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ABSTRACT 
In this paper we are studying a deterministic constraint based approach to solve Pareto bi-criterion 
optimization problems in design. After presenting the use of multi-objective optimization methods in 
design, the CSP method and the several ways to solve it is introduced. A quick overview of CSP 
application in product engineering is given too. Moreover,  we introduce an optimization point of view 
for CSP and we propose a deterministic alternative to stochastic methods for solving Pareto bi-
objective system sizing problems. An example in mechanical system optimization is given via the case 
study of the Pareto bi-criterion optimal design of a bolt coupling. The case is modeled as a Constraint 
Satisfaction Problem on both discrete and real variables. Finally, the numerical results and the Pareto 
frontier are exposed. 
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1 INTRODUCTION 
The context of integrated and collaborative design of mechanical product as became now the usual 
context of design. Even if some concepts and tools are available to support this process, lacks still 
exist. In this context optimization of product remains a strong issue. In this paper we are studying a 
deterministic constraint based approach to solve Pareto bi-criterion optimization problems in design.  
A first naïve approach should be used to deal with CSP and multi-objective optimization. It consists 
on transforming the interval of values of the first criteria into a set of discrete values. For each of 
them, a mono-objective algorithm is started to minimize the value of the second criteria. 
Unfortunately, this approach has at least two main drawbacks in design: On the one hand, there are 
many problems to adjust the set of discrete values and on the other hand, in case of a non convex and 
discontinuous design problem, we can miss several optimal points. The main purpose of this article is 
to go over these limitations in case of mixed design problems. 
After presenting the use of multi-objective optimization methods in design, the CSP method and the 
several ways to solve it is introduced. A quick overview of CSP application in product engineering is 
given too. Moreover,  we introduce an optimization point of view for CSP and we propose a 
deterministic alternative to stochastic methods for solving Pareto bi-objective system sizing problems. 
An example in mechanical system optimization is given via the case study of the Pareto bi-criterion 
optimal design of a bolt coupling. The case is modeled as a Constraint Satisfaction Problem on both 
discrete and real variables. Finally, the numerical results and the Pareto frontier are exposed. 

2 MULTI-OBJECTIVE OPTIMIZATION IN DESIGN 

2.1 Multi-objective optimization problem 
A lot of problems in the design fields are relevant to multi-objective optimization problems. Multi-
objective optimization is an answer to the need of satisfying both many conflicting criterion. Because 
there is rarely a solution better than another at any point, different compromises depending on 
preferences can be chosen.  
 
 A multi-objective problem is defined such that: 

 called decision vector. In a design problem, the  variables are called the 
design parameters. 



    called performance vector. Of course, in mono-objective optimization 
problem, F is a scalar value. 
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                                                                         (6) 
 

Unfortunately, the solutions to this problem rarely minimizes all the fi. It is necessary to propose a 
comparison operator to determine if a performance vector is better than another or if they are 
equivalents. A possibility is to use the relation of domination according to the definition given by 
Pareto. Noting  this relation in its wide sense and  in its strict sense, Fi dominates Fj in Pareto 
sense if and only if: 

 (7) 
and         

 (8) 

2.2 Application in design 
The problem consists on determining the non-dominated set of points in the performance space. For 
any m, the Pareto hyper-surface can theoretically be obtained although its calculation is usually 
difficult and expensive. 
More often, design problems and more precisely sizing ones are characterized by: 

- A strong set of requirements. 
- Mixed variables: the design parameters and the performance parameters should be both 

continuous and discrete.  
- Many analytical relations: The parameters have to satisfied many algebraic relations. 

A lot of works have been done to use stochastic algorithms to solve multi-objective optimization 
problems in design. A genetic algorithm as NSGA II give the opportunity to draw a good 
approximation for the Pareto frontier [1]. Unfortunately, those algorithms have several drawbacks: the 
calculation time is very high and more often they check the satisfaction of the analytical relations of 
the design problem by using a penalty mechanism.  
The constraint based approach, that we will deal with in this article, allows us to express and check the 
analytical relations posted on the design parameters and the performance parameters.  This analytical 
relations should be all algebraic equations and inequalities. 

3 BI-CRITERION OPTIMAL SIZING AS A CSP PROBLEM 

3.1 CSP 
A CSP is defined by a Triplet (X, D, C) such that [2]: 
- X = {X1,X2

- D = {D

, . . . ,Xn} is a finite set of variables called constraint variables with n being the integer 
number of variables in the problem to be solved. 

1,D2, . . . ,Dn

 ∀ i ∈  {1,..,n }, x
} is a finite set of variables value domains of X  such that : 
i

 A domain should be a real interval or a set of discrete values. 
 ∈ Di  (9) 

- C = {C1, C2

 ∀ i ∈  {1,..,n}, ∃ 𝒳

, . . . ,Cp} is a finite set of constraints, p being any integer number representing the 
number of constraints of the problem. 

i ⊆  X  /  Ci(𝒳i)   xi ∈ Di

 A constraint is any type of mathematical relation (linear, quadratic, non-linear, Boolean…) 
covering the values of a set of variables. 

  (10) 

More precisely, the constraints can be the following: 
- Logical: such that x=1 or y=4; x=3  z=5 
- Arithmetical: such that x > y; 2x+3y < z 



- Non-linear: such that cos(x) < sin(y) 
- Explicit: in the form of n-tuples of possible values such that: (x, y)  (0, 0), (1, 0), (2, 2)  
- Complex: such that: the variable values x, y, z must all be different. 
 
The variable domains can be: 

- Discrete: in the form of sets of possible values. 
- Continuous: in the form of intervals on real numbers 

 
Solving a CSP boils down to instantiating each of the variables of X while meeting the set of 

problem constraints C, and at the same time satisfying the set of problem constraints C. 
 

The solving process for a CSP depends on the type of the constraint variables. In fact CSP on integer 
variables called discrete CSP are different from CSP on real variables also called continuous or 
numerical CSP. 
- On the one hand, for solving discrete CSP, the methods are ones arising from operational research 
and artificial intelligence.  The first work dates back over thirty six years [3]. These discrete CSP 
methods, of exponential complexity, are based on enumeration and filtering. This filtering, also called 
constraint propagation, enables the definition domains of variables to be reduced as the resolution 
process evolves. 
- On the other hand, CSPs have been developed with real variables with values in intervals. This 
interval-based resolution technique is a synthesis between interval-based analysis [4] and CSPs in 
[5,6]. Several techniques have been developed, one of which is presented as an example in [7]. 

 
During the design process, designers used and managed design rules, tables, abacus, relations…All 
these structures should be modeled as constraints (mathematical relations between variables). 
The CSP community has developed work applicable in product and systems design [8-11]. 
 
3.2 Numerical CSP solving process 
Search algorithms as Branch and Prune start the process by selecting a variable to bisect. The order in 
which this choice is done is referred the variable ordering. A correct ordering decision can be crucial 
to perform an effective solving process in case of real-life problems. There exist several heuristics for 
selecting the variable ordering. After selecting the variable to bisect, the algorithms have to select a 
subinterval form the variable’s domain. This selection is called the value ordering. It can also have an 
important impact on the duration of the solving process. The Prune subroutine contracts the intervals 
of D by using interval arithmetic [4 ] and consistency mechanisms [6]. The goal is to fit the intervals 
bounds as much as possible without losing any solutions. 
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Figure 1. Branch and Prune algorithm[7] 



3.3 A deterministic constraint based Pareto bi-criterion optimization algorithm 
The mono-objective optimization principle adopted to minimize the value of an objective f is 
described on Figure 2. Usually, f should be a variable equal to a constraint expression representing the 
criteria to minimize. The key point is to solve by dichotomy a sequence of CSP where the set of 
constraints increases from one CSP to the next. At each step, we add a constraint expressing that the 
next CSP has to be better than the current one according to the minimization of the f variable. The 
process stops on the CSP which minimize the f variable value when the required precision  is reached. 
This is a kind of branch and bound method which works on finite domains as well as intervals. 
 

OptimCSP(X , D, C) 
begin 

 
CSP  (X, D, C) 
while   

 
if find a solution for CSP 

 
else 

 

 
endIf 
endWhile 
return   
end 

 
Figure 2: CSP and mono criteria optimization 

 
Usually, the problem of finding the non-dominated frontier is addressed by finding the optimal value 
in one direction and restart the search with constraints that limit the search space to other Pareto-
Optimal solutions. For a bi-criterion problem, a naïve approach consists on solving a mono-objective 
problem for each value of the second criteria but a lot of drawbacks should appear especially when the 
Pareto frontier is not convex and/or discontinuous. 
 
Van Wassenhove and Gelders [12] find the non dominated frontier in a bi-criterion (f1, f2

 

) scheduling 
problem. It should be described as follow: 

1st step:  find the optimal solution (Opt2) that minimize function f2; Let  d  Op
2

t2 
nd step:  impose that f1 < f1

3
(d) 

rd step: minimize f2
4

. If a solution S exists, then it is non dominated; else exit. 
th step:  Let d  f1(S). Go to 2nd

 
 step. 

If we try to use both csp and Van Wassenhove & Gelders principles we obtain what we call the 
BiPareto algorithm as shown in Figure 3. 



 
BiPareto(X, D, C, f1, f2

begin 
) 

Opti(X, D, C, f2

repeat 
) 

 Nondominated  NonDominated U  (X,D,C)  
 C  C U (f1 < f1

until  ! Opti(X, D, C, f
val) 
2

return NonDominated  
) 

end 
 

Figure 3: CSP and Pareto bi-criterion optimization 

4 CASE-STUDY 
 
4.1 Description 
We propose to illustrate the contribution of CSPs method with a simple case study of mechanical 
component. Figure 2 is presenting a bolt coupling that is used to transmit a torque by adherence 
between two shafts.  

 
 

Figure 4: Bolt coupling 
 
We suppose here that, in the design process of the product, technological choices have been made. 
Once designer have chosen this component, it is possible to identify design parameters {DPs} and 
functional requirements. In this simple case, functional requirements can be written as explicit 
relations between design parameters. These relations are equations and inequality relations. The model 
used here to establish theses relations lies on the expertise of the designer. This model is based on the 
VDI [13] method to calculate bolt dimension. The relations listed below will give the set of constraints 
for the CSP method. The mono-objective version of this problem has been previously treated in [14] 
with a pure genetic algorithm based approach and in [15] with a CSP one.  



 

Table 1. Set of design parameters 

Design parameters 
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d diameter of stress area (mm) s 
d nominal diameter of the bolt (mm) 
b radial width of the contact surface 
s interval between bolt (mm) 
d pitch diameter of thread (mm) 2 
p pitch of thread (mm) 

sm ,b size of the tightening tools (mm) m 
A area of stress cross section (mm²) s 

N number of bolts 
N minimal number of bolts m 
R radius of the couling (mm) 
R radius of bolts (mm) b 
R radius of housing shafts (mm) m 

Fu
nc

tio
na

l 
pa

ra
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M torque transmitted by the coupling (N.mm) 
M torque to be transmitted by the coupling (N.mm) T 

F0mini , 
F

minimal and maximal tensile strength in bolts (N). 
0maxi 
C torsion moment in the bolt due to the preload (N.mm) 1 

 : maximal normal stress in the bolt (MPa) 
 maximal tangential stress in the bolt (MPa) 
 maximal Von Mises stress in the bolt (MPa) 

 accuracy factor of the tightening tool 

M
at

er
ia

l 
pa

ra
m

et
e

 

fm , f friction coefficient between rim of the coupling and 
threaded contact surfaces in bolt 

1 

 
4.2 Modeling as a constraint satisfaction problem 
An analysis of the bolt coupling gives us the relations below taken as CSP constraints: 
 

     (11) 
 (12) 

 (13) 

 (14) 
) (15) 

 (16) 
 (17) 

   (18) 
   (19) 
 (20) 

  (21) 
    (22) 

 (23) 
 (24) 

  (25) 
 

The screw parameters set of values (Table 2) should be modeled as a constraint table. 



A constraint table is a global constraint that represents the possible combination values of a set of 
constraint variables. By global constraint, we mean a constraint that should be propagated on complex 
data structures. In our case, each line of a constraint table is a tuple of consistent values. If one or 
several values of a constraint variable become forbidden during a CSP solving process all the tuple 
related to this value are removed from the table too. 
For example, with Table 2, if we decide that d2

Table 2. Screw parameters set of values table 

 has to be greater than 10 and p has to be different to 2 
then, Lines number 1, 2, 3, 5 and 6 are removed from the table. Only lines number 4, 7 and 8 stay 
inside the constraint table. 

Num d ds d2 p bm sm dt 
1 6 5.062 5.350 1.00 7.50 14.50 6.6 
2 8 6.827 7.188 1.25 9.50 18.50 9.0 
3 10 8.593 9.026 1.50 12.50 23.50 11.0 
4 12 10.358 10.863 1.75 13.50 26.50 13.5 
5 14 12.124 12.701 2.00 15.50 29.50 15.5 
6 16 14.124 14.701 2.00 17.00 32.00 17.5 
7 20 17.655 18.376 2.50 21.00 40.00 22.0 
8 24 21.185 22.051 3.00 25.00 48.00 26.0 

 
Our CSP model has been implemented with the IlogCP C++ library [16]. 
 
We would like now to illustrate our approach with a set of numerical results. The initial domains given 
by the expert for the constraint variables are presented on Table 3. After a first propagation (Prune 
subroutine), the intervals are reduced as in the second column of Table 3. Then after adding the 
following specifications: 
 

  (26) 
  (27) 
  (28) 

 (29) 
  (30) 

  (31) 
  (32) 

 
The next propagation step again reduces the intervals as shown in the fourth column of Table3. 
 
4.3 Pareto bi-criterion optimization 
In this case study we would like to minimize the two following functions: 
 

- The total cost of the bolt coupling in euros : 
            (33) 

K1 = 0.6 euros/mm            (34) 
K2 = 5 euros /bolts               (35) 

- The total mass of the bolt coupling ( parameter is the thickness of the coupling) : 

       (36) 

kg.mm-3             (37) 

kg.mm-3  (38) 



 
Table 3. CSP solving process 

Design 
 

Initial domains 1st After specifications  propagation 
A [15 , 400] s [20.12, 352.49] [20.12, 352.49] 
R [5 , 1000] b [13, 1000] [58 , 100] 
R [5 , 1000] m [5, 992] 50 
s [1, 100] [14.5, 100] [14.5 , 78.5398] 
b [5 , 50] [8,50] [8,50] 
N [1 , 1000] [4 , 433] [8 , 43] 

N [4 ,1000] m [4 , 433] 8 
d [6 , 24] [6 , 24] [6 , 24] 
p [1 , 3] [1 , 3] [1 , 3] 
d [5.35 , 22.051] 2 [5.35, 22.051] [5.35, 22.051] 
d [5.062 , 21.185] s [5.062, 21.185] [5.062 , 21.185] 
s [14.5 , 48] m [14.5 , 48] [14.5 , 48] 
b [7.5 , 25] m [7.5 , 25] [7.5 , 25] 
dt [6.6, 26] [6.6, 26] [6.6, 26] 
M [1000, 1e+007] [1000, 1e+007] [4e+006, 1e+007] 

F0 [10 , 100000] mini [10, 66666.7] [6201.55, 66666.7] 
F0 [10 , 100000] maxi [15, 100000] [9302.33, 100000] 

C [0 , 200000] 1 [2.4, 200000.] [5840.53, 200000] 
 [0  , 2000] [0.0425, 1110.6] [26.3903, 564.274] 
 [0  , 2000] [0.00128, 641.2] [3.12851, 325.442] 

 [0  , 2000] [0.0426, 1110.6] [26.9409, 564.3] 
 [1.5 , 4] [1.5 , 4] 1.5 

f [0 , 1] m [3.464e-008, 1] 0.15 
f [0 , 1] 1 [0 , 1] 0.15 
R [10, 1050] [21, 1050] [66, 150] 

 
The goal is to minimize both  and . To do that, we implement the BiPareto 
algorithm and obtain the Pareto frontier of the problem (Figure 5). We notice that in our test case the 
Pareto frontier is discontinuous and not convex. 

 
Figure 5: Pareto frontier of the bolt coupling sizing problem 



5 CONCLUSION 
As a conclusion, we can outline that CSP method are able to support the phase of reducing the size and 
the complexity of the design space. CSP modelling and solving processes avoid complex analytical 
manipulation of function requirements. Designer can test several ways of constraining the design by 
adding or deleting constraints. This incremental process is very useful in this phase of reducing the 
design space, in an integrated and collaborative design process. 
 
For this simple example, the BiPareto algorithm finds easily the Pareto frontier optimal solution. One 
of the advantage is that designers don’t have to simplify the formulation of the optimization problem. 
Another one is that our proposal allows to deal with all types of bi-dimensional Pareto frontier even if 
they are discontinuous or non convex. 
 
Our current research concerns the generalization of this approach to an n dimensional Pareto Surface 
algorithm based on the CSP mechanisms. 
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