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ABSTRACT 
The advent of computer-based tools in design has meant ever larger sets of parameters can be taken 
into consideration. It also means other factors associated with environmental issues can be considered 
and increasingly there are legislative requirements to do so. This means increasing demands are placed 
on designers to create high quality, innovative, sustainable solutions to satisfy many stakeholders. 
Design by nature is a complex interdisciplinary practice. Managing complexities requires the support 
of specifically created tools and methods to handle a large number of design parameters. This is 
particularly true of the built environment where such parameters include the spread of buildings, 
energy consumption, handling of waste, management of water and transport needs. The paper 
discusses a methodology that seeks to support the decision making process and design optimization for 
complex designs, demonstrating an approach for dealing with integrated assessments and optimal 
design choices. It is based upon automatically studying relations between design parameters so that 
interdependencies can be obtained, related parameters can be clustered and sensitivities established. 
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1 INTRODUCTION 
In the current climate, the issues surrounding sustainable design are those which many disciplines are 
responding to with increasing vigor. Sustainable design is complex. It demands a holistic approach and 
necessitates decision making and strategy integration at a very early stage of the design process. It also 
demands compliance with details at a micro level. An abstract approach cannot be undertaken 
especially in the circumstances with data that is inherently highly contextual and highly integrated. 
The design process becomes reliant on the explicit contribution of data provided by designers with 
specialist expertise which is fully comprehensive in terms of data aggregation. Increasingly, the 
demand on detailed data is becoming more evident as part of the earlier stages within the design 
process. 
The last decade has seen an increase in design tools, supporting methodologies and frameworks for 
sustainable design that are used as part of a business need for companies to be environmentally 
responsible. While there are guidelines for assessment methods and policy development, there is little 
readily available instruction on managing the actual complexities and sheer volume of detail at a 
complex level. An example, particularly apt, can be found within the built environment sector where 
current practice does not always have easy access to appropriately integrated analytical tools to inform 
sustainable decision making for projects at all scales [1].  
Existing tools, both qualitative and quantitative, are in many cases dependent upon the knowledge 
base of the user. For this sector, but also design in general, there is often an emphasis on tools that are 
more quantitative in order to support design decisions and achieve measurable design targets. Within a 
multidisciplinary network, the stakeholders other than the clients themselves include the specialists 
that provide and formulate the data within the design process.  

1.1 Sustainable Design for the Built Environment 
For the built environment, the contribution to sustainable development has a large impact as buildings, 
through their operational greenhouse gas emissions, account for one third of the energy demand in 
Europe [2]. In fact, there is increasing effort to research sustainable development methods and push 
the boundaries of science and engineering applications in order to drastically reduce energy 
consumption and greenhouse gas emissions in general. 



Professionals within the planning and built environment sector are constantly required by the defining 
nature of sustainability to consider and satisfy the demands of a wide range of stakeholders. Design 
within this sector requires the expertise of many specialist disciplines and it has been proposed as 
being ‘the most multidisciplinary practice in all of the design professions’ [3]. Within the built 
environment, the issues of sustainable design compound the complexities within the discipline of 
masterplanning. 

1.2 Built Environment Masterplanning 
Masterplanning in a non-statutory sense is the process which can be interpreted as the entire program 
of activities within a particular project. Such activities include integrated service provisions ranging 
from the preparation, conceptual design and detailed design through to the construction and use of a 
built environment.  
Masterplanning and the development of masterplans, are heavily reliant upon the expertise of 
designers and the technical specialists from various disciplines who may use a combination of tools 
and methods to support their own data capture for different design scenarios.  
Integrated assessments are used to actively monitor and evaluate the interactions and integration of 
multidisciplinary data capture. They not only give an instantaneous measure of how sustainable a 
scenario may be, they also form part of a natural optimization method through iterative design and 
analysis. In essence, each iteration increases the designer’s incremental knowledge of the design 
problem and contributes towards an eventual optimized design proposal. 
A key stage in any design optimization activity is to understand the influencing factors that may have 
varying effects, large or small, on a design. Such factors, which may be considered as design 
variables, have different levels of sensitivity that contribute to the overall design. Examining the 
sensitivity of design variables is considered as an important activity in any optimization process and 
has its place in good design practice. Sensitivity analysis of such variables is considered an important 
activity in such design and has therefore formed a key part of the research reported here. 
Section 2 discusses integrated resource management (IRM), an integrated assessment tool and 
approach increasingly used in current masterplanning activity. Section 3 provides a design strategy 
created on the foundations of IRM methodology. This involves the extraction and sensitivity analysis 
of design variables as key process activities. Section 4 gives an industry case study as an example of 
the applied methodology and the last section provides an evaluation and concluding remarks. 

2 INTEGRATED RESOURCE MANAGEMENT  
Integrated resource management (IRM) is an emerging design support tool that has the capability to 
support design, planning and decision making on a complex level such as urban masterplanning which 
runs alongside sustainability appraisal and assessment methods [4]. IRM itself has its roots and main 
associations within the management of natural resources such as water. 

2.1 Masterplanning Design and Assessment Frameworks for IRM 
Within masterplanning, sustainability assessment frameworks are created and increasingly legislated 
in order to support effective sustainable design. These design and assessment frameworks often make 
use of metrics or performance indicators in order to assess, compare and guide improvement of design 
proposals and design solutions [5]. Since masterplanning is a multidisciplinary activity, many 
disciplines will contribute their own data to the metrics and performance indicators that are developed 
within such frameworks. These are also often considered as a fundamental preceding activity in the 
development of IRM tools. 
The key motivation for an IRM tool is to aggregate information from the different technical design 
streams into one common data model for easier accessibility and assessment. As a standalone tool, this 
then enables the different disciplines to produce an augmented but more importantly an integrated set 
of metrics for assessing masterplans for a built environment. For illustration, an assessment framework 
and accompanying IRM model for the masterplan of an urban development may consider, contain and 
represent data obtained from several disciplines. These may include those that specialize in carbon and 
environmental footprinting, energy strategists, water management, the handling of waste, 
transportation requirements, materials used in construction, the social mix of communities, and the 
quantity and mix of landuse. 



Owing to the nature of masterplanning, there is a constant challenge between the different disciplines 
involved to integrate their individual design strategies. Designers and planners must consistently 
acknowledge and resolve the issues or conflicts that occur when accounting for complex 
interrelationships between design parameters of different disciplines and resource streams. In such a 
multidisciplinary activity this has previously been difficult to do. Such complex and increasingly 
numerous interrelations of design inputs often lack transparency and there often exists a complex 
cascade of data effects, thus pointing to the need for better data management and modeling tools [1, 6]. 

2.2 IRM Models 
An IRM model developed by engineering and design consultancy firm Arup, as a quantitative urban 
metabolism tool for use in eco-city masterplanning, is considered and adapted for study. The model 
and tool itself, allows neighborhood, city or regional plans and policies to be developed and prioritized 
in the context of the relevant integrated resource streams [1]. Figure 1 shows a generic example of 
some common inputs and outputs, and some of the technical disciplines that provide captured data 
along with examples of graphical outputs. Key data and metrics used within any typical IRM model 
forms a mass of design input variables which can be interpreted via many different outputs. Any 
specific outputs may be interpreted as a key performance indicator (KPI) in which a KPI’s value can 
be treated as a design parameter and therefore forms one or part of the overall design objectives.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An Overview of the IRM Data Flows within a Model [1] 

 
In general, many design activities and created models evaluate and provide the necessary integrated 
assessments for design scenarios and strategies. These evaluations are based on the declared objectives 
and parameters which are interpreted, in many cases, through a series of calculations using both 
captured data and databases of information. A large number of associated variables (in the order of 
thousands) are handled within such a process. 
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IRM models are in commercial use due to their capabilities to explore synergies, feedback loops and 
trade-offs for different design proposals. Since complexities exist within the relationships of the many 
design variables, there also exists a need to efficiently manage the large volume of data in order to 
produce optimum strategies and scenarios for masterplan options. This can be done using extraction of 
model data and sensitivity analysis which forms the foundation activities of the created methodology 
discussed in the next section. 

3 EXTRACTION AND ANALYSIS METHODOLOGY FOR DESIGN SUPPORT 
A methodology to support the use of IRM models and the decision making process for masterplanning 
built environments is now described. It is intended that this methodology exist alongside current 
supporting models and has the capability to become an integral part of sustainability assessments and 
other associated appraisals.  
Within this, the extraction and analysis methodology (EAM) has been created with the aspiration of 
enabling designers or, more specifically in this paper, the planners within the built environment to 
better understand and manage the complexity within their assessment models. It also enables a more 
efficient and focused approach to design and optimization. The methodology and the defining 
activities are summarized in Figure 2 and explored in the following sections. 
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Figure 2. Extraction and Analysis Methodology (EAM) Overview 

3.1 ‘Obtain’ and ‘Define’ 
In many disciplines, some form of integrated assessment model is created in order to evaluate 
particular aspects for a design or part thereof. These may be potential solutions, different cases or 
scenarios and initial conditions or design boundaries. Such models are then used as part of solution 
search and discovery and design optimization. This activity of integrated assessment has become the 
foundation of the methodology. IRM models are an example of an integrated assessment tool created 
to assess and develop masterplan strategies and scenarios for implementation. Such a model holds a 
large volume of highly integrated and complex data.  
Obtaining an assessment model, necessary data and the key design objectives falls under the activities 
of ‘obtain’ and ‘define’. In the early stages of the methodology, it is important to explicitly confirm 
either the optimization objectives and/or the output KPIs of interest in order to correctly focus the 
activities within the latter stages of the process. In fact, the majority of which, are commonly defined 
and described within the accompanying design and assessment framework generally laid out in the 
early stages of design effort. 



In the case of the research reported here, a complete assessment model was obtained and adapted as 
part of an industry case study. However, it is conceivable that an assessment model may be created as 
opposed to obtained. The stages of ‘extract’ and ‘analyze’ which are discussed further in the following 
sections contribute to the ‘optimize’ activity which allows the ‘facilitator’ of EAM to focus their 
design effort or optimization with confidence. 

3.2 ‘Extract’  
The aim of extraction within the methodology is to disseminate understanding of specific aspects of an 
assessment model relevant to a specific optimization objective, output KPI or general area of interest. 
At the same time, this enables data handling at a more manageable level. From the assessment model, 
the output KPI then has its formula extracted, i.e. the path of its calculation. The extraction tool 
evaluates the interaction of every variable contributing to the output being investigated. The 
connections between all variables can then be displayed graphically as a network diagram using a 
custom viewer, developed for the GraphML format, in many different layout forms which each has its 
own benefit depending on what is required. Using the custom viewer allows insight into the 
complexity in terms of the sheer volume of variables, their context, and the detail of their 
interconnections.  
The tool developed for the extraction activity not only provides an interactive and instantaneous means 
for visually investigating the scope of interconnections between variables across boundaries of 
different disciplines, there is also a series of metrics that are calculated. These metrics have been built 
into the extraction tool in order to further contribute to the advantages of design illumination and focus 
of design effort discussed further in Section 3.3. The extraction metrics are listed below. 
 
• Variable count and distribution – metrics that detail the total variables contributing to the KPI 

under investigation and the distribution of variables with respect to the disciplines of their origin. 
It also details the variables that are most frequently used in any calculation paths. 

• Independent variable count and distribution – metrics that detail the total independent 
variables and the distribution of these with respect to the disciplines of their origin. Such 
variables are explicitly not obtained from calculations within the assessment model itself and are 
strictly inputs only. The most frequently used independent variables are also reported. 

• Reference count and distribution – metrics that detail the total connections made between 
variables and the average number of references made with respect to the disciplines of their 
origin within the assessment model. 

 
The counts and distributions for variables, independent variables and references provide insight into 
the complexity of the assessment model and the distribution of data. This is not only with respect to 
the KPI in question but also to the disciplines involved. For example, it is possible to look at the 
distribution and origin of variables that extend from the mix of landuse and how they might interact 
and effect water management, handling waste and energy strategy solutions.  
In addition to these evaluated metrics, the connections between different disciplines are examined and 
detailed through a summary matrix which provides insights into interdisciplinary influences and how 
they interact. Three different summaries can be provided. 
 
• A direct reference matrix – this details the references made between each variable from one 

discipline and all other relevant disciplines. This demonstrates the disciplines that are connected 
and the frequency of such connections. 

• An independent direct reference matrix – this details the references only made between each 
independent variable from one discipline and all other relevant disciplines. This demonstrates the 
disciplines that are connected and the frequency for independent variables only. 

• An indirect reference matrix – this details the indirect references made between each variable 
from one discipline and all other relevant disciplines. This demonstrates the extent of variable 
interaction, potential locations for effects of changes and the complexity within the entire model. 

 
The next stage of the methodology uses a sensitivity analysis tool. Although the extraction and the 
metrics provide key insights and valuable information to widen the knowledge base of the planners, 
the sensitivity analysis requires only information based on the independent variables. 



3.3 ‘Analyze’ 
Sensitivity analysis is an activity employed in numerous mathematical and scientific fields and has 
significant benefits in interpreting and managing large and complex data networks. For the built 
environment, sensitivity analysis can reduce the corresponding volume of data and design effort for 
‘robust assessments of impact’ [7]. 
The primary function of such an analysis is to determine how a model’s specific output responds to 
changes to input variables. It is therefore possible to determine which variables hold more dominance 
when interpreted as design parameters and ultimately their contribution to one or more design 
objectives. Carried out as a series of experimental runs, variables are altered under specific conditions. 
The design of such sets of experimental runs relates to the area of Design of Experiments (DoE) [8]. 
There exist numerous types of experimental design which vary in efficiency and the insight provided 
when investigating the sensitivity of a model. These can be grouped under two main approaches. In 
the first instance, single variance analysis involves the variation of an individual variable for 
evaluation against a single output. In the second instance, multiple variance analysis involves the 
variations of several variables for evaluation against one or more outputs. This paper deals with 
multiple variance analysis. 
Sensitivity analysis itself carries a certain amount of subjective influence dependent on the chosen 
methodology applied and the explicit data values specified to populate a model. Within complex 
models such as the IRM, boundaries and limitations exist which are often only tacitly understood. 
These must be acknowledged and interpreted for sensitivity analysis in terms of upper and lower limits 
of variation that can be described as confidence intervals [9]. 
Regardless of the design of experiment, sensitivity analysis provides scope for design space 
exploration and scenario or solution refinement contributing to good general design methodology. 
There are four key advantages to carrying out a sensitivity analysis. 
 
• Designer illumination – sensitivity analysis has the ability to show both variable dominance and 

interaction. This indicates which outputs are most sensitive and the variables that affect this 
change. Continuous analyses on design iterations also increase the knowledge of overall 
responsiveness of outputs to the input variables. 

• Reducing the problem space – in assessing which variables have more or less dominance, it is 
possible to narrow the scope of the problem space. Certain assumptions may be tested and this 
may regard variables as being entirely ineffective or effective within a model. It can also 
demonstrate potential conflicts between variables and outputs. 

• Focusing design effort – the results of the sensitivity analysis provide the designer with 
increased knowledge of the potential design solution space and contributing factors. Hence, it 
allows the designer to focus efforts on specific areas of relevant interest and the variables that 
have the biggest scope for effect. 

• Design optimization – sensitivity analysis contributes to an optimization process for design in 
general and also provides scope for multi-objective optimization. It is possible to look at specific 
variable effects on not one but many aspects of specific design objectives simultaneously. This 
increases knowledge not only of variable behaviour but also of outputs within the system. 

 
Due care must be taken when carrying out a sensitivity analysis especially when there exist 
interactions between a large number of variables. These interactions are not always immediately 
obvious when considering the inputs and outputs that are part of an applied sensitivity analysis. For 
example, consider the space occupied by a certain shape with the basic input variables of height, width 
and depth. The output of volume is sensitive to these variables individually but in reality the output is 
far more sensitive to their interactions, which are some multiplication of the three variables together. 
When considering a large number of variables, there is an explosion in the number of interactions to 
consider which means that carrying out a full sensitivity analysis may be prohibitively time consuming 
and computationally expensive. This is especially the case with an IRM model that contains thousands 
of variables alongside several tens of output KPIs. Ideally, each combination of design variables, 
along with every possible interaction, should be tested against the relevant design objective. This 
process is an example of experimental design known as a factorial design. There exist many 
techniques which carry out sensitivity analysis and handle the complexities that occur in factorial 
design.  



The computational cost of analysing many more than ten variables, as with IRM, means such analysis 
begins to become increasingly intractable. For this reason, more efficient designs have been developed 
such as PB designs [10]. First reported by Plackett and Burman, PB designs are among the 
computationally least expensive but lack insight into the interactions between variables. The method 
has linearity in the number of experimental runs compared to the number of variables, this makes a PB 
design relatively inexpensive in terms of the computational effort [10,11]. The main usage of PB 
design is when the number of variables under consideration or the duration of each experiment (i.e. the 
number of analysis runs) means that the primary consideration in design choice is computational 
efficiency. This is the case and reason why PB design has been applied alongside the IRM model in 
the research reported here as a large number of variables are being considered and managed.  
The extraction tool actually has the capability to run without any real data since it simply extracts the 
relationships and/or calculations established in the model for processing input data. However, the 
sensitivity analysis tool developed from PB design techniques explicitly requires an integrated 
assessment model with real data inputs. During the analysis, the tool is constantly reading and writing 
values into the assessment model in order to test for the sensitivity of the variables. The independent 
variable count and distribution metrics directly prescribe the input variables for analysis. There are 
three prerequisites required for setting up each of the variables investigated. 
 
• An interpreted description for each variable so that it is fully comprehensive with respect to the 

project as certain variables may exist only as a series of shorthand expressions. 
• A specified default value that is relevant and realistic. This value may be zero, estimated, or an 

initial value depending on the purpose of the sensitivity analysis and the user experience. 
• A specified confidence interval bounding each variable with a high or low value. This may be 

expressed either as a percentage of the specified default value or numerically. 
 
The interpreted description and specified default value is in most cases, directly obtained from the 
assessment model. Due care must be taken when bounding each variable with its confidence interval 
as the sensitivity analysis is most effective and yields the best results when its variables can be 
investigated over their widest possible range. Setting the interval may require knowledge and 
experience specific to a technical stream or discipline. It also involves a certain level of intuition and 
tacit knowledge in order to set the correct realistic context for the sensitivity analysis. 
The result of the sensitivity analysis is a list of variables tested and ordered according to which the 
output (KPI) is most sensitive to changes in. The absolute values in this list are numeric and 
normalised within the tool for interpretation and then rated on a scale from zero to one-hundred. In the 
sensitivity tool itself, a variable that has high dominance has a value of one-hundred where as a 
variable with zero dominance has a value of zero. 
When examining the results of the sensitivity analysis, the general shape of the list indicates whether 
certain variables have dominance on the output under investigation. There may be variables that have 
substantial dominance individually or as a group of variables. It is important to note that beyond a 
certain point in the list, all variables have similar sensitivity values. At this occurrence, it is not 
sensible to interpret the figures since their effects are not significant enough to be able to differentiate 
them from potential aliasing effects. 
Following the sensitivity analysis, the designer gains valuable insight into the most dominant variables 
within a design set and/or scenario, the user of the tools and overall methodology can take the results 
in order to demonstrate those variables that have the most dominance in the overall design solution so 
that design iterations may be focused on varying those that are most influential. It also sets the scope 
for awareness of design constraints and design compromise since variables that may be more dominant 
to one variable may have less influence on another when considering a different output KPI. 

3.3 ‘Optimize’ 
Over the course of a design process, the output KPIs are effectively used as optimization goals within 
the design and planning process. Where an assessment model such as IRM is in use, it is possible to 
define an optimization problem in such a way that inputs from many different disciplines may be 
varied so as to optimize the output KPIs calculated by the assessment model. Using this approach, 
KPIs established in the initial stages of the process may be interpreted as design constraints [12] and 
general optimization techniques such as direct search and gradient methods [13] may be applied. 



Design improvement and optimization in masterplanning within the built environment sector is 
essentially a process that is often heavily reliant upon designer intuition as precedent-based design [5]. 
Whilst different scenarios are set up with changes in variables, it is the result of each iteration that 
provides illumination for the design decisions made in order to reach potential design solutions so that 
undesirable designs or scenarios are slowly funnelled out.  
The extraction and analysis methodology has the capability to support a wide range of decision 
support tools and provides the initial setup for optimization. The ‘optimize’ activity is used to 
automatically adjust the relevant variables for a design solution.  

4 INDUSTRY CASE STUDY  
Using the created extraction and analysis methodology (EAM), the tools and techniques were applied 
to a case study which considers an eco-city masterplanning development for the scenario of a highly 
populated urban area of 7,500,000 square meters. An IRM model was developed for the study which 
modeled a series of KPIs and provided an integrated assessment of a design scenario based on inputs 
from several technical disciplines. As a performance indicator, the KPI representing carbon emissions 
was selected as that of interest in this study. The results are presented in the following tables. 

Table 1. Extraction metrics 

Metric Details 
 / Description Count 

Percentage Distribution of Metric Data (%) 
Most frequently 

used variable  landuse transport water energy other 

Variable count 
/ distribution 2357 2 30 16 40 12 1. energy demand 

2. water demand 
Independent count 
/ distribution 1117 2 25 17 41 15 1. energy demand 

2. residential land 
Reference count 
/ distribution 3404 3 8 5 17 N /A N /A 

 
Table 1 shows the results of the extraction on the variables within the case study model. These 
represent a selection of the results for four key disciplines of landuse mix, transportation, water 
management, and energy consumption. All other disciplines are grouped into the last section for 
percentage distributions of the variables.  

Table 2. Reference Matrix of Direct Variable References 

Percentage 
Distribution of 

Direct 
References (%) 

 
(3404) 

from\to landuse transport energy water 
landuse 0.5 0 2 0.4 
transport 0 29 2 0 
energy 0 0 37 0 
water 0 0 0.1 16 

Table 3. Reference Matrix of Independent Direct Variable References 

Percentage 
Distribution of 
Independent 

References (%) 
 

( 1516 ) 

from\to landuse transport energy water 
landuse 8 0 1 4 
transport 0 24 2 0 
energy 0 0 25 0 
water 0 0 0 12 

Table 4. Reference Matrix of Indirect Variable References 

Percentage 
Distribution of 

Indirect 
References (%) 

 
( 41,068,458 ) 

from\to landuse transport energy water 
landuse < 0.01 0 1 < 0.01 
transport 0 < 0.01 0.4 0 
energy 0 0 28 0 
water 0 0 10 < 0.01 



Table 2 demonstrates the percentage distribution of the total number of references made from one 
discipline to another directly, whilst Table 3 demonstrates the same distribution for independent 
variables. Table 4 demonstrates the distribution of the total number of references made from one 
discipline to another indirectly. The total number of references is listed in the left hand column of each 
reference matrix and the same disciplines are reported as in Table 1. 
The results from the extraction indicate that energy as a discipline contributes the largest number of 
variables towards the KPI of carbon emissions. The ‘energy demand’ variable from this discipline is 
also most referred to within the assessment model as well as being the most frequently used in 
calculating an assessment for total carbon emissions. The frequency of the ‘water demand’ variable in 
total variables and ‘residential land’ variable in total independent variables also demonstrates that 
these are particularly involved in calculations for carbon emissions. In addition, demonstrating the 
total number of references may be considered as a direct correlation to the complexity that is handled 
within each discipline for the specific output KPI of carbon emissions. It also demonstrates the 
capability of the IRM model to efficiently manage a large number of interlinked and complex 
variables in order to support design decision making. 
From the generated extraction metrics, the list of independent variables was carried forward for use 
with the sensitivity analysis tool. Alongside the distribution of variables and the most frequently used  
variable, the sensitivity analysis provided a perspective on the variables that hold the most dominance. 
Table 5 provides an indication for the percentage of variables that have a very high, moderate and low 
dominance with respect to the disciplines previously detailed. These results then provided a design 
focus in which those variables that demonstrated a high dominance were examined more closely in an 
effort to optimize the KPI for carbon emissions and further understand their influence. 

Table 5. Sensitivity Analysis Distribution of Dominance 

Technical Discipline 
Distribution of Variable Dominance (%) 

High Moderate Low 
landuse 17 41 42 
transport 2 68 30 
energy 12 62 26 
water 4 81 15 

4.1 Translational Applications 
The approach presented is within the scope of the built environment for architecture, engineering and 
construction industry but the tools and methods may be applied in general design activity and 
transferable to different design themes. Overall, the aim of the extraction and analysis methodology is 
to gain an understanding of design variables, the parameters, and their relationships to specified 
objectives. This understanding then seeks to guide the designer to an optimized scenario in which 
decision support is made. Since bespoke assessment models can be easily created for the variables of 
any product and/or system design and, the other tools used in the methodology are established, it is 
conceivable that translational application exists. 

5 CONCLUDING REMARKS  
The tools developed within the methodology of extraction and analysis (EAM) provide a set of metrics 
for an approach that commercially uses IRM as an integrated assessment tool complemented by an 
assessment framework. These metrics clearly demonstrate the complexity held within such IRM 
models but also provide insight into the interdisciplinary nature of the design variables demonstrating 
the extent of interacting disciplines. This insight allows optimization and indeed general design 
solutions of certain objectives to become more manageable. Design in the built environment involves 
the demand, on designers and planners, to consider an ever increasing and large number of design 
variables that must satisfy the many design objectives and stakeholders. In masterplanning, design is 
both a multidisciplinary and interdisciplinary practice and managing complex data from several 
technical streams is difficult. The EAM and its associated tools proposed and reported in this paper 
provide support for the use of IRM in masterplanning. The key contribution of this work is the ability 
of the method and tools to transparently demonstrate and manage the complexities and 
interdependencies within integrated data to direct design focus for complex sustainable design. 
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