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ABSTRACT 
Estimating residual value of an end-of-life product is an essential preliminary to design for recovery. 
This paper presents a quantitative model for estimating time-varying value of an end-of-life product. 
The model estimates the expected economic value of a product by considering two major depreciation 
factors, physical deterioration and technological obsolescence. The developed model is illustrated with 
an example of desktop computer and potential applications to design for recovery are presented. The 
model can contribute to enhancing the residual value of a product and/or improving the way of 
retrieving the residual value. It can also assist the recovery system design, such as product take-back 
planning and recovery strategy planning.   
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1 INTRODUCTION 
Product recovery is a process of retrieving residual value from end-of-life products. Although they 
reached the end-of-use phase, the end-of-life products still contain re-marketable resources, such as 
reusable parts and recyclable materials. By recovering the resources and reusing or reselling them, a 
company can make profits as well as contribution to environment protection. Accordingly, product 
recovery has come into increasing prominence in the industry.  
Growing interests in product recovery have made design for recovery a field of rapidly growing 
interest for product manufacturers. Design for recovery is an engineering design method to make 
recovery processes more efficiently and effectively. One goal of the method is to maximize recovery 
profit. It attempts to find the best product design so that maximum economic value can be recovered 
from the product at the end of life stage.  
To improve product design, designers must be able to figure out the current performance of the 
product and the impact of their design decisions on it. Once they have such capability, they can find 
out a way to improve the current design. Likewise, in order to implement design for recovery, 
designers must be able to assess the residual value of a product. Only if the information is given, they 
can research a way to improve the residual value and/or a better way to recover the value. The difficult 
part is that product recovery is an uncertain event in the future and there is a lack of models to help 
estimate the expected future (economic) value of a product from recovery point of view.  
This paper presents a quantitative model for estimating time-varying residual value of an end-of-life 
product. The residual value of a product varies upon time. As time goes, the product experiences 
physical deterioration and/or technological obsolescence, which in turn changes (depreciates) its 
residual value [1]. In previous literature [1-7], several approaches have been developed to model the 
time-varying value of a product. However, the model presented here is distinguished from them in 
several points. First, most previous methods considered physical deterioration only, not the 
technological obsolescence. Second, even when both factors are considered, the existing evaluation 
requires more or less subjective and qualitative inputs from experts or consumers. Third, their 
evaluation focused on the performance value from the consumers’ standpoint, but the present model 
focuses on the economic value from the manufacturers’ standpoint.     
The rest of paper is organized as follows. Section 2 presents the model for time value of an end-of-life 
product. Section 3 describes the time-varying cost advantage of product recovery. Section 4 introduces 
an application to design for recovery, followed by conclusions in Section 5. 



2 A MODEL FOR THE TIME VALUE OF AN END-OF-LIFE PRODUCT  
A product can be regarded as a mix of parts. Here, the term “part” refers to any decomposable element 
of a product. The recovery process under consideration starts from disassembling end-of-life products 
into parts. Similar products are sent to a central facility and disassembled collectively. After separation, 
resulting parts are sorted by part type rather than its parent product and inspected if it is reusable or not 
[8]. Reusable parts are stocked for in-house reuse or resale, while nonreusable parts are shredded and 
recycled into raw materials.  
As can be seen in the description above, a product loses its original identity at the end of its life and 
changes back into a group of parts. Therefore, it is reasonable to define the product residual value as 
the sum of part residual values. This section first presents a model for the time-varying value of an 
end-of-life part, followed by a model for an end-of-life product. An exemplary desktop computer is 
used for model illustration. Section 2.1 describes the basic notation used in the models.  

2.1 Notation 
i   parts for product; index Ii ∈  
t    returning year; time when the product reaches its end-of-life and returns for recovery 

)(tV eol
product  residual value of an end-of-life product at time t  

)(tV eol
i   residual value of an end-of-life part i at time t  

)(tPV eol
product  residual value of an end-of-life product at time t in present value 

)(tPV eol
i   residual value of an end-of-life part i at time t in present value 
)(tRi   reliability of part i for time period [0, t] 

)(tM eol
i   market value of a unit of used, subject part i at time t  

)(max, tM eol
i  market value of a unit of used, leading-edge (i.e., max-generation) part i at time t  

)(max, tM new
i  market value of a unit of new, leading-edge (i.e., max-generation) part i at time t  

)(tiδ  difference in generation between the leading-edge and the subject parts i at t 
)(tiγ  number of successive generations of part i being newly released in the market for [0, t] 

)(, tP ni  probability that nti =)(γ  
iλ   constant failure rate for part i  
iθ   minimum mean-time-to-failure (MTTF) required for a reusable part i 
iα   market value discount for used part i relative to new part i  
iπ   market value trend (i.e., increasing, decreasing, or static) for part i; yearly rate 
iφ   parameter for exponential value depreciation due to technological obsolescence  
iµ   average frequency per year in which a successive generation of part i newly released  

r    interest rate per year with continuous compounding  

2.2 Time-varying value of an end-of-life part 
Each part has its own lifetime characteristics. To be specific, each part deteriorates physically or 
functionally at its own speed and degree. For instance, computer CPUs (central processing unit) are 
known extremely reliable but easily become obsolete due to the frequent advent of successive models 
equipped with better performance. In contrast, optical drives (e.g., CD-ROM, DVD drive) are known 
relatively less reliable, while its technological change happens less frequently. Market conditions also 
vary for different parts. For example, some parts can have greater value than others depending on the 
market size, regulations, and consumers’ perception on used parts or willingness to buy used parts. 
Consumers might be willing to buy a used CPU or graphic card, but not a used chassis. Although there 
could be consumers who want to buy used operating system (OS), it is not allowed for a 
(re)manufacturer to resell used one. The part value model in this paper estimates the (expected) 
economic value of an end-of-life part based on these part characteristics. It consists of two sub models 
to address two major depreciation factors: physical deterioration and technological obsolescence.  

Physical deterioration and reusability 
Considering reliability of an end-of-life part is a common and essential step in evaluating the residual 
value. Reliability itself is the probability that a part survives successfully to age t [9]. When a constant 
failure rate λi is assumed, the reliability of a part i is generally defined by Equation (1). 
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Reliability gives an estimate for the number of surviving parts at t. However, the reliability does not 
necessarily indicate all the surviving parts are reusable. As Anityasari and Kaebernick (2008) [10] 
pointed out, the reusability of an end-of-life part must be decided based on the probability of its 
surviving during the second life. To address this point, this paper introduced a concept of reusability 
threshold which represents the minimum mean-time-to-failure (MTTF) required for an end-of-life part 
to be approved as a reusable one. The reusability of a part i is then defined by Equation (2). 
Throughout the paper, all parts are equally assumed to have a 3-year threshold (e.g., PC industry). In 
other words, a (re)manufacturer can reuse or resell only a part that is expected to survive at least three 
more years.   
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Technological obsolescence and secondary market value  
In consumer products markets, it is common phenomenon that the value of a formerly cutting-edge 
unit drops significantly, simultaneous with the release of a successive model with better performance. 
The more successive models appear the more value the part loses. Figure 1 shows that such value 
trend from technological obsolescence can be modelled as an exponential depreciation model with a 
constant parameter iφ .  
Figure 1 is a snapshot of market value trends for used hard drives and CPUs (Intel Pentium IV). 
Figures on the left side represent the value trends in terms of the key performance, i.e., storage size for 
hard drives and clock speed for CPUs. These figures are redrawn in the right side using the concept of 
part generation; starting from the least-performance part to the leading-edge part with highest 
performance, generation numbers are assigned. This transformation reveals that both parts have a 
common value trend—the part maker value depreciates exponentially by part generation. Although 
not shown in the paper, other parts for desktop also show similar trends. The exponential value 
depreciation can be modelled by Equation (3).  
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In this model, a successive generation is assumed always more advanced, and thus, more valuable than 
the previous generation. The value depreciation parameter iφ can be estimated by the least-squares 
method. For hard drives and CPUs in Figure 1, iφ  of 0.1717 and 0.2133 are obtained with R2

Once parameter 

 of 0.9437 
and 0.9665, respectively.  

iφ  is obtained, it is possible to estimate the future value of a part, with an assumption 
that iφ  will not change during the time period under consideration. In future value estimation, 
Equation (3) is used along with Equations (4) and (5) which address the market value trend and 
generation gap (i.e., difference in generation between the leading-edge and the subject parts i ).  

)0()( max,max,
new
i

tnew
i MetM i ⋅= π  (4) 

)()0()( tt iii γδδ +=  (5) 

There could be an industry-wise trend in the market value for a part. Taking the computer industry as 
an example, the original retail price of computers continues its decreasing trend, despite dramatic 
improvements in technical specifications. The average laptop price was $3,000 in 1999, but it was 
$720 in 2009 [11]. Likewise, the market price of a part can have increasing, decreasing, or static trend, 
which is represented by πi in Equation (4). Equation (5) calculates the generation gap of part i at time t 
by adding up the current generation gap (i.e., δi(0)) and the total number of future-generations that will 
appear by time t (i.e., γ i(t)). Since γi(t) is a stochastic process representing the total number of “event” 
(new generation) that occur by time t, this paper assumes it a Poisson process having rate μi. 
Accordingly, the number of new generation by time t is Poisson distributed with mean μ i

 

t and 
Equation (6) is obtained [12]. Finally, the mean market value of a unit of end-of-life part is obtained 
by Equation (7).  
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Figure 1. Examples of exponential value depreciation: used hard drive and CPU 

Value of an end-of-life part 
The (mean) residual value of an end-of-life part i is defined by Equation (8) where the reusability of 
the part is multiplied by the part market value. In this equation, nonreusable parts are not included 
with an assumption that their economic value to (re)manufacturer is zero. Nonreusable parts are 
recycled for material recovery. In practice, (re)manufacturers do not perform material recovery but 
transfer parts to third-party recyclers. They might be paid by recyclers for the parts but this paper 
assumes that the amount is insignificant (=0). The present model therefore only considers reusable 
parts and their market value. If the value from material recovery is significant, however, Equation (8) 
can be elaborated into Equation (9) where Si

Equation (10) discounts the future value into the present one (at time 0) by means of r, an interest rate 
per year with continuous compounding—$1 deposited at rate r grows to e

(t) denotes the unit value from material recovery of a part 
i.  

rt
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ii
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i ⋅+= θ

 at time t.  
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2.3 Time-varying value of an end-of-life product 
Product residual value is defined as the sum of parts’ residual values, as can be seen in Equation (11). 
Similar to the part residual value, the present residual value of an end-of-life product is obtained by 
Equation (12). 
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For illustration, the developed model is applied to an exemplary mainstream desktop, Desktop X in 
Table 1. The reliability parameters are assigned based on previous literature [13] and online product-
review website (www.pcworld.com [14]). Market data for iφ  and μi

To incorporate the uncertainty from the Poisson process γ

 is obtained from online 
marketplaces and price comparison portal, such as ebay.com and pricewatch.com, and Kwak et al. 
(2010) [11]. However, it should be noted that the data used for this paper is just for illustration and 
needs additional data collection and calibration to have meaning as the industry representative.  

i

Table 1. Exemplary product information: Desktop X 

(t), simulation has been conducted varying 
the returning time t from 0 to 15. For simulation, a software Risk Solver Platform for Excel is used 
throughout the paper. The results are shown in Figure 2. All values in the figure are mean values from 
2,000 trials each and adjusted to the present values (t=0). Referring to the federal funds rate trend, 
r=0.03 is applied for the adjustment. 

Part i iλ  iφ  iµ  )0(iδ  iα  iπ  )0(max,
new
iM  

CPU 0.0018 0.6733(0.2133) 0.5(4) * 0 0.75 0.00 175 
RAM 0.0147 0.8378 1 0 0.65 0.00 50 

Motherboard 0.0302 0.2133 4.5 0 0.65 0.00 150 
Hard drive 0.0633 0.1717 2 0 0.65 0.00 120 

Graphic Card 0.0390 0.2883 2 0 0.70 0.00 100 
Optical Drive 0.1372 0.8088 0.5 0 0.70 0.00 80 
Chassis (Case)  0.0438 0.1500 0.2 0 0.20 0.00 75 

Operating System 0.0000 0.5926 0.5 0 0.00 0.00 50 
* CPU is modeled to have two types of technological obsolescence: One by major change in CPU platform (e.g., 
Core2 to Core i) and the other by minor change (in parenthesis) in clock speed.  
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Figure 2. (a) Time-varying mean residual value of end-of-life parts; (b) Residual value 

and residual value ratio of an end-of-life product: with fixed returning year and 
probabilistic returning year (t~ LN(μ, σ), σ=2.5) 



Figure 2(a) shows how the mean residual value of an end-of-life part varies as the returning year t 
changes. The CPU and motherboard lose their value so rapidly that only less than 10% of its original 
value—$175 and $150, respectively—remains if the product returns after two years. If the product 
returns after five years, they have almost no value. The hard drive shows relatively gradual 
depreciation. When the product returns after two years, approximately 25% of the original value can 
be recovered. Also, positive residual value is expected even until 10 years later. The chassis loses 
more than 80% of its value at the beginning, because people rarely prefer used chassis. However, its 
value depreciates slowly and keeps positive value for long lifetime. As to the OS, reusing is assumed 
not allowed; thus, it has no value regardless of the returning time.  
One interesting point is that the part with most value is changing upon t. When t ≤ 1, the CPU is the 
most valuable part and the motherboard is the next. However, when 1≤ t ≤ 5, the most valuable part is 
changed to the hard drive. The second place is also changed to the graphic card until t=3 and again to 
the chassis after that. When product ages more than six years old, the chassis has the highest residual 
value. These results imply that designers must consider the returning year t in implementing 
design for recovery. Parts worthwhile to recover depend on the timing, and so does the optimal 
product design.  
Figure 2(b) describes how the mean residual value of an end-of-life Desktop X changes over time. The 
second y-axis on the right side represents the mean residual value ratio, that is, the ratio of the mean 
residual value to the original product value ($800). When product returns at the end of the second year, 
the desktop still retains about $110 which corresponds to 13-14% of residual value ratio. If the product 
is more than five years old, the residual value is even below 2.5% of the original value.  
Figure 2(b) can be used in planning product take-back. As an example, suppose that recovering a 
desktop costs $10/unit in present value. Then a reasonable take-back strategy is to collect Desktop X 
before it becomes eight years old in which the residual value begins to be less than $10. Figure 2(b) 
also helps quickly figure out the upper limit of the buyback price. For instance, when the recovery cost 
is $10, the maximum buyback price for a five-years-old desktop is about $17. If pays more, recovery 
cannot be profitable on average.  
Until now, only the return with a fixed return has been considered. With the proposed model, a 
variable return also can be considered. For example, Figure 2(b) shows the residual value of Desktop X 
when t is a lognormal random variable with different means and the standard deviation of 2.5. In this 
case, variable returns show a higher mean residual value than fixed returns, although the overall 
patterns are similar.      

3 TIME-VARYING COST ADVANTAGE OF PRODUCT RECOVERY  
To retrieve the residual value from an end-of-life product, (re)manufacturers must pay recovery cost, 
such as cost of disassembling, inspecting, purchasing spare parts, etc. The point is that the recovery 
cost, the value retrieved, and the recovery profit can differ according to what recovery strategy is 
adopted. This section demonstrates that the developed model can help compare different recovery 
strategies in terms of the recovery cost and profit.  

3.1 Notation 
)(ttarget

iδ  generation gap between the leading-edge and the target-level parts i at t 
)(, tM new

targeti  market value of an unit of new, target-level part i at time t 
)(1 tC product  cost of new production without recovery at t 
)(2 tC product  cost of new production with part resale at t 
)(3 tC product  cost of remanufacturing without part resale at t 
)(4 tC product  cost of remanufacturing with part resale with part resale at t 
)(tC material

i  cost of purchasing new, target-level part i in short for remanufacturing at t 
)(tC proc

i  cost of processing an end-of-life part i for recovery at t 
)(tI resale

i  income from reselling an end-of-life part i after remanufacturing at t 

3.2 Time-varying cost of recovery strategies  
Suppose a company plans to offer a product with following target specifications: )(ttarget

iδ ={0, 1, 1, 1, 
1, 1, 1, 1, 1}. This indicates that the company wants to release a product with the newest model of 
CPU with the second-fastest speed, and a set of previously leading-edge (one-generation old) RAM, 



motherboard, hard drive, and so on. The company just released Desktop X comprising of all up-to-date 
parts, which is expected to return at t for recovery. Then, there are three recovery strategies that the 
company can choose from, alongside the new production: 
• New production: no recovery is conducted. A product is made with new parts only.  
• New production with part resale: a product is produced using new parts. At the same time, 

recovery is performed to retrieve reusable parts and resell them in the second-hand market.  
• Remanufacturing: product recovery is performed. A product is produced by reassembling 

reusable parts from the recovery and new parts where necessary. If any reusable parts remain, 
they are sent to recycler with no income. 

• Remanufacturing with part resale: remanufacturing is performed. If any reusable parts remain 
after remanufacturing, they are sold in the second-hand market for additional income. 

In this paper, it is assumed that remanufacturing is performed based on product conformity. In other 
words, in remanufacturing a product, both a target-level part ( )()( tt target

ii δδ = ) and one with an 
above-target specification ( )()( tt target

ii δδ < , i.e., product with newer parts than required) can be used. 
Accordingly, the mean ratio of the end-of-life part that can be used in remanufacturing—part which is 
reusable and also conforms to the target—can be estimated as shown in Figure 3.  
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Figure 3. Mean ratio of reusable parts given target specifications for 

(re)manufacturing   

The (re)manufacturing cost of a target-satisfying product can be modelled as can be seen in Equations 
(13)–(19). All costs can be adjusted to the present value by multiplying e-rt

∑
∈

=
Ii

new
targetiproduct tMtC )()( ,

1

. In this PC illustration, the 
processing cost is assumed as $4 for a whole product [15] and apportioned to each part based on the 
part residual value at t. The hard drive has additional processing cost of $2 for data deletion. Other 
parameters are identical to ones in Table 1. 
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Figure 4(a) compares the cost of different (re)manufacturing strategies. Here, all πi
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 is set as zero and 
all cost values are adjusted to the present value. Accordingly, all strategies have decreasing tails as t 
increases. The figure shows that all three recovery strategies have a significant cost advantage over 
new production, even though the degree decreases continuously and finally disappears as t increases. It 
is observed that the remanufacturing costs more than the new production cost when t is 15 or greater. 
Among the three recovery strategies, remanufacturing with part resale incurs the lowest cost. The 
second place changes according to t. When t < 5 or t >10, new production with part resale performs 
better than remanufacturing; when 5 ≤ t ≤ 10, remanufacturing is slightly more economical than new 
production with part resale.    

 
Figure 4. Time-varying advantage of (re)manufacturing strategies 

Figures 4(b) to 4(d) compare the recovery profit of different strategies. Suppose that a new product 
can be sold at the price with 25% gross margin (=1.25*C1

product

4 APPLICATION TO DESIGN FOR RECOVERY 

) and remanufacturing is 
instantaneous—product return, remanufacturing, and the sale happen at the same time. As can be seen 
in Figure 4(b), the previous order of the strategies in Figure (a) remains the same if the remanufactured 
product is sold at the same price as the new product: remanufacturing with part resale is the best and 
new production is the worst. However, if a price discount for remanufactured product exists, different 
results can appear. In Figures 4(c) and (d) where 75% and 50% price discounts are assumed 
respectively, the best strategy is new production with part resale. Also it becomes harder for 
remanufacturing strategies to achieve profit. In case of a 50% price discount, remanufacturing even 
cannot be profitable regardless of t.  

This section presents an application of the model to design for recovery. Different parts have different 
lifetime characteristics. Designers must choose the best combination of parts such that the total profit 
from the product lifecycle can be maximized. In this section, a mathematical model is presented which 
decides an optimal part mix with maximum expected lifecycle profit. The model maximizes the 
summation of initial production cost (negative), sales price, and end-of-life residual value. For 
simplification, the sales profits are assumed to be fixed and identical for any combinations. In other 



words, consumers do not recognize the difference between part alternatives. The problem is then 
defined as below, which is formulated by Equations (20)-(23):   
• Minimizing: production cost of a product less its expected end-of-life residual value  
• Find: an optimal mix of parts  
• Given: part alternatives and their current value and lifetime characteristics (Table 2), distribution 

of returning year t 
• Constraint: only one alternative j is chosen for each part type i (Equation (21)); the CPU and 

motherboard must be compatible with each other (Equation (22)). 
In this example, the current design is equipped with the newest parts. Therefore, δi

)0()0( max,
new
ij

new
ij MM =

(0)=0 and 
. Returning time t is assumed to be lognormally distributed with mean and 

standard deviation of 7 and 2.5, respectively. With that, the problem is solved and the optimal solution 
is shown in the last column of Table 2.  

[ ]∑∑∑∑ −⋅⋅−⋅
i j

rt
ij

eol
ij

i j
ij

new
ij extVExM minimize )()0(  (20) 

i          x   ts
j

ij ∀=∑ 1..  (21) 

j         xx jj ∀= 31  (22) 

{ }10, xij ∈  (23) 

Table 2. Design for Lifecycle: Finding an optimal part mix 

Part i j iλ  iφ  iµ  )0(iδ  α iπ  )0(max,
new
ijM  Variable Decision 

CPU 1 0.01 0.60 (0.20) 0.5 (4) 0 (0) 0.75 0.05 150 x 0 11 
 2 0.03 0.50 (0.30) 0.5 (2) 0 (0) 0.75 0.05 150 x 1 12 
 3 0.03 0.60 (0.20) 0.5 (4) 0 (0) 0.75 0.05 145 x 0 13 

RAM 1 0.01 0.75 1 0 0.65 0.05 50 x 0 21 
 2 0.02 0.75 1 0 0.65 0.05 35 x 1 22 

Motherboard 1 0.03 0.40 4.5 0 0.65 0.05 150 x 0 31 
 2 0.05 0.40 2.5 0 0.65 0.05 100 x 1 32 
 3 0.05 0.40 4.5 0 0.65 0.05 120 x 0 33 

Hard Drive 1 0.05 0.15 2 0 0.65 0.05 100 x 1 41 
 2 0.03 0.15 2 0 0.65 0.05 120 x 0 42 

Graphic Card 1 0.05 0.20 2 0 0.70 0.00 110 x 0 51 
 2 0.05 0.40 2 0 0.70 0.00 100 x 0 52 
 3 0.05 0.20 3 0 0.70 0.00 100 x 1 53 

Optical Drive 1 0.10 0.80 0.5 0 0.70 0.05 80 x 0 61 
 2 0.15 0.80 0.5 0 0.70 0.05 75 x 1 62 

Chassis 1 0.05 0.15 0.2 0 0.20 0.00 50 x 1 71 
OS 1 0.00 0.59 0.5 0 0.00 0.00 75 x 1 81 

5 CONCLUSIONS 
This paper addresses time-varying value of an end-of-life product. A quantitative model is presented 
which estimates the (mean) time-varying value by incorporating two major depreciation factors, 
physical deterioration and technological obsolescence. The model illustration with desktop computers 
shows possible applications to design for recovery. It can be used in enhancing the residual value of a 
product and/or improving the way of retrieving the residual value. It is also possible to use the model 
for the recovery system design, such as product take-back planning and recovery strategy planning.   
In the future, the value depreciation parameters, iφ  and iµ , can be studied further. In the presented 
model, they are defined as static parameters not varying over time, but can be elaborated as stochastic 
variables. Another potentially productive line of research would be to integrate this company-
perspective model with a consumer-perspective model. Value models from consumer’s standpoint can 
help clarify the link between product design and the lifecycle profit.  
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