the 20th century, polytechnic universities had to fight for acceptance. They were acknowledged for their foundations in science, but were questioned about whether they could conduct independent scientific research; or were limited to practical experiments with technical improvements and practical implementation. These controversies manifested themselves in the acceptance of doctoral studies at technical schools of higher education. In Sweden and Germany, as in many other countries, decisions about what should qualify as scientific achievement and who was qualified to judge were very controversial. The controversy ended with an acceptance of technical or engineering science as a distinct area of scientific inquiry, although the image of engineering science as merely applied natural science continued to dominate many discussions about the character and role of technical sciences. Sponsorship of fundamental studies in a variety of areas supported the trend away from practice-oriented research and education resulting in critique from industry [5].

The post-war decades saw the rise of systems engineering and thinking as broadly applicable engineering tools [6]. Systems sciences that include control theory, systems theory, systems engineering, operations research, systems dynamics, cybernetics and others led engineers to concentrate on building analytical models of small-scale and large-scale systems, often making use of the new tools provided by digital computers and simulations [7]. Whereas systems engineering of the 1950s could be narrowly analytical and hierarchically organized, new ideas of technological systems in the 1980s and 1990s focused on the relationship between technology and its social and industrial context. This new relationship and understanding of the natural and technical sciences is reflected in the notion that engineering as techno-science developed in the field of sociological studies of science and technology to reflect the new intimate relationship between these fields of science [8].

Changes in the foundation of engineering education, with the expansion of science-based technical disciplines, also has led to changes in the curriculum of traditional vocational schools of engineering,

as well as funding for research. Though having different names, 'polytechnics' in the United Kingdom, 'fachhochschulen' in Germany, and 'teknika' in Denmark these schools shared common characteristics in recruiting students from groups of skilled technicians and supplementing their training with a theoretical education, while maintaining a focus on industrial practice. As a result, the schools inherited the experience-based, practical knowledge, and skills of students who had previously worked as apprentices in construction firms, machine shops, and industry. At the same time, the decline in the apprenticeship training of craftsmen and skilled workers began to undermine the recruitment lines of the polytechnics [9].

Conflicting 'ways out' – specialization and new modes of learning

The growth of the use of technology in the later half of the 20th century, in combination with the large investments made in engineering research by industry and by research institutes and universities, has resulted in tremendous growth in the body of technological knowledge, the number of new technological domains, and specialized technical science disciplines [10]. Differentiation in engineering specialties put pressure on engineering education to cope with the diversity and to keep up with the frontline of knowledge in the diverse fields. These developments have also resulted in a growing number of new specializations in engineering. Changes in the demands for specialization created tension between generalized engineering practice. Examples of these specializations include highway engineering, ship building, sanitary engineering, mining engineering, power generation and distribution engineering, offshore engineering, aeronautics, microcircuit engineering, environmental engineering, bio-engineering, multimedia engineering, and wind turbine engineering. This development called 'expansive disintegration' [1] reflects the combined expansion of the number of technologies, specialities and disciplines on the one hand, and the continued disintegration of what once was the unity and identity of engineering on the other.

General pedagogical reform based on project-oriented work are also argued for giving students a broad understanding of engineering work and problem solving, with less emphasis on theoretical knowledge represented in the courses and disciplines [11]. In a less radical manner many engineering schools have tried to add certain new personal skills to their requirements and curriculum by complementing the natural and technical science teaching with training in communication skills, group work, and project management. These are competences that are implied in the project-oriented model and in the less demanding problem-based learning model.

The dominant role of technology demands multidisciplinary approaches, and challenges the sciencebased, rational models and problem-solving approaches. These demands have given rise to new areas of engineering education. For example, in the field of environmental studies, the need for new approaches in industry based on cleaner technologies and product chain management challenged the already established disciplines in sanitary engineering based on end-of-pipe technologies and chemical analysis. Another example can be found in the field of housing and building construction engineering. The need for integrating both social and aesthetic elements, as well as user interaction in both the project and use phases of construction, led to several attempts to overcome the traditional division between civil engineering and architecture.

The decade of the 1990s was not the first time that concerns about the role of technology in society surfaced, but this time the questions raised issues of a more fundamental nature concerning the content of engineering education and the impact on technology exemplified with controversies about highway planning, chemicals in agriculture, nuclear power plants, and the social impacts of automation. The concerns questioned the role of knowledge about technology and some critics demanded a humanistic input into the curriculum with such subjects as ethics, history, philosophy, and disciplines from the social sciences [12]. This idea was based on the assumption that engineering students, through confrontation with alternate positions and opportunities to discuss social and ethical issues, would be better prepared to meet the challenges of technology. However, in many engineering education programs, these new subjects have ended up being add-on disciplines often not integrated with engineering and science subjects, contributing further to the disciplinary congestion in engineering. Changes in the role of technologies in a society where consumer uses, complex production, and infrastructures are increasingly more important, have led to more focus on the integration of usability and design features. The traditional jobs in processing and production have not vanished, but new jobs

in consulting, design, and marketing have been created. These new jobs demand new personal and professional competencies, and require new disciplines that contribute to the knowledge base [13].

New approaches to design and disciplinary boundaries

During the 1990s, several engineering schools started new lines of education emphasizing engineering design skills and introduced aspects of social sciences into the curriculum of engineering design. These additions included technology studies, user ethnographies, and market analysis. The development of new and diverse technologies also reflects the limitations of technical sciences in being able to cover all aspects of engineering [14]. Examples of these reformed engineering programs can be found at e.g. Delft University in the Netherlands, Rensselaer Polytechnic Institute in the U.S., the Technical University of Denmark, the Norwegian University of Science and Technology, and several other places.

The description of an engineer's contemporary competencies might include the following: 'scientific base of engineering knowledge', 'problem-solving capabilities', and the 'adapt knowledge to new types of problems'. The focus is more often on problem-solving, and less on problem identification and definition [15]. This focus emphasizes the problem of engineering identity in distinguishing between engineers as creators and designers versus analysts and scientists raising question about the foundation of synthesis knowledge and design skills. The underlying assumption in most training given by engineering schools on engineering problem solving is that engineers are working with well-defined technical problems and methods from an existing number of engineering disciplines. This assumption does not answer the question as to whether engineers are competent in handling the social implication of complex technologies, and the even non-standardized social and technical processes where the problems are undefined and involve new ways of combining knowledge.

In this relation the limitations to engineering sciences and their models become a crucial part as does the understanding of technologies as hybrid constructs building on several both disciplinary and practice based knowledge components and embedding assumptions of use and social relations related to specific localities and historical settings even though these may become part of standardized sociotechnical ensemble [16]. The other crucial aspect for engineering technology of the future is the handling of design challenges coming from the even more dominant role of technology in society and for the environment. This must lead to a redefinition of what the core competences of engineering comprise.

THE DESIGN & INNOVATION PROGRAM AT DTU

Since 2002, the Technical University of Denmark (DTU) has offered a new engineering education in design & innovation. This new bachelor and master programme of 3 plus 2 years length represents a fundamental rethinking in engineering education. With an enrolment of 60 new students per year and twice as many qualified applicants, this new initiative is considered as a success by DTU. The new curriculum is targeted to meet the demands for competences from industry and society in the context of globalization and new cooperation structures in product development and innovation. The design & innovation education contributes to the renewal of the educational profile of DTU and is regarded as one of the recent major successful strategic developments.

An important motivation from the university management's side for providing the new education in design & innovation has been an interest in attracting more and new types of students having good grades from their high school graduation but not being attracted by the traditional engineering education curricula. The new educational profile has proven valuable for this purpose as it has recruited almost 50% of its students, from groups who explicitly would not have sought admittance to the engineering programs. The education has also been able to attract almost as many female as male students.

In the following sections the basic ideas and experiences from the development of the new engineering curriculum is described drawing on planning documents, curriculum plans and papers from many authors [17,18], however the main reference is an article by Boelskifte and Jørgensen [19]. Special emphasis will be given to the new type of knowledge and skills adopted with the socio-technical and synthesis dimension of the education. This is of significant importance and is accompanied by research activities in the fields of sociology of technology, innovation economics, organization and design synthesis from design thinking and engineering.

Socio-technical analysis and design synthesis

In preparing for the curriculum planning leading to the design & innovation education a revision of the disciplinary and skills content of what had become design engineering teaching within the mechanical engineering programs was put on the agenda at DTU. Taking the outset in the competences needed by engineers to carry out design work in practice on one hand and bringing in the experiences from the two faculty groups initiating the new education at DTU, new topics and disciplines were taken up. The overall composition of the new program was illustrated with the flower model shown in figure 1 illustrating the three basic knowledge and skills components of which the program should build. The three components were seen as equally important for the training and learning process of the students.

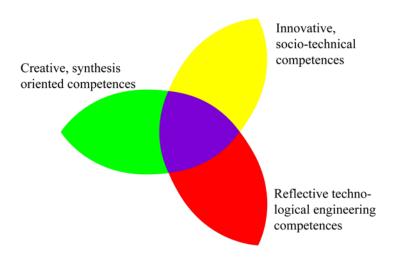


Figure 1. The multidisciplinary approach in the design and innovation education.

While the 'reflective technological engineering competences' are comparable to what might be seen as the core of traditional engineering education the idea of adding the demand for reflectivity was to point to the need for teaching this domain knowledge from the perspective of design. This entails a relative change in focus from optimizing within a given technical paradigm and concept to focus on the technologies features and qualities as a functional contribution to the totality of a design. This does not imply a rejection of problems of optimizing use and calculating specifics, but to provide a focus often lost in technical domain courses to be able to compare concepts and alternative technologies to reach a well functioning design.

Of the two other components also the 'creative, synthesis oriented competence' are included in many design oriented courses and projects in engineering education. Though the context in which the students operate often is provided from the position of an existing design concept or the application of an existing technology. This perspective of engineering design provides a conventional focus on the engineer's contribution mainly emphasizing the application of technological principles and the optimization of given concepts. Rather little attempt is given to the development of new concepts and to the involvement of users perception of what the functional demand as well as other aspects of use might imply. This has resulted in a dominantly introvert and technology determined type of design methods and models very useful to classic technology confined design tasks, but not providing e.g. the tools to analyze and include users in setting the design criteria and defining the design specifications. A variety of assessment tools have been developed to help engineers compare different conceptual solutions but most often constrained within the universe of functional specifications so common to engineering. The synthesis oriented competences of the DTU design & innovation program has therefore attempted to include user investigations and involvements as a basic mindset from the very first semester. Further the re-design activities of the second semester builds on studies of the use and problems related to existing products and technologies to provide the students with toolsets and approaches to tackle the demand side of products, services and systems.

The third component – the innovative socio-technical competences – is quite new to most engineering programs. Though it e.g. is taken up also in the design program at Rensselaer Polytechnics and is mentioned as an important challenge in the NFS-report 'ED2030: Strategic Plan for Engineering Design' [22], only few engineering curricula have included these topic as part of core basics of

engineering. At some engineering universities socio-technical subject can be taken as electives and may be integrated in courses on the history of technology being part of the 'liberal arts' requirements for engineering education.

In the design & innovation engineering program at DTU a reverse strategy was chosen not viewing these topics as an add-on, but as core and basic competences needed as much as the mathematics skills by the students. This has resulted in a number of courses informing the students' project assignments but given the status of socio-technical disciplines of their own right building on social science given a status similar to the mathematics and technical disciplines. The choice of theoretical foundation for teaching socio-technical subjects was based on almost two decades of experiences with teaching sociological and economic disciplines in the DTU engineering programs. During the 1990s theses experiences were evaluated and a search for new and more interdisciplinary approaches was initiated. This lead to an inclusion of the emerging disciplines – often still considered interdisciplinary – of the economics of innovation or broader 'innovation studies' and the sociology of technology inspired by constructivist views. The new disciplines were revolutionizing the field of science and technology studies (STS) by observing that social behavior and mechanisms are seamlessly weaving together social and material phenomena and objects.

Bringing in approaches from actor-network and other theories from the STS-field to analyze designscripts, actors sense-making processes, assignment of qualities to technologies, arenas of development, co-design processes, material mediation and the staging of innovative activities these new topics have provided tools for design engineering students not only to understand and constructively analyze the context and use of designed artifacts, but also providing them with tools to understand the importance and limitation of the different spheres of knowledge provided in engineering.

Combined with the integration and coordination of disciplines, a series of projects providing a progression of challenges to the students learning, and a focus on the outcomes of the learning processes of competences needed in design engineering, the curriculum represents a radical innovation in engineering curriculum. Thus, the design & innovation education aims to give competencies to work within a spectrum of considerations and values from a diversity of professional specializations as well as user groups from everyday life settings.

Thematic semesters

Design can be defined as applying technologies in a social context. Neither subjects taught in basic sciences nor the technological subjects prioritize synthesis in content or means. Yet technology must be adapted to fit assignments or be part of innovation processes. This utilization of technology must be experienced if the student is to develop design competence.

The education opens up in the first semester by exposing the new students to the complex world of users and technology with the theme 'Meet the world of technology'. The semester includes courses in mechanics and materials, product design, and user analysis and visual communication.

The semester also motivates and creates identity, introducing the mode of studying connected to synthesis, reflection and awareness. The project subject is 'User Oriented Design' where contributions from all the different courses are integrated by the students in their analysis and problem solving.

The second semester theme is 'The good product'. Focus is on understanding the complexity of manufacturing i.e. from the first ideas to the production, introduction and use of a physical product. This sequence is studied from various approaches: functionality, properties, construction, production, methods and the socio-technical context (users, use, producer, sales, competition, culture etc.). In this semester, the project assignment 'Product Analyses and Redesign' is carried out in collaboration with companies donating products for analysis including the context of use. A redesign is carried out based on potentials identified in the analysis phase and here the students learn, that redesign also means redesigning the complete network of players involved in the product.

The third semester theme is 'Engineering construction'. This semester the students learn to carry out a complex design based on given specifications. The focus is on mutually coupled design assignments within the domains of mechanics, electronics and software. This includes selecting components and using them according to functional demands within the three domains and ensuring their mutual interaction.

The fourth semester theme is 'Product synthesis' includes a detailed conceptual design based on given specifications i.e. a product with a mechanical-, electronic and software content that further-more builds on knowledge, skills and methods learned in the integrated subjects like electronics and

programmable objects. In this semester the students' skills within the socio-technical subjects is followed up in a course on participatory design.

The fifth semester theme is 'Innovation and sustainability'. The semester focuses on environmentaland resource issues connected to the development, production and disposal of products and systems. Importance is placed on methods to describe, assess and improve environ-mental and resource issues in a life cycle and a product chain perspective. Social and socio-economic aspects of sustainability are covered as well. The project assignment 'Product service systems' includes identification, analysis and assessment of a product and it's system's environmental aspects and resource consumption, including reflections on the planning of design processes.

The last semester in the bachelor programme include the 'Bachelor project'. This semester is the conclusion of the bachelor part of design & innovation. This project is supported by a course in scenarios and concepts which furthermore ask the students to reflect and report on the conclusions of former project assignments.

Projects and coordination

Project oriented work is the continuum of the education. A chain of projects with a progression of challenges in various dimensions constitutes the spine of the syllabus. The basic idea is to combine 'learning by doing' with a structured learning sequence emphasizing elements of practice necessary to obtain specific competences in the three key areas.

Understanding and mastering working with design synthesis requires elements of apprenticeship relations to the professional. The student must experience the professional in action to experience value based assessments and utilize this dialogue in connection with one's own creations. The learning process is thus primarily based on interaction and experience.

All through the thematic semesters, the multidisciplinary approach are taught through project assignments and by giving the students extensive training in the innovative process.

Core to the semesters integrating project assignment is the coordination of courses and topics among the team of design teachers. The coordination may be one of the crucial elements contributing to make the course work and project function as a coherent and appealing program for the students.

Study lines at the masters level

The bachelors program of 3 years is providing one main line of progress and content for almost ³/₄ of the activities leaving the rest for students own interests to pick courses from the modular course program of a large number of technical disciplines as a complement to the design education. In contrast the masters program of 2 years is offering a larger variety of possible study lines each of which offers a certain orientation of the core design activities still providing a further progression in the students learning. The core elements comprise of a set of courses improving the knowledge and skills of the students in the fields of product design, user interfacing, industrial design, materials knowledge and an advanced project assignment demanding rather finished concepts or results from the products, services or systems that the students focus their design competences on. I parallel the students follow technical domain courses in a few fields to reach a deeper understanding of the technologies and methods from these fields. Through this combination the candidates have a combination of a technical engineering specialization and their deep understanding of the field from having worked with design activities reaching the implementation stage.

In the framework of design & innovation four study lines are offered. They all share the common base of the master's but each offers the opportunity for a different focus:

- Prototypes and production
- Eco-design and sustainable transitions
- User involvement and co-design
- Workspace and systems design
- Design and innovation management

Each study line can be combined with a 'global semester' that has focus on 'people-centered' design building intercultural competences and related to local developing issues in either newly industrialized or developing countries.

Combining education and research

The starting point for the development of a new engineering curriculum in design & innovation was based on the work of a group of ten devoted and experienced teachers of engineering design and social science subjects based in the departments of 'Mechanical Engineering' and 'Manufacturing Engineering and Management'. It took more than one year to construct this new curriculum. Though the education was constructed at an already existing and old engineering university, the basic idea was to re-design the complete curriculum including the core engineering and natural science curriculum to create a coherent new education. The students seem to have embraced the new curriculum and the number of students' abandoning the education is very low.

The research program in design & innovation subsequently was developed by basically the same cross disciplinary team but also involving a network of Danish university-based research environments. Through research workshops where people from industry and university researchers and teachers meet and exchange experiences from practice and theory concerning innovation in product development a range of new research problems have been defined.

This has been followed by specific research activities in the field of product-service systems, user involvement in product design, sustainable transitions of products and systems in society, design of equipment for medical treatment and disabled, engineering design practices in industry as well as front end innovation processes and the staging of design activities in companies and public institutions.

HAS THE PROGRAM SUCCEEDED?

After successful operation of the design & innovation educational program since 2002, and having the first students graduating, the team behind the education found a need for having an evaluation being carried out of the program aiming at exploring whether the students through the 5 years ended up with a profile as heterogeneous engineers, e.g. having obtained competences within the fields of 1) reflective technological engineering competences, 2) creative, synthesis oriented competences and 3) innovative, socio-technical competences.

The evaluation was designed comprising of three phases: 1) workshops with graduates, teachers and censors, 2) a telephone survey of graduates and representatives of the graduates' employers and 3) qualitative interviews with censors, teachers, graduates and students. The outcome of the evaluation is reported in [20,21,22]. In this section the outcome of the evaluation and thus the challenging of reforming engineering educations are discussed.

Perspectives identified in an evaluation of the design & innovation education

In the first phase of the evaluation three workshops were facilitated by the evaluators with graduates, teachers and censors affiliated to the design & innovation program. Based on these workshops, it was clear that the education meets its objective of providing the candidates with heterogeneous design competencies as specified within the three fields illustrated in the presentation of the program. Concerning study efficiency and flow the education also demonstrates the importance of providing a coordinated curriculum that motivates the students to follow plans and timelines. With respect to drop out rates and extended study time the education is among the best performers at DTU. But this is still a side effect of the planned curriculum as the principles were foremost introduced to reach the levels of integrated competences in design engineering.

However, the education also faces some challenges in relation to the priorities made in the curriculum construction. Since the education is designed with thematic semesters it provides less room for optional courses than more open, modular programs at DTU where the courses may be placed more freely. Applying a multidisciplinary approach in the education, e.g. teaching the students to shift between using technical, creative and socio-technical competences also raises a challenge in accordance to the graduates own self-understanding (identity) as engineers. The workshops as well as the telephone survey and qualitative interviews revealed that the students and the graduates experienced difficulties in defining their competences precisely when meeting their first potential employers. This was a result of breaking out of the established patterns of engineering disciplines and programs. When having experienced their first jobs and assignments this problem of identity seem to vanish in the comparison with other engineers and professionals in comparing their practical ability to carry out project tasks.

Related to this, it turned out to be a challenge for the graduates to ensure that they would fit into existing job profiles and practices. Phrased as the need for a conventional 'hook' into technical

disciplines and production planning this was another problem relating to the importance of convincing employers of the new type of design engineers. This was in particular mentioned by the censors and the representative from the industry, however, it reflects a complexity, since emphasizing a need for a technical 'hook' might be a left-over from the traditional way of thinking engineering, where engineers had a more conventional science based profile. In practical terms this problem has not shown to be of detrimental importance since the design & innovation engineering graduates have had lower initial unemployment rates than graduates from other programs. Nevertheless, as a consequence, the curriculum has been changed improving the student's skills in bringing their design from a conceptual state into production preparation.

The other aspect of the need for technological competences is related to the way most engineering disciplines are taught. Most courses in technical sciences are focusing on theoretical models and optimization while their use as object of design in more complex constructions is given low priority. This often makes it difficult to combine different technical disciplines even though this would be ideal for a design engineer.

Employment patterns and motivations

To gain an understanding of the graduates' careers, e.g. patterns, workplaces and applied competences, the second phase of the evaluation was a telephone survey of all graduates and selected representatives of employers. Out of a total of 78 graduates, 72 were interviewed, equal to a respond rate of 92%. In addition 14 representatives of employers were interviewed, aiming at exploring the graduates' competences. The representatives of employers were among other issues asked what had motivated their decision of employing a design & innovation engineer. To this question they responded that they were on the look-out for engineers with a specific profile and competences meeting the following requirements.

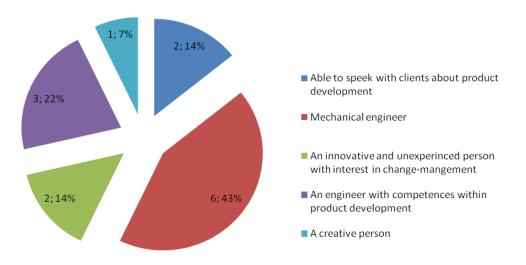


Figure 2. The representatives from industry's motivation for employing D&I engineers.

Important insight into the characteristic of the design & innovation engineers was drawn by the representatives of employers. They emphasized that the graduates have strong competences in relation to generating concepts, working and approaching problem-solving in an open and creative way and yet in a very structured way. They are very user-oriented, while still maintaining focus on the product or the technological system to be developed, as well as the graduates upholds a strong culture for teamwork.

In general the evaluation concludes that the graduated design & innovation engineers succeed in upholding competences making them heterogeneous engineers, which also is illustrated in the different job functions they obtain. All the interviewed graduated design & innovation engineers reflect on their education as having been interesting, challenging, and relevant for their present job function. Further, the representatives of the employers seem satisfied with the education, even though they in some cases requested needs for specific competences, such as more insights into plastic materials etc. Interestingly while the censors' requests more technical competences, the graduated

engineers as well as the students mentioned that the priority of weighing creative and socio-technical competences in line with technical competences is what makes the education interesting and unique compared to the more traditional engineering educations.

Challenges facing educations in design engineering

Even though the design & innovation education at DTU is a success in the perspectives of the actors from industry and institutions employing the graduates as well as seen from the perspectives of DTU emphasizing the coherent and rather efficient curriculum and students outcomes a number of challenges still face the program. First: applying a multidisciplinary approach to engineering educations presents the program at DTU as different to most other engineering programs where design synthesis and socio-technical teaching at best are add-ons to the dominant (core) disciplines in mathematics and technical sciences. Second: most technical disciplines in engineering education have been developed into rather specialized and self-contained fields of teaching emphasizing specialized engineering competences within the field and in many cases not opening for the use in design practices where several heterogeneous technical components have to be integrated. Third: maintaining an integrated program is based on the continued cooperation in the faculty including researchers from very different disciplines which does contrast the research priorities within several of the involved research disciplines emphasize the study of specialized topics instead of synthesis and interdisciplinary cooperation.

Since the early 1990s the science orientation of engineering has often been identified as one the reasons for problems in engineering design to cope with the full complexity of design issues. The attempts during the 1960s to building a rational and science based theory of design failed to address the practical experiences with good design processes and instead created a straightjacket of organizational and methodological advice assuming that design processes could be handled as a problem solving process with definite components, functional requirements and solutions [23]. These models were criticized for not delivering any new results and are seemingly taking their outset in a rather closed problem-solution universe with more or less well known and finite conceptual alternatives. As many even empirically based descriptions of design processes even seem to overlook the phase of conceptual ideation [2] this lack of focus has not been taken up in recent research on design. Contradicting explanations have been given to explain the lack of a proper design theory. Some end up in praising the design process as a completely different type of 'thinking' as in the case of 'design thinking' where the shaping of new designs is rests in the skillful work practice of the designer, that cannot be rationalized into an abstract knowledge process, but it based in the sociomaterial practices of doing designs. In this perspective analytic and synthetic processes exemplify the two extremes of theorized, disembodied knowledge versus the embodied, material and cognitive skillfulness of the design process. This has been coined as a separate and from science and knowledge based training distinguished way of working that in a broader perspective is used to criticize science education and training for lacking the ability of being creative and innovative [23].

The dominant views of design competence seem to be trapped in between three positions neither of which provides a satisfactory answer to the first challenge mentioned. The first position is the mentioned attempt to build a rational, scientific model of the design process which may have some relevance for solving closed problems or optimizing within a finite universe of alternative configurations, but neither reflects the open ended and constructive aspects of designing nor the complexity of interpretations among actor of the problem and solution spaces and how they can be linked together. The second position reflect the open ended a creative and even in its radical form artistic aspects of designing resulting in an individualistic and singular solutions space where the linking between design, use, function and emotions are left to the 'magic' and evading features of the so difficult to describe and creativity that reflects both experience and training, but also an ability to combine and make sense of things that favor impressions for analysis. The third position is the skillfulness and trained capacity of the continued repetition related to the personal building of a repertoire of references and inspirations that typically is core in all training of designers. No doubt that all aspects can be found in the way the Design & Innovation program is organized with its continued project based experiential training process, its focus on open ended problem solving situations and its use of some rational tools and methods as support measures.

More interesting in this context is the role assigned to the constructivist and actor-network theories of socio-material relations and the emphasis on the process of ordering and translations included in the

constant negotiations of how qualities are assigned to the concepts and artifacts taking shape in the design process. It is still an open question how these new theoretical tools – balancing between the analytical and the constructive synthesis activities – have potentials for become a core part of a new design theory, but at the level of practical demonstration the graduates have shown that they command the design processes they are involved in and that they have a level of reflexivity that is superior in the jobs they are given. An important precondition for this is the specifics of the multidisciplinary approach to engineering applied in the design & innovation program at DTU giving equal importance to the social and the technical sciences in the foundational and identity creating first years of study and the specific role assigned to the inter-disciplinary approaches as represented e.g. by actor-network theory.

The second challenge mentioned is the character of the technical disciplines taught in engineering that in quite many cases a giving priority to the specialist training of experts within a given – often quite narrow – field of technical sciences. This model of specialist training may fit in some part of modern specialized industry and research building on a high degree of division of tasks within existing structures of conceptual technical solutions. It does though pose serious problems to engineering design that often work with rather heterogeneous and alternative conceptual solutions to a given design task. Here less emphasis may be given to local optimization as the individual technologies operate as components in assemblages that deliver the functions assigned to the designed products or systems. This demands a different approach to presenting and working with the technologies and the models used to describe these that emphasize their potential as objects for design.

The third challenge asks for a type of cooperation in the engineering faculty that most educational programs have difficulties in maintaining over time. When new programs are created and new institutions build the need for cooperation and the value of coherent curricula is obvious and resources often channeled to satisfy this task. When programs mature and the research carrier motives of the faculty supported by the measures of individual success in academic activities increasingly shadow for the tedious and often complex tasks of maintaining the coordination and continued improvement of the teaching program. Though many engineering universities claim to value curriculum and teaching improvements reality demonstrates that research activities are valued even higher. For this reason greater emphasis should be given to the study of the practice domains in which the graduates work providing educators with a better understanding of the need for coherent curricula and for taking the practical problem identification and problem solving – in case design activities – serious and providing authentic problems for the project assignments in the educational programs.

REFERENCES

- [1] Williams, R. *Retooling: A Historian Confronts Technological Change*. 2003 (MIT Press, Cambridge).
- [2] Vincenti, W.G. *What Engineers Know and How They Know It: Analytical Studies from Aeronautical History*. 1990 (John Hopkins University Press, Baltimore).
- [3] Auyang, S.Y. Engineering: An Endless Frontier. 2004 (Harvard University Press, Cambridge).
- [4] Ihde, D. & Selinger, E. *Chasing Technoscience: Matrix for Materiality*. 2003 (Indiana University Press, Bloomington).
- [5] Cohen, S.S. and Zysman, J. *Manufacturing Matters The Myth of the Post-Industrial Economy*. 1987 (Basic Books, New York).
- [6] Mindell, D. *Between Human and Machine Feedback, Control, and Computing before Cybernetics.* 2002 (John Hopkins University Press, Baltimore).
- [7] Hughes, A.C. and Hughes, T.P. Systems, Experts, and Computers: The Systems Approach in Management and Engineering, World War II and after. 2002 (MIT Press, Cambridge).
- [8] Juhlin, O. and Elam, M. What the New History of Technological Knowledge Knows and How It Knows It. In Juhlin, O. *Prometheus at the Wheel: Representations of Road Transport Informatics*. 1997 (Tema T, Linköping Universitet).
- [9] Lutz, B. and Kammerer, G. *Das Ende des graduierten Ingenieurs?* (The end of the 'craft-based' engineer?). 1975 (Europäische Verlagsanstalt, Frankfurt).
- [10] Wengenroth, U. *Managing Engineering Complexity: A Historical Perspective*. Paper for the Engineering Systems Symposium at MIT, 2004.
- [11] Kjersdam, F. and Enemark, S. The Aalborg Experiment Implementation of Problem Based

Learning. 2002 (Aalborg University Press).

- [12] Beder, S. *The New Engineer: Management and Professional Responsibility in a Changing World.* 1998 (The University of Wollongong).
- [13] Sørensen, K.H. Engineers transformed: From managers of technology to technology consultants, in The Spectre of Participation. 1996 (Scandinavian University Press, Oslo).
- [14] Bucciarelli, L. Designing Engineers. 1996 (MIT Press, Cambridge).
- [15] Downey, G. Are engineers losing control of technology? From 'problem solving' to 'problem definition and solution' in engineering education. *Chemical Engineering Research and Design*, 83, 2005.
- [16] Bijker, Wiebe E. *Of Bicycles, Bakelites and Bulbs Toward a Theory of Sociotechnical Change.* 1995 (MIT Press, Cambridge)
- [17] Andreasen, M.M.; Jørgensen, U.; Clausen, C. et al. design•ing en design dagsorden for Danmarks Tekniske Universitet (design•ing – a design agenda for the Technical University of Denmark), Educational planning document, Technical University of Denmark, 2001.
- [18] Andreasen, M.M.; Jørgensen, U.; Boelskifte, P.; Clausen, C. et al. design•ing indstilling om en uddannelse i design & innovation ved Danmarks Tekniske Universitet (design•ing – proposal for an education in design & innovation at the Technical University of Denmark), Educational planning document, Technical University of Denmark, 2002.
- [19] Boelskifte, P. and Jørgensen, U. Design & innovation Developing a curriculum for future design engineers at the Technical University of Denmark. *Engineering and Product Design Conference*, 15-16 September 2005, Napier University, Edinburgh, 2005.
- [20] Brodersen, S. and Lindegaard, H. Hovedpointer fra workshops med D&I kandidater, D&I undervisere og D&I censorer (Main conclusions from a workshop with D&I graduates, teachers and external examiners). D&I Evaluering, Afrapportering 1. DTU Management, August 2009.
- [21] Brodersen, S. and Lindegaard, H. Hovedpointer fra telefon survey med D&I kandidater og aftagere (Main conclusions from a telephone survey with D&I graduates and their employers). D&I Evaluering, Afrapportering 2. DTU Management, June 2010.
- [22] Brodersen, S. and Lindegaard, H. *Kvalitative interviews med D&I censorer, undervisere, kandidater og studerende* (Qualitative interviews with D&I external examiners, educators, graduates and students). D&I Evaluering, Afrapportering 3. DTU Management, August 2010.
- [23] Cross, N. Designerly Ways of Knowing. 2006 (Springer, London).

Contact: Ulrik Jørgensen Department of Management Engineering Technical University of Denmark Produktionstorvet, Building 424 2800 Lyngby, Denmark uj@man.dtu.dk

Ulrik Jørgensen is professor at the Department of Management Engineering at the Technical University of Denmark. He holds a M.Sc. in Engineering and a PhD in Innovation Economics from the Technical University of Denmark. Drawing on the theories and approaches from science and technology studies he is currently involved in strategic research on user involvement in design and challenges to engineering education. Earlier research has comprised of studies of engineering competences, waste handling, energy technologies, innovation in the health care sector, and the role of experts in foresight and public advice.