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ABSTRACT 
After demonstrating the feasibility of the inversion of a ship emission model with the CSP approach 
[1], we will now discuss about the optimization of emissions. In a first time, a single-objective 
approach with an aggregation function of the emissions will be used, then, it will be a multi-objective 
approach and the Pareto frontier will be computed. The objective of this paper is triple: first, to show 
that a full ship model, linking a propulsion model and an emission model, can be inverted. Then, to 
bring to light that a propulsion system can be sized by an approach minimizing the emissions and 
using an aggregate function. Finally, to demonstrate that, in this case, computing the Pareto frontier 
provides the same global optimum as the mono-objective approach. 

Keywords: Constraint Satisfaction Problem (CSP), Propagation, Intervals, Global Optimization, 
Multi-objective, Pareto frontier, Emissions 

1 INTRODUCTION 
Everyone agrees that environmental performance is a central consideration in product design, 
operations management and end of life processes methods. Until now, the Eco-design community was 
only proposing methodologies to evaluate environmental impacts, in advanced design phases (after the 
product definition), when the main design parameters are already valued. In these cases, designers 
often lead to suboptimal solution [2], and this involves iterations in the design process [1, 3]. In [1], it 
has been demonstrated that the inversion of emission models by constraint propagation on intervals 
makes possible to ensure that the environmental impact of the product remains lower than a level 
defined by the designer (in general, this level is defined lower than the standards). To model as a CSP 
and make a set inversion of an emission model, it must be composed of algebraic relations and/or 
tables of values. This requirement will be shown through the MOPSEA model. In the present paper, 
our goal is to link the emission interval vector with the control parameters of the ship, and to minimize 
the emissions. In the first part, the use of constraint programming in design and the problematic of 
global optimisation will be introduced. Then, the emission model used in our experimentations will be 
presented and our previous results published in [1] will be summarized. In paragraph 3 the ship 
propulsion model linked with the emission model will be introduced. Eventually, the last part will 
present the results of the different types of optimisation and the impact on the control parameters. 

2 CONSTRAINT PROGRAMMING IN DESIGN AND OPTIMIZATION 

2.1 Introduction 
Basis of interval mathematics and analysis can be said to have begun with the appearance of R. E. 
Moore’s book Interval Analysis in 1966 [4]. Then, with the development of computer science and the 
explosion of computing capabilities, constraint programming was developed, at first, by computers 
scientists and mathematicians. Over the past few decades, some researchers have been interested in 
applying Constraint Programming in Design. They have demonstrated that the use of CP must be 
interesting in many research fields such as pre-design [5], dimensioning and configuration problems 
[6], optimization problems [7], robotics [15]... Furthermore, the CSP community has developed work 
applicable in product and systems design as in [11, 12, 13, 14]. 



 
 

 

2.2 Constraint Satisfaction Problem 
A CSP is defined by a Triplet (X, D, C) such that [16]: 
- X = {X1,X2, . . . ,Xn} is a finite set of variable called constraint variables with n being the integer 
number of variables in the problem to be solved. 
- D = {D1,D2, . . . ,Dn} is a finite set of variables value domains of X  such that : 
 ∀ i ∈  {1,..,n }, Xi ∈ Di  (1) 
 A domain should be a real interval or a set of integer values. 
- C = {C1, C2, . . . ,Cp} is a finite set of constraints, p being any integer number representing the 
number of constraints of the problem. 
 ∀ i ∈  {1,..,n }, ∃ Xi ⊆  X  /  Ci(Xi)   Xi ∈ Di  (2) 
 A constraint is an explicit relation between two or more variables and imposes restrictions on 
areas of possible values for the variables of the problem. It should be any type of mathematical 
relation (linear, quadratic, non-linear, Boolean...) i.e. equations and/or inequalities, covering the value 
of a set of variables.  
Solving a CSP consists in instantiating each variable of X, and at the same time satisfying the set of 
problem constraints C. 

2.3 CSP solving process  
Function of the type of the constraint variables, the solving process will be different. In fact, CSP on 
integer variables, called discrete CSP, are different from CSP on real variables also called continuous 
CSP. 
- On the one hand, for solving discrete CSP, the methods come from operational research and artificial 
intelligence.  The first work that has been done is about forty years old [8]. These discrete CSP 
methods, which complexity goes exponential, are based on enumeration and filtering. This filtering, 
also called constraint propagation, enables the definition domains of variables to be reduced as the 
resolution process evolves. 
- On the other hand, CSPs have been developed using real variables with values in intervals. This 
interval-based resolution technique is a synthesis between interval-based analysis [4] and CSPs [9]. 
Several techniques have been developed, one of which is presented as an example in [10]. This study 
will focus on the use of CSP on intervals. 

2.3.1 Constraint propagation 
The aim of propagation techniques is to contract as much as possible the domains of the variables 
without losing any solution. This step removes the values of the variables included in the initial 
intervals, which makes inconsistent the constraints of the problem. It often allows binding the value 
domains of the variable and gives a better idea of the range of the variable.  

2.3.2 Solving 
A CSP can be solved using different kinds of algorithms, more or less efficients. A simplistic approach 
is based on the generate-and-test algorithm, which systematically generates each possible values 
assignment and tests if it satisfies all the constraints. The most common algorithm for performing 
systematic search is based on backtracking: it incrementally attempts to extend a partial solution 
toward a complete solution, by repeatedly choosing a value for another variable. The late detection of 
generate-and-test and backtracking algorithms being their main disadvantage, various consistency 
techniques have been implemented. The consistency-enforcing algorithm makes any partial solution of 
a small sub-network extensible to some surrounding network. Thus the inconsistency is detected as 
soon as possible. The consistency techniques range from simple node-consistency and the very 
popular arc-consistency, to full but expensive path-consistency. 

2.4 Global Optimization 
Global optimisation with constraint programming (using interval Newton and/or consistency methods) 
can prove the existence and uniqueness of a solution for a given problem. 



 
 

2.4.1 Single-Objective optimization 
The mono-objective optimization with CSP methods consists in solving by dichotomy a mathematical 
series in which a constraint is added in each next element calculation. At each step, a constraint, 
expressing that the next CSP must be better than the last, is added. The process stops on the CSP 
which minimizes the performance variable. 
2.4.2 Multi-Objective “p-criteria” Optimisation 
In the real world, optimisation problems can rarely be modelled like a single-objective problem. Multi-
objective optimization is an answer to the need of satisfying both many conflicting constraints. 
Because there is rarely a solution better than another at any point, different compromises depending on 
individuals can be chosen. Such choice is subjective, so it is essential to propose all the possible 
choices in order to avoid excluding any possibility.  
 A multi-objective problem is defined such that: 

 

Because one solution rarely minimizes all the fi, it is necessary to propose a comparison operator to 
determine if a performance vector is better than another or if they are equivalents. A possibility is to 
use the relation of domination according to the definition given by Pareto. Noting this relation in its 
wide sense and  in its strict sense, Fi dominates Fj in Pareto sense if and only if: 

 
The problem consists in determining the non-dominated set of points in the performance space. For 
any m, the Pareto hyper-surface can theoretically be obtained although its calculation is usually 
difficult and expensive. 

3 USING CONSTRAINT PROGRAMMING TO INVERT AN EMISSION MODEL 
Since an emission model is composed by a set of algebraic relations and / or tables, it can be modeled 
as a Constraint Satisfaction Problem and thus set inversion becomes possible. This is what is 
demonstrated and applied within the MOPSEA model (which appears to be the most relevant after the 
state of the art realized in [1] but any other emission model could be used). 

3.1 MOPSEA Model 
Belgian Science Policy financed the MOPSEA project [17] to make Belgium comply with 
international and European agreements. First, an inventory of the legislation and international 
reporting obligations was made to have a better overview of maritime transport. Then, the MOPSEA 
project developed a new activity based model in order to map historical emissions and to make a 
projection of the emissions for the near future. 
The MOPSEA model enables to quantify the most important produced gases and is available for a 
very large part of sea-going vessels. This model makes the distinction between fuel related emissions 
(CO2, SO2) and technology related emissions (HC, CO, NOx

The MOPSEA emission model can be illustrated by figure 1. There are three main inputs categories; 
emissions are highly impacted by the fuel used and by some characteristics of the engine such as its 
age, technology or its instant operating point. This last point leads to another important and necessary 
parameter in emissions calculation: the parameter time. Depending on these inputs, one is able to 

, PM). It is composed by Basic Emission 
Factors, averages of all stages of navigation and based on test cycles. To be representative of each 
vessel and each individual stage of navigation, tables of correction factors are implemented. These 
properties make the MOPSEA model particularly relevant for an application in dynamic simulation. 
Equations of this model are detailed in the project report [17] and also in [1].  



 
 

estimate ship instant emissions factors but also the mass of fuel related emissions (CO2 and SO2), and 
technology related emissions (NOx

 

, HC, CO, PM) for a defined mission. 

 

Figure 1: Input / Outputs of the MOPSEA model 

3.2 Propagation 
In [1], the results obtained with a CSP modelling of a 4-Stroke-Engine have been introduced. In table 
1, the variables introduced are divided in 3 categories: the characteristics of the ship, the basic 
emission factors (befXX) and the emission factors (efXX). The emission factors are calculated by 
multiplying basic emission factors with some correctors for the age, the technology, ... of the main 
engine. The first propagation step (Table 1, column (1)) includes only the model constraints 
(equations). The algorithm reduces the intervals as weak as possible and thus bounds the half-opened 
ones. Then the model is used as a direct model: the specifications of the engine (fuel type, date of 
building, minimum power, minimum rotational speed...) are added as constraints and a second 
propagation witch contracts again the intervals (Table 1, column (2)) is made. In the third part, it has 
been demonstrated that the model can be inverted: by adding a constraint on the NOx

Table 1 : Emission model inversion steps 

 emission factor, 
the others intervals are then automatically reduced as in Table 1, column (3). 

Variables Initial Intervals (1) (2) (3) 
Ship characteristics 

Power (kW) [0, 1e5] [0, 62.05] [36.5, 62.05] [36.5, 62.05] 
RPM (round per minute) [0, 1e7] [290, 1e7] [2000, 1e7] [2000, 1e7] 

%ofMCR [0, 85] [0, 85] [50, 85] [50, 85] 
oilType {0, 1, 2} {0, 1, 2} 0 0 

Date of Building {0,…, 6} {0,…, 6} 5 5 
Basic emission factor 

befHC (g/kWh) 0.6 0.6 0.6 0.6 
befCO (g/kWh) 3 3 3 3 

befNOx (g/kWh) 12 12 12 12 
befPM (g/kWh) {0,5, 0.8} {0,5, 0.8} 0.8 0.8 

Emission Factors 



 
 

efHC (g/kWh) [0, + ∞] [0, 2.0676] [0.337, 0.414] [0.337, 0.3497] 
efCO (g/kWh) [0, + ∞] [0, 15.66] [1.4, 2.251] [1.4, 1.527] 

efNOx (g/kWh) [0, + ∞] [0, 21.3864] [10.7, 11.04] 10.7088 
efPM (g/kWh) [0, + ∞] [0, 1.304] [0.68, 0.711] [0.682, 0.689]  

4 PROPULSION MODEL AS A CSP 

4.1 Propulsion system 
We choose to model a ship propelled by a mechanical transmission between the engine and the 
propeller. It is the most common type of propulsion in the merchant navy (tankers, bulk carrier...). 
This kind of propulsion is composed of an engine, a gearbox, a transmission shaft, a propeller and a 
hull (figure 2).  

 

Figure 2 : Direct propulsion 

Each component model is composed by some variables which domain can be discrete or continuous, 
such that it can be modelled as a CSP. For example, the gearbox is modelled by equations (9), (10), 
(11), where Mxx represents torques, n the reduction ratio and ωxx the rotational speed. 

 
In this study, the deformations of the mechanical transmission components and the losses in the 
mechanical connections (except inside the gearbox) are being ignored. The characteristics of the 
propulsion modelled in these conditions are detailed in table 2. 

Table 2 : Case study propulsion parameters 

Hull Propeller Gearbox Engine 

Wake 
coefficient 

 0.2 Diameter [m] 9 Nominal power 
[kW] 

50000 Maximal Power 
[kW] 

58 000 

Suction 
coefficient 

 0.17 Pitch/diameter 1 Nominal rotational 
speed [rad/s] 

10.47 Minimum rotational 
speed [RPM] 

10 
Number of blades 4 

   Efficiency [%] 96 Minimum rotational 
speed [RPM] 

110 
   Reduction ratio 1 
     Fuel type Heavy 

Fuel Oil 
  Date of Building 1995-

1999 
       

4.2 Hydrodynamic model 



 
 

The Holtrop-Mennen model, defined in [18] and [19], already implemented by the Scilab community 
(http://www.scilab.org) is used in order to quickly determine the running resistance of a given ship 
according to its speed. Then, one is able to calculate a polynomial function that best approximates this 
curve (fig. 4). In the CSP approach, this function will be considered as a constraint. The modelled 
vessel characteristics are introduced in Table 3 and figure 3. 

Table 3 : Model parameters 

Figure 3: hydrodynamic parameters 

The interpolated function is given in figure 4. A polynomial of degree 3 is a sufficient approximation 
for this application case but the exact formulation of the Holtrop-Mennen model will have to be used 
if the hull fouling effect is to be taken into account. 

 

Figure 4: Hydrodynamic resistance function of the ship speed 

4.3 Propulsion modelling 
All the components of the propulsion system were modelled as boxes, linked with connections. The 
connections between components are illustrated in figure 5. Each box contains equations 
characterizing the internal behaviour of the component, for example (9), (10), (11). 
 

Waterline area  Awl [m2 8210 ] 
Length waterline  Lwl 320 [m] 
Breadth waterline  Bwl 43  [m] 
Draught  D [m] 12.2 
Volume [m3 89 000 ] 
Half angle of entrance 
 at bow [deg]  

6.04 

Wetted Area  [m2 13415 ] 
Water density [kg/m3 1025 ] 
Water kinematic viscosity  
[m2

1.188*10
/s] 

-6 



 
 

 
Figure 5: Propulsion model 

5 OPTIMIZATION OF THE EMISSIONS 
In this part, variability on some component parameters of the system will be introduced: the objective 
is to determine which design parameters minimize the emissions.  
Among all the decision parameters and variables available to the designer, let’s show how modifying 
some preliminary design parameters can influence the emissions ratio. Modifications on the shape of 
the hull for a ship with given dimensions (written down in the specifications for example) are allowed. 
Hulls are mainly characterized by a wake coefficient and a thrust deduction factor (The Holtrop-
Mennen model is only related to ship dimensions and not to hull’s shape so the resistance to the 
advancement does not change) (Table 4) 

Table 4: Suction and wake coefficients for each Hull type. 

hullType 1 2 3 4 5 
wake coefficient     w 15 20 25 29 33 
suction coefficient   t 14 17 15 20 25 

A choice among some elements of the propulsion, namely the reduction ratio of the gearbox and the 
propeller diameter is also possible (in our case a constant Pitch/ Diameter ratio will be kept) (Table 5) 

Table 5: Diameter and reduction ratio for each Gearbox and Propeller type 

propellerType 1 2 3 4 5 
Diameter     D 8,5 8,75 9 9,25 9,5 
 
In the current experimentations, in order to reduce the number of possible combinations, some discrete 
choices can be made but one would give an interval for those design parameters. MOPSEA’s emission 
model affording the possibility of evaluating six different gases emissions, the optimization problem is 
clearly multi-objective. 

5.1 Mono-objective optimization 
To preserve the deterministic way that characterizes the CSP approach, a stochastic optimization 
algorithm isn’t to be used. The CSP solver [20] used here has a feature of single-objective 
optimization strictly deterministic. In a first approach, to transform the multi-objective problem in a 
mono-objective one, an aggregation function is built. The easiest aggregation function buildable 
consists in summing the masses for each gas. 

 
 The solution generated by the solver is given in table 6 (the mass of emissions are calculated for a one 
hour service). 

Table 6: Mono-objective solution 

hullType reducRatio propDiam 
(m) 

emCO
(tons) 

2 emSO
(tons) 

2 emHC 
(tons) 

emCO 
(tons) 

emNO
(tons) 

x emPM 
(tons) 

2 1,1 9,5 17,86 0,1723 0,0120 0,0653 0,3202 0,0206 
 

5.2 Multi-objective optimization 

gearBoxType 1 2 3 4 5 
Reduction ratio 0,8 0,9 1 1,1 1,2 



 
 

To perform a multi-objective optimization, the CSP solver is used to generate all the feasible solutions 
to the design problem. It founds out 327 solutions that respect for sure all the problem constraints 
(Table 7).  

Table 7: Some solutions extracted from the set of generated solutions 

hullType reducRatio propDiam 
(m) 

emCO
(tons) 

2 emSO
(tons) 

2 emHC 
(tons) 

emCO 
(tons) 

emNO
(tons) 

x emPM 
(tons) 

1 0,9 9,25 26,79 0,2584 0,0156 0,0717 0,4706 0,0300 
1 1 9 23,93 0,2308 0,0147 0,0719 0,4247 0,0271 
1 1 9,25 22,50 0,2170 0,0141 0,0705 0,3994 0,0255 
1 1,1 9,5 18,57 0,1792 0,0124 0,0667 0,3330 0,0214 
1 1,2 8,75 19,29 0,1860 0,0127 0,0674 0,3458 0,0220 
2 0,9 9,25 25,36 0,2446 0,0151 0,0720 0,4455 0,0287 
2 0,9 9,5 23,57 0,2274 0,0145 0,0716 0,4184 0,0267 
2 1 8,5 27,14 0,2618 0,0158 0,0718 0,4769 0,0304 
2 1 8,75 25,72 0,2481 0,0153 0,0722 0,4518 0,0291 
2 1,1 8,5 26,79 0,2584 0,0156 0,0717 0,4706 0,0300 
2 1,1 9,5 17,86 0,1723 0,0120 0,0653 0,3202 0,0206 
3 0,9 8,75 25,72 0,2481 0,0153 0,0722 0,4518 0,0291 
3 0,9 9 24,64 0,2377 0,0150 0,0716 0,4330 0,0279 
3 0,9 9,25 23,21 0,2239 0,0144 0,0712 0,4120 0,0263 
3 0,9 9,5 21,79 0,2102 0,0138 0,0704 0,3867 0,0249 
3 1 9,5 19,29 0,1860 0,0127 0,0674 0,3458 0,0220 
3 1,1 8,5 26,07 0,2515 0,0153 0,0715 0,4581 0,0292 
4 0,8 9,25 26,43 0,2549 0,0155 0,0716 0,4644 0,0296 
4 0,9 9,5 24,29 0,2343 0,0147 0,0713 0,4267 0,0275 

On Table 8, one can see that emissions are strongly depending on some key pre-design parameters. To 
perform a same mission, the environmental impact will be significantly different between two 
solutions. For example, to perform a one-hour mission, solution 25 (hullType 1, reducRatio 0.9, 
propDiam 9.25) is widely better than solution 26 (hullType 2, reducRatio 1.1, propDiam 9.5). 

Table 8 : Comparison between solution 25 and 26 

hullType reducRatio propDiam 
(m) 

emCO2 
(tons) 

emSO2 
(tons) 

emHC 
(tons) 

emCO 
(tons) 

emNOx 
(tons) 

emPM 
(tons) 

1 0,9 9,25 26,79 0,2584 0,0156 0,0717 0,4706 0,0300 
2 1,1 9,5 17,86 0,1723 0,0120 0,0653 0,3202 0,0206 

 



 
 

 
Figure 6: Comparison of the emissions for some solutions 

 
Then, a deterministic optimization algorithm built in C++ is used to search, among all the generated 
solutions, the set of optimal solutions in the Pareto sense, that is to say, the set of all solutions that 
dominate the rest of the solutions but do not dominate themselves. Using a deterministic algorithm 
ensures that the founded optimum is a global one. 
This points out that, for the present optimization problem, the Pareto front is reduced into a single 
solution that dominates all the others on all criteria (Table 9). 

Tableau 9: The Pareto frontier is composed by a unique solution 

hullType reducRatio propDiam 
(m) 

emCO
(tons) 

2 emSO
(tons) 

2 emHC 
(tons) 

emCO 
(tons) 

emNO
(tons) 

x emPM 
(tons) 

2 1,1 9,5 17,86 0,1723 0,0120 0,0653 0,3202 0,0206 

5.3 Results analysis 
The Pareto frontier is reduced into a single solution, which is to compare with the one obtained with 
the mono-objective approach. The report is as following: the solutions are identical. This shows that, 
in this case, using multi-objective optimization algorithms has no interest, except to show the 
uniqueness of the global optimum. It has also been shown that with the CSP approach, one is able to 
invert a full system model, composed of various multi-physics models. Moreover, it has also been 
shown that eco-design in the proper sense can be done, that is to say that ship propulsion can be sized 
by a performance objective, which includes not only dynamic performances, but also emissions 
targets. 

6 CONCLUSION 
After having demonstrated in [1] the possibility of reversing an emission model with the CSP 
approach, this article permits to demonstrate its interest: the inversion of emission models indeed 
allows (even with a relatively high-level model) to integrate environmental issues into preliminary 
design phases, before making any choice of pre-sizing, which effects will be irreversible later in the 
design process. 
In the current case, an optimal solution to a design problem for a defined operating state has been 
determined. For the continuation of this research, in order to be more representative of the reality, new 
models representing the various systems of the ship are going to be implemented and a representative 
mission for the vessel will be determined. Even if from the propulsion system point of view the 



 
 

continuous state is largely dominating on a mission, depending on the systems configuration at each 
instant t, the optimization of energy consumption of the ship on the entire mission will be strongly 
impacted. 

REFERENCES 
[1] Larroudé, V., Yvars, P.A., Millet, D., Chenouard, R., Bernard, A., Inversion of emission model 

using constraint propagation on tables and intervals, Application to Ship-Ecodesign, in Research 
in Interactive Design, Proc. IDMME _Virtual Concept 2010, Bordeaux, October 2010, 

[2] Sawada, H., Yan, X.T., Computer support for insightful engineering design based on generic and 
rigorous principles of symbolic algebra, in Research in Interactive Design, in Proc. IDMME _ 
Virtual Concept 2002,  Clermont-Ferrand, May 2002, 

[3] Ullman, David G., The mechanical design process, 3rd

[4] Moor,e R.E., Interval Analysis, Prentice-Hall, 1966. 

 edition, McGraw-Hill Higher Education, 
New York 2003, 

[5] Scaravetti, D., Pailhes, J., Nadeau, J.P., Sebastian, P., Embodiment design problem structuring, 
for using a decision support system. SCI2004, 8th World Multi-Conference on Systemics, 
Cybernetics and Informatics, Orlando, USA, Proc. CD ROM, 6 pages, juillet 2004. 

[6] Yvars, P.A., A constraint based approach to the composition relation management of a product 
class in design, Journal of Computing and Information Science in Engineering vol.10, 2010. 

[7] Merlet, J.P., A Generic Trajectory Verifier for the Motion Planning of Parallel Robots, in ASME 
Journal of Engineering Design, 2001. 

 [8] Mackworth, A.K., Consistency in networks of relations, Artificial Intelligence 8, 1, pp.99-118, 
1977. 

[9] Lhomme, O., Consistency Techniques for Numeric CSPs, 13th International Conference on 
Artificial Intelligence, pp 232-238, Chambéry, France, 1993. 

[10] Benhamou, F., Granvilliers, L., Continuous and Interval Constraints. In Handbook of Constraint 
Programming, Chapter 16:571-604, 2006. 

[11] Vargas, C., Saucier, A., Albert, P., Yvars, P.A., Knowledge Modelisation and Constraint 
Propagation in a Computer Aided Design System, In Workshop notes Constraint Processing in 
CAD of the Third International Conference on Artificial Intelligence in Design, Lausanne, 
Switzerland, August, 1994. 

[12] Yannou, B., Harmel, G., Use of Constraint Programming for Design, in Advances in Design, 
ElMaraghy H., ElMaraghy W. Editors, Springer, p. Chapter 12, 2005. 

[13] Yvars, P.A., Lafon, P., Zimmer, L., Optimization of Mechanical System: Contribution of 
Constraint Satisfaction Method, Proc. of International Conference on Computers and Industrial 
Engineering (CIE’39), Troyes, 2009. 

[14] Chenouard, R., Sebastian, P., Granvilliers, L.,  Solving an Air Conditioning Problem in an 
Embodiment Design Context using Constraint Satisfaction Techniques, CP'2007, 13th 
International Conference on Principles and Practice of Constraint Programming, 2007. 

[15] Jaulin, L., Localization of an underwater robot using interval constraint propagation, CP'2006, 
12th International Conference on Principles and Practice of Constraint Programming, 2006. 

[16] Montanari, U., Networks of constraints: fundamental properties and applications to picture 
processing, Information Science 7, pp.95-132, 1974. 

[17] Vangheluwe, M., Mees, J., Janssen, C., Monitoring programme on air pollution from sea-going 
vessels, Belgian science Policy 2007. 

[18] Holtrop, J., Mennen, G., An Approximate Power Prediction Method, in International 
Shipbuilding Progress vol. 329, pp166-170, 1982. 

[19] Holtrop, J., A Statistical Re-Analysis of Resistance and propulsion Data, in International 
Shipbuilding Progress vol. 353, pp272-276, 1984. 

[20] IBM ILOG Solver, Reference Manual, 2009. 

Contact: Vincent Larroudé 
SUPMECA - LISMMA 
“Ecodesign & Optimization of Products” Team 
83000 TOULON 



 
 

FRANCE 
Tel: Int +33 (0)4 94 03 88 00 
Email: vincent.larroude@supmeca.fr 
URL: http://lismma.supmeca.fr/?q=en 

Pierre-Alain Yvars is an Associate Professor at the Institut Supérieur de Mécanique, Paris. His current 
subjects of research focus on the declarative meta modeling of complex systems, design processes, 
and production systems, the application of constraint programming techniques and interval 
propagation to solve and optimize design problems. 

 Dominique Millet teaches design and eco-design methods at the Engineers School SUPMECA. He 
has undertaken numerous research programs on design and integration of design methods within 
organizations and has published numerous scientific papers on this subject. He is a member of the 
French Organization for Standardization (AFNOR) and has been a co-author of the ISO 14062. 

mailto:c.a.mcmahon@bath.ac.uk�
http://lismma.supmeca.fr/?q=en�

