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ABSTRACT 
Environmental imperatives necessitate formal Environmental Management Systems (EMS) to 
understand and manage the environmental consequences of commercial activities.  A diverse range of 
EMS have been proposed, however these present limitations in accommodating changes in 
environmental performance, and do not incorporate fundamental process analysis to assess how the 
actual performance varies from what is theoretically achievable.  A novel engineering-based risk 
evaluation framework has been developed that applies fuzzy logic and fundamental process analysis to 
overcome the identified issues.  

Keywords: EMS; environmental management systems; process variation; fuzzy logic; Chemical 
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1 ENVIRONMENTAL PERFORMANCE MEASURES  
Sustainable development “meets the needs of the present without compromising the ability of future 
generations to meet their own needs” [1]. Corporations are increasingly focusing on sustainability by 
the adoption of Environmental Management Systems (EMS) [2,3,4,5].  A diverse range of EMS exist 
for the evaluation of the operational environmental performance of a product or industrial process, 
including [6,7]: 
• Environmental Reporting Frameworks 
• Economic Input–output Tables  
• Life Cycle Assessment  
• Ecological footprint analysis  
• Full Cost Accounting  
• Sustainability Assessment Modeling 
These EMS fail to incorporate fundamental process analysis, and do not readily evaluate changes in 
environmental performance owing to process variation (e.g. changes in the production rate of the 
process), and investment in new techniques and practices (e.g. pollution abatement technologies, or 
technologies to increase process efficiency). In addition, many of the existing methods of 
environmental operational performance do not accommodate the uncertainties associated with the 
available data and applied modeling techniques. 
This work presents a novel conceptual framework for operational environmental performance 
evaluation for an industrial process or product.  This framework aims to overcome limitations 
identified in existing methods by the integration of fundamental process modeling with risk 
assessment using fuzzy logic techniques. 

2 FUZZY LOGIC 
A Boolean membership function (μ) indicates whether a value (x) belongs to a certain state, or set. 
Conventional set theory uses binary memberships, and the membership function of the set A, μA, is 
defined as: 
• μA(x) = 1 if x is a member of set A 
• μA(x) = 0 if x is not a member of set A 
Fuzzy sets overcome the rigidity of conventional set theory by expanding the definition of a 
membership function to allow the degree of membership of a set to lie between 0 and 1 [8].  In fuzzy 
logic, the truth-value, T(x), is a measure of the veracity of a proposition, and can be any value between 
zero and one.  This is in contrast to Boolean logic, where truth-values must be either zero or one, i.e. 



either true or false.  Fuzzy logic allows the combination of information from different sources, while 
enabling approximate reasoning in the presence of uncertainty [9,10].  
The form of the fuzzy membership function is unrestricted, but may be trapezoidal, Gaussian and 
Dirac-delta forms [11].  Figure 1 illustrates how the boundaries on the fuzzy set create areas of overlap 
between the various states.  For example, the crisp input of daily production rate of 66 tonnes per day 
has a membership of 0.8 to the ‘medium’ category, and membership of 0.2 to ‘high’ category.  By 
allowing for degrees of membership in different sets, fuzzy logic can decrease the potential error in 
associating a particular value with a particular state. 
 

 
Figure 1 Overlaps Between Fuzzy Sets, after (Burvill et al. 2010). 

2.1 Fuzzy Inference Systems 
Fuzzy inference systems map a specified input to an output using fuzzy logic based on fuzzy 
membership functions, conditional statements (If-Then rules) and fuzzy operators.  A series of 
inference systems are available [6].  The Mamdani inference method is used in this work as it: 
provides a framework for incorporating If-Then rules and it allows for inputs and outputs to be 
physical variables and is therefore applicable to engineering-based systems.  The fuzzy logic 
framework consists of four stages: 
• Fuzzification of data 
• Transformation of data via an inference system 
• Composition of transformed data 
• De-fuzzification into crisp values 

2.2  Fuzzy Logic Risk Assessment  
Evaluation of the risk posed by the environmental aspects of an industrial process is a complex 
undertaking involving significant uncertainties [12].  Such uncertainties lead stakeholders to define 
risk parameters in qualitative linguistic terms [13].  Fuzzy logic was designed to interpret the 
uncertainties of real-world situations, and can allow approximate reasoning based on qualitative 
linguistic descriptors [14].  Fuzzy logic has been applied to accommodate the inherent uncertainties of 
environmental risk assessment in various fields, for example: water contamination [15,16], and 
offshore drilling waste [17].  However, an extensive literature review failed to identify evidence of 
prior application of fuzzy logic to fundamental process analysis where the risks stemming from the 
environmental aspects of industrial products or processes are quantified.  

3 APPLYING THE ENGINEERING-BASED RISK EVALUATION FRAMEWORK 
This section describes an application of the conceptual engineering-based risk evaluation framework 
to an existing, operational chemical processing plant.  The case study will: 
• Demonstrate the framework with real process data 
• Explore the strengths and limitations of the framework 
• Identify areas for further development of the framework 
A formaldehyde (CH3OH) manufacturing process is examined.  Formaldehyde is toxic by inhalation, 
and a suspected carcinogen. In production, formaldehyde (and water) is formed by the oxidation of 
methanol on a metallic oxide catalyst (Equation 1, Figure 2): 
 
 CH3OH + ½O2 → H2CO + H2
 

O  (1) 



A fixed-bed vapour-phase oxidation reactor is used to produce formaldehyde. The reaction is 
exothermic, with heat removed from the reactor by a boiling liquid heat transfer medium.  
 

 
Figure 2. Simplified Manufacturing Process Flow Diagram, after (Burvill et al. 2010). 

4 FRAMEWORK SUMMARY 
The conceptual framework proposed in this work contains fuzzy models of the process, scenario and 
associated risks. 

4.1 Fuzzy Process Model 
Fuzzy rules can be used to model the relationships between the input and output streams of the 
industrial process under consideration.  This allows information about the physical flows associated 
with a process, and the natural variations that occur within a process to be introduced to the 
consequence and risk models to determine the risk posed by hazardous scenarios. 

4.2 Fuzzy Scenario Model 
A fuzzy scenario model is developed for each potentially hazardous scenario.  Each fuzzy scenario 
model relates the operating regime of the plant to the consequences owing to the environmental 
aspects of the associated hazard scenario. 

4.3 Fuzzy Risk Model 
These consequences are then related to an estimate of likelihood of that scenario using a fuzzy risk 
model.  The consequences of the hazardous scenario are expressed in financial cost terms, and 
relationships are developed for each scenario to estimate consequences in five categories: 
1. Environmental 
2. Health and safety 
3. Loss of corporate reputation 
4. Business interruption 
5. Business liabilities 
The proposed framework is a novel application of the well-established discipline of expert systems.  
An expert system simulates a human specialist's knowledge and reasoning [18].  Expert systems 
comprise a set of rules that analyse information about a specific class of problems, and provide 
mathematical analysis of the problem being considered.  It is anticipated that a team of relevant 
experts within the organization would be engaged in the future development of the proposed 
framework to provide a realistic determination of the relevant consequence cost types to be included in 
the scenario model, and the relationships between the scenario input variables and these cost types. 

4.4 Scenario Model: Liquid spill 
A fuzzy scenario model was developed to compute the consequences of a potential fugitive liquid 
emission scenario, such as a spill or leak from a particular process stream. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Model for a fugitive liquid emission. 

 
The consequences of this scenario have been determined, in consultation with plant personnel, to be 
dependent on the following factors: 
1. The normalised flow-rate of the fugitive emission at the time of the emission, in this case, the 

formaldehyde product output stream is considered. 
2. The proportion of the process stream that is spilt or leaked from a process stream. 
3. The length of time of the spill. 
4. Whether or not ground contamination occurs, that is whether any physical barriers that may be in 

place around the plant to prevent ground contamination (for example, bunding). 
Other factors that may influence the consequences of this scenario include the surrounding population 
densities and the sensitivity of the surrounding environment.  Again, the flexibility of the model 
allows for the inclusion by the developer of these factors as inputs to the scenario model as deemed 
appropriate. 
Input variables for the fuzzy scenario model for a liquid fugitive emission are: 
1. The “normalised emission flow-rate”, determined from the process model [6], which may be 

High, Medium or Low.  The emission flow rates are normalised with respect to the maximum 
emission flow rate.  

2. A “proportion of stream spilt” factor, indicating whether such an emission is likely to be 'Less' 
than, 'All' of, or 'More' than the relevant stream's flow rate under normal operating conditions 
(Figure 4). If it less than the entire stream is spilt, an input of 0.5 should be entered into the 
model, if all the entire flow rate is leaked, a value of 1 should be entered, and if more than the 
normal operating flow rate is expected to be leaked, a value of 1.5 should be entered. 

3. A “length of spill” factor, to indicate the time duration of the spill, is defined here as 'Short', 
'Medium' or 'Long' (Figure 5).  

4. A “ground contamination” factor with membership functions shown in Figure 6.  If 
contamination is expected, an input value for this variable of 1 should be entered into the model, 
and if no contamination is expected this variable should have an input value of 2.  Again, the 
membership functions have been given a finite width purely for computational reasons, to ensure 
the input is assigned to the correct category. 

Fuzzy logic rules were composed to define the relationship between the input variables and the outputs 
using the Mamdani inference method.  The outputs of the model are the five categories of 
consequence, in cost terms, to the company and society (figure 3).  In this model, only fines are 
considered when assessing business liabilities.  Both internal costs to the company due to the 
environmental aspects of the scenario, and external costs to society should be included where possible, 
and appropriate membership functions should be defined for each of these costs, allowing for higher 
standard deviations of the membership functions for those cost types with more uncertain 
consequences. 
 

INPUTS OUTPUTS 
(Consequences) 

Emission flow rate 
(High/Medium/Low) 

Proportion of stream spilt 
(Less/All/More) 

Length of spill 
(Short/Medium/Long) 

Contamination 
(Yes/No) 

Environmental impact 

Taxes and fines 

Health and Safety  

Corporate image 

Business interruption 

54 RULES  
Mamdani  
Inference 



 
Figure 4. Input membership functions for proportion of stream spilled. 

 

 
Figure 5. Input membership functions for time duration of a liquid spill. 

 

 
Figure 6. Input membership functions for liquid contamination. 

 
To allow for every combination of the input variable membership, 36 rules have been constructed in 
MATLABTM

 

 [7].  Each rule then relates the particular combination to the relevant membership 
function of each output variable.  The relationships contained within the fuzzy inference system model 
rules are presented in Tables 1 to 4.  Pertinent example rules: 

Rule 3: If normalized emission flow-rate is Low and proportion of stream spilt is Less and Length 
of spill is Long and Contamination occurs: Then consequences due to: liabilities are Very Low 
and environmental remediation is Low and safety and health are Very Low and corporate image is 
Zero and business interruption is Very Low.  
 
Rule 26: If normalized emission flow-rate is High and proportion of stream spilt is More and 
Length of spill is Medium and Contamination occurs: Then consequences due to: liabilities are 
Medium and environmental remediation is Very High and safety and health are High and 
corporate image is Very High and business interruption is Low.  
 
Rule 28: If normalized emission flow-rate is Low and proportion of stream spilt is Less and 
Length of spill is Short and No Contamination occurs: Then consequences due to: liabilities are 
Zero and environmental remediation is Zero and safety and health are Zero and corporate image 
are Zero and business interruption is Low.  

 



Table 1. Inference rules for potential liabilities due to fines 

 No ground contamination Ground contamination 
Emission flow rate (normalized) 

Low Medium High Low Medium High 

Sh
or

t 

Sp
ill

 p
ro

po
rt

io
n 

Less Zero Zero Zero Zero Very Low Low 
All Zero Zero Zero Very Low Low Medium 

More Zero Zero Zero Low Medium High 

M
ed

 Less Zero Zero Zero Very Low Low Medium 
All Zero Zero Zero Low Medium High 

More Zero Zero Zero Medium High VeryHigh 

L
on

g Less Zero Zero Zero Low Medium High 
All Zero Zero Zero Medium High VeryHigh 

More Zero Zero Zero High VeryHigh Ext. High 
 

Table 2. Inference rules for potential liabilities due to safety 

 No ground contamination Ground contamination 
Emission flow rate (normalized) 

Low Medium High Low Medium High 

Sh
or

t 

Sp
ill

 p
ro

po
rt

io
n 

Less Zero Zero Zero Zero Zero Very Low 
All Zero Zero Very Low Zero Very Low Medium 

More Zero Very Low Low Very Low Low Medium 

M
ed

 Less Zero Zero Very Low Zero Very Low Low 
All Zero Very Low Low Very Low Low Medium 

More Very Low Low Medium Low Medium High 

L
on

g Less Zero Very Low Low Very Low Low Medium 
All Very Low Low Medium Low Medium High 

More Low Medium High Medium High VeryHigh 
 

Table 3. Inference rules for potential liabilities due to corporate image 

 No ground contamination Ground contamination 
Emission flow rate (normalized) 

Low Medium High Low Medium High 

Sh
or

t 

Sp
ill

 p
ro

po
rt

io
n 

Less Zero Zero Very Low Zero Zero Low 
All Zero Zero Low Zero Very Low Medium 

More Zero Very Low Medium Zero Low High 

M
ed

 Less Zero Zero Low Zero Zero Medium 
All Zero Very Low Medium Zero Low High 

More Very Low Low High Very Low Medium VeryHigh 

L
on

g Less Zero Zero Medium Zero Zero High 
All Very Low Low VeryHigh Very Low Medium VeryHigh 

More Low High VeryHigh Low VeryHigh Ext. High 
 
 



Table 4. Inference rules for potential liabilities due to business interruption 

 No ground contamination Ground contamination 
Emission flow rate (normalized) 

Low Medium High Low Medium High 

Sh
or

t 

Sp
ill

 p
ro

po
rt

io
n 

Less Very Low Very Low Very Low Very Low Very Low Very Low 
All Very Low Very Low Low Very Low Very Low Low 

More Very Low Low Low Very Low Low Low 

M
ed

 Less Very Low Very Low Low Very Low Very Low Low 
All Very Low Low Low Very Low Low Low 

More Low Low Low Low Low Low 

L
on

g Less Very Low Low Low Very Low Low Low 
All Low Low Low Low Low Low 

More Low Low Medium Low Low Medium 
 
Figure 7 shows the model output for the environmental remediation consequences for a liquid spill 
causing ground contamination, for the full range of normalized emission flow-rates and for different 
levels of process stream spill proportion.  The consequence due to environmental remediation peak at 
the highest process operating rate, when the proportion of stream split is more than the expected 
stream flow rate at normal operating conditions.  The model calculates an approximate figure of $2 
million dollars for this peak.  In order to improve this estimate, historical information on remediation 
costs from previous spills that have occurred within, and external to the company should be analyzed.  
If no contamination occurs, the model output is a plane through zero on the remediation consequence 
axis. 
 

 
Figure 7. Environmental remediation consequences for a liquid spill causing ground contamination. 

 
Figures 8 and 9 show the corporate image cost consequences for a spill that causes contamination, 
which are expected increase significantly with the length of the spill (which is a parameter that 
influences the total amount spilled).  In both cases, corporate image consequences peak for high 
process operating rates when the proportion of the stream spilled is more than the expected flow rate 
of the stream under normal operating conditions. 
 



 
Figure 8. Corporate image consequences for a medium length liquid spill 

causing ground contamination. 
 

 
Figure 9. Corporate image consequences for a long liquid spill causing 

ground contamination. 
 
The main purpose of the scenario modeling carried out here is to illustrate the flexibly of the 
framework.  The framework allows a full range of consequence cost types to be individually predicted 
from the process operating rate and other scenario variables, and aggregated when appropriate (for 
example, consequences due to fines and consequences due to taxes have been aggregated into the 
category of business liability consequences).  In addition, membership functions can be defined 
individually for each cost type, to represent the accuracy of the predicted relationships between the 
scenario input variables and a particular cost type.  

5 CONCLUSIONS 
This paper has presented an outline of the current development of an engineering-based environmental 
performance framework design. The framework is at present focused on the chemical engineering 
sector, due to the ongoing collaboration between university researchers and a leading Australian 
chemical manufacturer.   
The paper outlines a case study completed using the framework in the context of a chemical 
processing plant and the consequences of a hazardous liquid spill.  This case study combines 



fundamental engineering analysis of the chemical process with risk assessment using fuzzy logic 
modeling techniques. 
First, a fuzzy process model, based on historical plant operating data, was developed to model the 
relationships between the physical flows of process inputs (in this case methanol, water, air) and 
outputs (gaseous emissions and the formaldehyde product).  A fuzzy scenario model was developed to 
illustrate the calculation of the consequences of a fugitive gaseous emission.  Finally, a fuzzy risk 
model was created to combine the consequences calculated using the fuzzy scenario model with an 
estimate of scenario likelihood, to calculate a level of risk. 
The engineering-based fuzzy risk assessment framework has been shown to: 
• Use fundamental engineering analysis to incorporate information about the process operation 

level, and the variations that occur within a chemical process plant. 
• Be flexible – it can be adopted by the developer to include a wide range of consequences owing 

to both the environmental and the social aspects of a production facility. 
• Be transparent – estimations and assumptions in the scenario modeling are made by the developer 

and user, and the uncertainties associated with these are captured in the fuzzy membership 
functions of model's variables. 

Although this method is at a preliminary stage of development, it demonstrates clearly the proposed 
concept and the in-principle applicability of the framework to a chemical processing plant.  The 
completeness of the method would depend on investment by an organization on its construction and 
maintenance.  For example, potential improvements to the scenario and risk modeling of the 
formaldehyde manufacturing process used in this case study include: 
• Refining the membership functions of the scenario model variables and the scenario model rules 

including all relevant cost types for each cost category. 
• The development of a complete list of hazardous scenarios for the process and the development 

of the relevant scenario models. 
• To reduce the resources required to implement the model, scenario rules for common processing 

plants could be developed. 
• The model could be modified to receive live information about the risks associated with a 

particular process, enabling plant operators and managers to use it as a monitoring tool. 
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