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ABSTRACT 
The increasing requirements on technical products represent a growing challenge for the 
manufacturing engineering. This challenge will be met by the development of a new manufacturing 
technology called sheet-bulk metal forming. For the early consideration of the full potential of sheet-
bulk metal forming in a design process, a design engineer has to know the process limitations as soon 
as possible. Hence, the objective has to be to acquire design-relevant knowledge already in the early 
phases of process development and to maintain this knowledge simultaneously to the further 
development of the process. These are the declared aims of the self-learning engineering assistance 
system that will carry out the acquisition and maintenance of knowledge owing to its self-learning 
aspect. In this article, within an evaluation of knowledge acquisition methodologies, data mining was 
identified as a possibility for the realization of the self-learning aptitude. The potential of data mining 
was shown by its application on simulation data to acquire design-relevant knowledge. 
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1 INTRODUCTION 
In recent years, the requirements on technical products in automobile sector increased regarding user-
specific flexibility, functionality, space- or weight-savings and will still increase. This fact represents a 
growing challenge for the manufacturing engineering which will be intensified by simultaneous 
demand for cost-effective and time-efficient production as well as for economization of energy and 
resources. This challenge will be met by the development of a new manufacturing technology called 
sheet-bulk metal forming which will unite the advantages of sheet and bulk metal forming processes to 
go far beyond the limitations of each process [1]. 
Precondition for the fast realization of this new manufacturing technology in industrial practice is that 
design engineers know the process limitations of this technology early to make full use of its potential. 
Today´s state of the art is to acquire design relevant knowledge only after the completed development 
of manufacturing process or technology, respectively. But the objective has to be to realize acquisition 
and maintenance of design-relevant knowledge contemporaneous to the development of the 
manufacturing technology to enable design engineers to integrate new design possibilities resulted 
from the new technology. This objective will be pursued with the development of a self-learning 
engineering assistance system that will support design engineers during a design process regarding 
production-oriented design. For the analysis of a product regarding its manufacturability, 
corresponding knowledge has to be acquired and implemented in the assistance system. Furthermore, 
this knowledge must be maintained to avoid aging of the assistance system. The demand for the 
maintenance of knowledge implicates that knowledge acquisition has to be carried out at each stage of 
further development of sheet-bulk metal forming. In summary, the development of the self-learning 
engineering assistance systems addresses the well-known challenge of knowledge acquisition in the 
field of expert systems. 
This paper reports about the acquisition of design-relevant knowledge within the development of the 
new manufacturing technology sheet-bulk metal forming. It starts with a description of sheet-bulk 
metal forming (chapter 2), and evaluates knowledge acquisition methodologies according to its 
deployment within the development of sheet-bulk metal forming (chapter 3). It continues with the 
application of data mining on simulation data for knowledge acquisition (chapter 4). In this context, 
data mining was carried out following the CRISP-DM process (CRoss Industry Standard Process for 



Data Mining), i.e. from the definition of the data mining goal over the data preparation to the modeling 
and evaluation of data mining methods. Finally, a conclusion and outlook are presented. 

2 SHEET-BULK METAL FORMING 
The manufacturing technology “sheet-bulk metal forming” (SBMF) will be developed within the 
transregional collaborative research centre 73 (TCRC 73), in which three German universities are 
involved. This technology will unite the advantages of sheet and bulk metal forming processes to 
manufacture geometrically complex parts with variants and functional elements from thin sheet metal 
through forming. The objective is to manufacture these high-precision elements with close geometrical 
tolerances in which the geometrical details of the variants are in the range of the sheet thickness. The 
variants to manufacture are carriers and gearings derived from synchronizer rings and seat slide 
adjusters. The manufacturing of such variants out of sheet metals requires the overlapping or the 
sequence of 2- and 3-axis strain and stress states. To realize this, various sheet and bulk metal forming 
processes have to be combined [1]. For the development of SBMF processes, the process 
combinations “deep drawing – upsetting “, “deep drawing – extrusion“ and “cutting – deep drawing” 
will be investigated within TCRC 73. 
In this paper, the process combination “deep drawing – extrusion” will be analyzed to acquire design-
relevant knowledge. This process combination aims at the manufacturing of a part similar to 
synchronizer rings (Figure 1). In a first step of the process development, merely the extrusion of the 
variant “tooth” was investigated by simulations to identify influence factors of the extrusion operation 
regarding the manufacturability of the teeth. Therefore, a reference process was developed forming a 
ring of teeth beginning with a blank. For the investigation, a three-dimensional FE-model was built to 
perform several simulation studies varying parameters like blank thickness, friction factor or tool 
design. As a result of the ensuing sensitivity analysis, knowledge about the manufacturing of the teeth 
could be gained. For example, the mould filling depends on the availability of a flow-restriction as 
well as on the ratio of blank thickness to friction factor. The design of the punch, however, does not 
influence the mould filling [1]. This kind of knowledge can be assigned especially to process 
knowledge, which is very important for the design of an operating procedure. 

 
Figure 1. Demonstrator for the process combination “deep drawing – extrusion” 

3 THE CHALLENGE WITHIN KNOWLEDGE ENGINEERING 
The development and maintenance of knowledge based systems, in literature also called expert or 
assistance systems, is described as knowledge engineering. The bottleneck of this process represents 
the initial phase “knowledge acquisition” [2, 3, 4]. 

3.1 Methodologies of knowledge acquisition 
In literature, the term “knowledge acquisition” is discussed controversially. Some authors equate 
knowledge acquisition merely with knowledge elicitation, whereas other authors regard knowledge 
acquisition as a process consisting of knowledge elicitation, knowledge interpretation or analysis and 
knowledge operationalization. However, all authors are in agreement with the fact that knowledge 
acquisition can be carried out in different ways: directly, indirectly or automatically. The direct 
knowledge acquisition is based on the dialogue between experts and intelligent knowledge acquisition 
tools, whereas the indirect knowledge acquisition is a knowledge engineer driven method and bases on 



the dialogue between a knowledge engineer and an expert. Automatic knowledge acquisition methods 
extract knowledge from documents, instructions, diagrams, data bases and so forth without the 
intervention of experts or knowledge engineers. The methods usually originate from fields like 
artificial intelligence, statistics or machine learning [6, 7]. 

3.2 Challenge: knowledge acquisition 
In the following, the previous introduced knowledge acquisition methodologies will be evaluated on 
the basis of five criterions: 
Identification of knowledge sources 
In general, one challenge represents the identification, i. e. the determination, examination and 
characterization, of knowledge sources. This applies especially for the acquisition of person-bound 
knowledge, because it is not obvious who has what kind of knowledge. Following questions arise: 
Who is consciously or unconsciously competent and who is consciously or unconsciously 
incompetent? The identification of data-based knowledge is comparatively straight forward, because 
there are several methods and techniques for the understanding, (see chapter 4.2), preparation (see 
chapter 4.3) and analyzing of data (see chapter 4.4) [5]. 
Availability of knowledge sources 
A further general problem is the availability of knowledge sources. At first, mainly the availability of 
experts appears as such one because they first of all have to fulfill their daily business. In addition, the 
time window for knowledge acquisition can be reduced by organizational and geographical reasons. 
On the part of automatic knowledge acquisition, however, also the challenge regarding availability of 
knowledge sources can occur because data can be accessible for a limited time, the knowledge 
underlying the data is confidential or the data format is not available in a convenient way [4, 5]. 
Willingness and motivation of experts 
Basic conditions for acquisition of person-bound knowledge represent the willingness and motivation 
of experts regarding transferring and sharing of their knowledge. These conditions can be a problem as 
a result of the missing understanding concerning the necessity of knowledge management, lack of 
assurance concerning their knowledge quality, fear of interchangeability and plagiarism [4, 8, 9]. 
Verbalization and formularization of knowledge 
A further challenge concerning the knowledge acquisition from experts is the characteristic of 
knowledge being either tacit or explicit. Tacit knowledge is bounded by knowledge carriers, 
unconscious, context-specific, hard to formulate, to transfer and consequently to store. In comparison, 
explicit knowledge is easy to formulate, to transfer, to represent in analytical formulas or rules and to 
store in documents, tables or data bases. Owing to the general assumption that the majority of 
knowledge is tacit and merely the minority is explicit, the acquisition of expert knowledge represents a 
great challenge [4, 8, 10]. 
Role of knowledge engineer 
The influence of the knowledge engineer on the acquisition process is revealed by the fact alone that 
he should be replaced by intelligent acquisition tools to solve the communication problem with the 
domain expert. This communication problem can result in interpretation errors and consequently in a 
building of an error-prone knowledge base. Reasons for the communication problem are the missing 
understanding of the problem or application domain, the missing knowledge about the terminology of 
the expert and also the difficulty of knowledge verbalization and formularization. Furthermore, the 
success of the knowledge acquisition depends on the experience and the social skills of the knowledge 
engineer, too. For instance, it is important to know different acquisition techniques to use them target-
oriented. The variation of these techniques influences the result of knowledge acquisition likewise [4, 9]. 

3.3 Knowledge acquisition within TCRC 73 
For the early integration or consideration of the full potential of SBMF in a design process, a design 
engineer has to know its process limitations as soon as possible. For this purpose, the objective has to 
be on the one hand to acquire design-relevant knowledge already in the early phases of process 
development and on the other hand to update or to maintain this knowledge simultaneously to the 
further development of the process. This intention intensifies the great challenge of knowledge 
acquisition owing to the resulting increase of time pressure. As a consequence of this increased time 
pressure the methods of the direct and indirect knowledge acquisition won’t be applied during the 
development of SBMF. The reason for this is that its methods compared to the methods of automatic 
knowledge acquisition can be considered as time-consuming as well as cost-intensive due to the 



necessity of one or more knowledge carriers. Moreover, this time- and cost-factor increases during the 
process of indirect knowledge acquisition due to the need of one or more knowledge engineers. 
Furthermore, these methodologies will not be used within TCRC 73 because of the difficulty 
regarding the verbalization and formularization of knowledge as well as the influence of the 
knowledge engineer on the acquisition result. 
The carrying out of an automatic knowledge acquisition is justified by the fact that the development of 
a new manufacturing technology requires the performing of numerical and experimental series of 
experiments. For this, simulation models and experimental setups will be generated by experts with 
the application of their knowledge, which is composed of theoretical and heuristic knowledge. This 
knowledge appears with regard to SBMF for example in the selection of the 

• type of manufacturing process 
• type of lubrication 
• number of armament 
• type of surface coating or type of surface structures 
• types of semifinished parts 

Therefore, the data emerged from parameter studies results from the knowledge and experience of the 
production engineer and represents his knowledge in an implicit way because the data of each 
individual simulation or experiment contain information like the setup of the simulation model, the 
target product geometry or the results of the performed forming process. The automatic extraction of 
this tacit knowledge from data and the transformation in explicit knowledge can be carried out by data 
mining. Apart from an automatic knowledge acquisition, data analysis via data mining enables the 
maintenance of knowledge. For this, at each further development of SBMF the resulting data has to be 
added to the consisting data stock and afterwards data mining has to be applied to extract new 
knowledge. 

3.4 Knowledge acquisition via data mining 

Introduction to data mining 
Data mining was developed in the 1990s because of the desire to ensure efficient and accurate 
analyses despite rapidly increasing data volumes. Following [11] and [12] data mining corresponds 
with an iterative process for the automatic extraction of novel and valid information and knowledge 
from data stocks, which is potentially useful for decision making and problem solving. Within data 
mining, various methods from fields like artificial intelligence, statistics or machine learning are 
applied. 
In the last two decades several data mining processes like KDD (Knowledge Discovery in Databases) 
[13] or CRISP-DM (CR

business
understanding

data
understanding

data
preparation

modeling

evaluation

deployment

data

oss Industry Standard Process for Data Mining) [14] were developed. In this 
article, a data mining process will be carried out in reference to the CRISP-DM process (see Figure 2). 

 
Figure 2. Phases of the CRISP-DM process according to [14] 



This process model represents a general approach for carrying out data mining projects and includes 
all phases of a project, its tasks and its underlying relationships. The CRISP-DM process is subdivided 
into six phases, in which its sequence isn’t linear and rigid. The iterative character of the CRISP-DM 
process is symbolized by the arrows and the outer ellipse. “Business understanding” represents the 
initial phase and focuses on determining the project objectives and data mining goals. The next two 
phases aim at getting a first insight into data and at the creation of the final dataset from the initial raw 
data, which builds the basis for the development of one or several data mining models during the 
“modeling”-phase. The quality of these models will be assessed in the “evaluation”-phase regarding 
the project objectives. If these objectives are satisfactory solved by one data mining model, then this 
model can be deployed. If none data mining model fulfill the requirement sufficiently, then the 
previous data mining phases have to be reviewed and in the worst case the whole data mining process 
has to be repeated again [14]. 

Data mining in engineering 
Data mining and its underlying methods from artificial intelligence, statistics or machine learning can 
be used for different tasks in engineering. For example, these methods will be applied for fracture 
forecast in cold forming operations [15], for determination of optimal process parameters in cutting 
[16], for grouping of car models regarding its crash behavior [17] or for prediction of marine propeller 
behavior depending on design parameters [18]. A more comprehensive review of different data mining 
applications in manufacturing can be found in [19]. 

4 DATA MINING ON SIMULATION DATA 
For the early consideration of SBMF in a design process, design-relevant knowledge has to be 
acquired simultaneously to the process development of SBMF. This intention can be carried out by 
data mining. Precondition for data mining is the availability of data. This demand will be fulfilled 
within TCRC 73 because the development of operation procedures requires performing of numerical 
and experimental parameter studies and therefore a huge amount of data emerges. 
In this paper, the simulation data of the process combination “deep drawing – extrusion” will be 
analyzed for the acquisition of design-relevant knowledge using RapidMiner as data mining software. 
This data arose by a parameter study on the basis of a three-dimensional FE-model, varying merely the 
geometric parameters of the teeth. For reducing the computation time, just a 10° sector of the 
demonstrator was modeled justified by the rotational symmetry of the demonstrator (Figure 3). 
Theoretically regarding the symmetry condition, the modeling of a half tooth would be sufficient, but 
therefore the possibility concerning the verification of a faultless model would be dropped. A model 
can be recognized as faultless if both teeth are shaped nearly identically and the stress and strain 
values of both teeth are equal to each other. Furthermore, the modeling of the tool design as rigid 
bodies reduced the computation time. The friction conditions in the FE-model were defined 
differently. Between the contact bodies blank and die a friction factor of 0.3 was defined. The 
definition of the friction factor between the contact bodies blank and punch represents a special 
characteristic because the punch was partitioned into two sectors to influence the mould filling and the 
punch force. The sector “punch 1” was assigned with a friction factor of 0.05 for the increase of the 
mould filling, whereas the sector “punch 2” was assigned with a friction factor of 0.3 for the reduction 
of the punch force as well as for the increase of the mould filling. The semifinished part was a circular 
blank with a thickness of 2 mm and with the material characteristics of DC04. 
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Figure 3. Setup of the FE-model 

4.1 Business understanding 
The initial phase “business understanding” (compare Figure 2) focuses on understanding the project 
objectives to convert these into an equivalent data mining problem. In this paper, the business 
objective is to acquire design-relevant knowledge from simulation data. For the definition of the data 
mining goal, it has to be clarified, what is meant by design-relevant knowledge. In the author’s 
opinion, this acquired knowledge should enable the designer to make statements about the 
manufacturability of a product. For instance, possible approaches for the evaluation of the 
manufacturability represent the prediction of the failure behavior of the blank or the prediction of the 
mould filling degree of the teeth. In this paper, the prediction of the total equivalent plastic strain 
(TEPS) will be used to make statements regarding the failure behavior of the workpiece. Because the 
blank was assigned with the material characteristics of DC04, the value of TEPS may not be larger 
than 2.5 to ensure the manufacturability of the teeth. The data mining goal, therefore, is to build data 
mining models to predict the target variable TEPS on the basis of input variables like geometry 
parameters or material characteristics. 

4.2 Data understanding 
The “data understanding”-phase comprises the collection of data and the familiarization with data. The 
data to analyze came from the FE-models and their underlying CAD-models. From CAD-models, the 
geometry data can be derived, and from FE-models, the process data like friction factors, the punch 
travel or the material characteristics can be obtained. The determination of the maximum TEPS was 
carried out by analyzing the simulation results at the punch travel of 1.4 mm. As in Figure 4 depicted, 
the maximum TEPS does not appear in the teeth region (ellipses marked with 1). The region with the 
highest strain, however, will not be considered in the following, as this region will be removed after 
the SBMF process, like in the conventional production of synchronizer rings. The region of interest 
represents the tooth root. As it is shown in Figure 4, both teeth roots possess almost similar gradients 
regarding the TEPS, except the nodes of the zoomed out region. These can be considered as outliers 
because these only occur at one tooth. Therefore, the TEPS´s of these nodes may not be used for the 
maximum TEPS. As a result of the outliers, the identification of the maximum TEPS is not straight 
forward. Thus, a higher number of nodes in the relevant region of the tooth root was always evaluated 
according to the region 2 in Figure 4. The individual TEPS´s of the nodes were summarized and 
afterwards averaged to calculate the maximum TEPS of the FE-model. 



 
Figure 4. Determination of the maximum total equivalent plastic strain 

The familiarization with data includes activities like the determination of the distribution of variables, 
the relation between variables or the completeness of data. This can be carried out by data 
visualization techniques or data reports, for example. To get a quick overview about the characteristics 
of all input variables and target variables, it is convenient to make a meta data view (Table 1). Such a 
table contains information like the data type, the mean value, the standard deviation, or the number of 
missing values of the variables. 

Table 1. Meta data view of the initial raw simulation data 

Name Unit Type Mean Standard deviation Range 
BETA_SZ ° real 55.833 3.128 [52.500 ; 60.000] 
B_SZ_1 mm real 2.500 0.410 [2.000 ; 3.000] 
D_BL mm real 94.000 0.000 [94.000 ; 94.000] 

D_SZ_1 mm integer 88.000 0.000 [88.000 ; 88.000] 
D_SZ_2 mm integer 96.000 0.000 [96.000 ; 96.000] 
FRICT_1 - real 0.300 0.000 [0.300 ; 0.300] 
FRICT_2 - real 0.100 0.000 [0.100 ; 0.100] 

H_DD mm real 10.000 0.000 [10.000 ; 10.000] 
H_SZ_1 mm real 2.2000 0.000 [2.200 ; 2.200] 
H_SZ_2 mm real 3.300 0.000 [3.300 ; 3.300] 
H_SZ_3 mm real 0.300 0.000 [0.300 ; 0.300] 
H_SZ_4 mm real 0.200 0.000 [0.200 ; 0.200] 
L_SZ_1 mm real 2.750 0.251 [2.500 ; 3.000] 

MAT - nominal - - - 
PUN_TR mm integer 1.400 0.000 [1.400 ; 1.400] 
R_D_1 mm real 0.300 0.000 [0.300 ; 0.300] 

R_DD_1 mm integer 2.000 0.000 [2.000 ; 2.000] 
R_DD_2 mm integer 4.000 0.000 [4.000 ; 4.000] 
R_SZ_1 mm integer 6.000 0.000 [6.000 ; 6.000] 
R_SZ_2 mm real 0.600 0.246 [0.300 ; 0.900] 
R_SZ_3 mm real 0.367 0.170 [0.200 ; 0.600] 
R_SZ_4 mm real 0.050 0.000 [0.050 ; 0.050] 
TEMP °C integer 20.000  0.000 [20.000 ; 20.000] 
TEPS - real 2.480 0.262 [1.903 ; 3.196] 

THICK_BL mm integer 2.000 0.000 [2.000 ; 2.000] 
VEL mm/s real 0.500 0.000 [0.500 ; 0.500] 

4.3 Data preparation 
The phase “data preparation” serves to generate a final data set from the initial raw data and consists 
of different strategies and techniques. For the decrease of computation time and for the increase of the 
predictive performance, it is appropriate to identify irrelevant, redundant and noisy variables. For this, 



there are different approaches like wrapper and filter. Filter approaches use general characteristics of 
data like the standard deviation to evaluate and select variables. Filters operate independently of any 
modeling techniques. Contrary to this, wrappers evaluate variables by using accuracy or error 
estimates provided by the applied modeling technique. Within this paper, the reduction of the number 
of input variables was performed by a filter, which removes all input variables with a standard 
deviation equal to zero. Consequently, in the modeling phase just the input variables were considered 
which were varied within the simulation study. Owing to the application of this filter, the number of 
input variables decreased from 24 to 5 (see Table 2). 

Table 2. meta data view of the final data set 

Name Unit Type Mean Standard deviation Range 
BETA_SZ ° real 55.833 3.128 [52.500 ; 60.000] 
B_SZ_1 mm real 2.500 0.410 [2.000 ; 3.000] 
L_SZ_1 mm real 2.750 0.251 [2.500 ; 3.000] 
R_SZ_2 mm real 0.600 0.246 [0.300 ; 0.900] 
R_SZ_3 mm real 0.367  0.170 [0.200 ; 0.600] 

TEPS - real 2.480 0.262 [1.903 ; 3.196] 
 
Further useful techniques for the preparation of data are the detection of anomalies, the cleaning of 
data from missing values and the transformation of data. Some modeling techniques cannot handle 
anomalies or missing values. Therefore, either another modeling technique has to be chosen or the 
data set has to be prepared. In the case of missing values there are two different approaches: Deletion 
of the corresponding data objects or prediction of the missing values via a predictive modeling 
technique. The transformation of data like discretization or binarization of data can be necessary, if 
data mining algorithm will be applied which can handle only particular types of data. For example, 
artificial neural network cannot handle discrete input variables. If the dimensionality reduction had not 
been performed within this data mining project, the value of the attribute “material” would have been 
transformed from nominal to integer. 

4.4 Modeling 
In the “modeling”-phase various modeling techniques are selected and applied. Normally, several 
techniques exist for the same data mining task. The given data mining task corresponds to a regression 
task because TEPS is a continuous target variable. For this, RapidMiner offers different modeling 
techniques like artificial neural networks, k -nearest neighbor, methods of regression analysis, support 
vector machines, rule learners or regression trees. 
Modeling techniques for regression 
Within this paper, following modeling techniques were applied: 
Artificial neural networks: [20] 
Artificial neural networks (ANNs) try to simulate biological neuronal systems. In this article, a 
multilayer ANN was built for the prediction of the maximum TEPS. Such a network comprises an 
input layer, one or more hidden layers and an output layer. Each layer is made up of neurons, in which 
the neurons of one layer are only interconnected via weighted links to the neurons in the next layers. 
The adaption of the ANN to a given data mining task can be carried out by the change of the network 
topology, i. e. by the change of the number of the hidden layers and the neurons as well as by the 
adjustment of the weights. 
k -nearest neighbor: [20] 
The k -nearest neighbor ( k NN) algorithm is an instance-based learning technique, which represents 
each instance as a data point in a p -dimensional space, where p  is the number of attributes. Via 
k NN the target attribute of a new data point will be calculated by the average of the target variable 
values of its k  neighbors. In this context, the nearest neighbor of an instance is determined by a 
distance function like Euclidean distance, Manhattan or city-block metric. 
Regression analysis: [12] 
Regression analyses are methods used to model the relationship between a dependent target variable 
y  and p  independent input variables px . A well-known method is the multiple linear regression 

(LinReg), which represents the previously mentioned relationship as follows: 
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the target variable. For fitting non-linear relationships, a polynomial regression (PolReg) can be used. 
This regression analysis method is a special case of LinReg because of m -order terms: 
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Performance estimation of modeling techniques 
Regression tasks are characterized by the partition of the given dataset into a training and test set. The 
training set is used for building predictive models, whereas the test set is used for its performance 
estimation. For splitting a dataset, different methods exist: 
Holdout method: 
In the holdout method, a given dataset is subdivided into two disjoint sets, the training and test set. The 
partition of the dataset will be carried out by a random sampling in which the usual split is 50-50 or 
two-thirds for training or one-third for testing. To improve the estimation of the model performance, 
the holdout method will be repeated k  times, which is called stratified holdout [21] or random 
subsampling [11, 12, 22]. The resulting estimations will be summarized and averaged. 
k -fold cross-validation: 
The k -fold cross-validation splits the dataset randomly into k  approximately equal disjoint subsets. 
The following learning procedure is executed r -times in which per procedure one subset is used for 
testing and the remainder is used for training. Finally, the resulting k  error estimates are summarized 
and averaged to the total error estimate [11]. According to [12] and [21], the recommended value for 
k  is 10. For a more reliable error estimate, a stratified k -fold cross-validation can be applied to 
reduce the effect of the random partition of the dataset [21, 22]. 
Bootstrap: 
The bootstrap approach bases on random sampling with replacement, i.e. an instance, once chosen, 
can be selected again for the training set. A widely used approach of bootstrapping is 0.632 bootstrap. 
Within this approach, the original dataset, consisting of n  instances, is sampled n  times to get the 
training set with n  data objects. As a result of the replacement, the original dataset contains instances, 
which are not in the training set. These instances will be used for testing. The probability to select an 
instance each time is n1 , whereas the probability to not select this each time is n11− . For a 

sufficiently large data set, the test set will comprise ( )nn11100 −⋅ = 36.8 % of instances and the 
training set will be 63.2 % of them [11, 12, 22]. The 0.632 bootstrap estimate is according to [16] 
defined as 

traintest eee ⋅+⋅= 368.0632.0  (4) 

where teste  is the error estimate of the test set and traine  is the resubstitution error on the instances in 
the training set. 
According to [21], for a small dataset the standard estimation technique is the stratified k -fold cross-
validation. This was also confirmed from [22] by the study of cross-validation and bootstrap for 
accuracy estimation and model selection. Therefore, within this paper a 10 times 10-fold cross-
validation was used for the performance estimation of the various modeling techniques. 
Performance measures for regression techniques 
For the assessment of regression models, a couple of performance measures can be used. The 
measures applied in this paper and their underlying formulas are depicted in Table 3. 



Table 3. Performance measures for regression techniques [21] 

Performance measure Formula 
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The characteristic of mean-squared error compared to the mean absolute error is that this tends to 
exaggerate the effect of outliers, whereas the mean absolute error does not do this. In some cases, the 
assessment via preceding measures is not strong enough, thus a relative measure like the relative 
absolute error has to be taken into account. For the estimate of the statistical correlation between the 
real target variable iy  and the predicted target variable '

iy , the correlation coefficient can be applied. 
This coefficient ranges from “+1” through “0” to “-1”. A coefficient value of “+1” means a perfect 
correlation, whereas a coefficient value of “0” means no correlation. A perfect negative correlation is 
characterized by a coefficient value of “-1”. 
Assessment of applied modeling techniques 
During the modeling process, RapidMiner offers a high number of setting possibilities for each 
modeling technique. Within this paper, the default settings of RapidMiner were used for each 
technique. For instance, an ANN possesses one hidden layer and will be trained by the 
backpropagation algorithm. The number of neurons in the hidden layer depends on the number of 
input and output variables and will be calculated by following formula: 

number of hidden neurons=(number of input variables + number of output variables)/2+1 (5) 

Therefore, the number of hidden neurons is 4. 
The result of the different regression techniques on simulation data is shown in Table 4. LinReg is the 
best according to all 4 metrics because it has the smallest value for each error measure and the largest 
correlation coefficient. The performance of 3NN and ANN is open to dispute because 3NN is better 
than ANN according to error measures, whereas 3NN is worse than ANN according to the correlation 
coefficient. PolReg represents the worst modeling technique because compared to the other modeling 
techniques shows larger error measures and a smaller correlation coefficient. 

Table 4. Performance measures or applied modeling techniques 

Performance measure 3NN ANN LinReg PolReg 
Mean-squared error 0.035 0.041 0.024 0.110 
Mean absolute error 0.152 0.167 0.127 0.256 

Relative absolute error 6.22 % 6.99 % 5.22 % 10.53 % 
Correlation coefficient 0.686 0.725 0.792 0.229 

4.5 Evaluation 
The predictive models, created in the previous step, have to be evaluated according to the business 
objectives. This can be done, by applying the created models on new simulation data and by 
comparison of the real and predicted TEPS. Within this paper, the attributes of 5 new instances are 
analyzed. In Figure 5, the corresponding prediction results of each data mining model are compared 



with the real TEPS. Eye-catching is that partially the predicted TEPSs vary strongly compared to the 
real TEPSs. This is particularly true for the predicted values of PolReg. Furthermore, the bar chart in 
Figure 5 indicates, that no applied model is capable to predict the TEPSs best and that the prediction 
quality from test data to test data varies differently strong. One reason for this is the determination of 
the maximum TEPS in the FE-models because always an averaged TEPS was taken as the maximum 
TEPS. Hereby, a slight error has crept in the value of maximum TEPS, which can differ between the 
individual simulation models. 
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Figure 5. Comparison of the real and predicted TEPS 

To increase the prediction quality of the individual models, the previous steps of the data mining 
process have to be reviewed and some optimization in the different phases have to be carried out. 
Especially, the “data preparation”- and the “modeling”-phase are predestined for this. In the “data 
preparation”-phase, for example, another filter or wrapper method for the selection of input variables 
can be more effective. Furthermore, the creation of a new set of input variables from the original raw 
data can improve the prediction quality because this new set can capture the important information 
much more effectively. Regarding the “modeling”-phase, other modeling techniques like regression 
trees or support vector machines can be applied, the setting possibilities of the modeling techniques 
can be optimized by evolutionary algorithm or the modeling techniques can be combined. Within this 
article, no optimization loops were carried out. 

4.6 Deployment 
In general, the creation of a data mining model is not the end of a data mining project. The created 
model has to be provided for an user in a convenient way, for example by a report or by the integration 
of the data mining model in a software program. Regarding the self-learning engineering assistance 
system, the best model has to be implemented in this system. For the provision of actual knowledge 
about the process limitations of SBMF, the data mining process has to be repeated at each further 
development of the manufacturing technology and the new data mining model has to be implemented. 

5. CONCLUSSION AND OUTLOOK 
This research was concerned with the knowledge acquisition during the development of a new 
manufacturing technology, called sheet-bulk metal forming. Outgoing from a description of the 
methodologies of knowledge acquisition, these methodologies were evaluated with regard to its 
deployment during the development of a manufacturing technology to acquire design-relevant 
knowledge. Result of this evaluation was that in the author´s opinion an automatic knowledge 
acquisition via data mining is most suitable for doing this. The potential of data mining was shown by 
its applying on simulation data to predict the total equivalent plastic strain on the basis of geometry 
parameters. Starting with the definition of the data mining goal over the data preparation to the 
modeling and evaluation of data mining models, the entire data mining process according to the 
CRISP-DM process was described and carried out. The data mining models, built during this process, 
based on artificial neural network, k -nearest neighbor, multiple linear regression and polynomial 
regression. During the “evaluation”-phase, these models were applied on new data to compare the real 
and the predicted total equivalent plastic strain. In this context, it was found out, that partially the 
prediction accuracy varied strongly and that no model was capable to predict the target variable best. 



A reason for this was the error-prone determination of the maximum total equivalent plastic strain in 
the FE-models because averaged values were taken as maximum values to minimize the effect of 
outliers in the FE-model. 
Within the performed data mining process, no optimization loops were carried out to improve the 
prediction quality of each data mining model. Future work has to be the development of a specific data 
mining process model for sheet-bulk metal forming. In this context, the both phases “data preparation” 
and “modeling” have to be investigated carefully to guarantee the modeling as well as the selection of 
the best prediction model. Furthermore, this process development has to deal with the question, in 
which way the acquired knowledge should be represented to implement this in the self-learning 
engineering assistance system. 
In summary, data mining represents a promising approach to face the well-known bottleneck 
“knowledge acquisition” in the field of expert systems. On the part of engineering design, the 
employment of data mining in a design process enables the consideration of new manufacturing 
technologies already in early stages of its development. Precondition for this, however, is the 
availability of data which contain information like the setup of the simulation model, the target 
product geometry or the result of the performed forming process.  
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