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ABSTRACT 
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The Dependency Structure Matrix (DSM) has proved to be a useful tool for system structure 
elicitation and analysis. However, as with any modelling approach, the insights gained from analysis 
are limited by the quality and correctness of input information. This paper explores how the quality of 
data in a DSM can be enhanced by elicitation methods which include comparison of information 
acquired from different perspectives and levels of abstraction. The approach is based on comparison of 
dependencies according to their structural importance. It is illustrated through two case studies: 
creation of a DSM showing the spatial connections between elements in a product, and a DSM 
capturing information flows in an organisation. We conclude that considering structural criteria can 
lead to improved data quality in DSM models, although further research is required to fully explore 
the benefits and limitations of our proposed approach. 
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1 INTRODUCTION 
The Dependency/Design Structure Matrix (DSM) is a modelling approach which can help to visualise 
and manage the structure of dependencies in a complex system such as a product, process or 
organisation [1]. It is a useful tool for eliciting the structure of dependencies, as each cell in the matrix 
can be systematically considered to determine whether a dependency exists and what its nature is. 
Many analysis approaches based on DSM modelling have been proposed to assist the design, 
optimisation and maintenance of complex systems. To illustrate, Table 1 summarises some methods 
which have been used to analyse system structures modelled as a DSM. 

 
Figure 1: The Design Structure Matrix represents the dependencies in a complex system 

The DSM has proved to be a useful tool for eliciting and analysing system structures. However, as 
with any modelling approach, the insights gained from analysis are limited by the quality and 
correctness of input information [1,2]. Relatively few studies have provided methods to create better 
quality DSMs or to evaluate the quality of DSMs. Furthermore, in a recent survey of DSM modellers, 
“methods for data elicitation” was identified as one of the most pressing opportunities for improving 
the methodology [3]. In this paper, we discuss methods which allow DSM modellers to raise the 
quality of their models by cross-checking, helping to pick up accidental mistakes during the elicitation 
process. In turn this should increase the accuracy, objectivity, and confidence in DSM-based analyses. 
We limit the analysis in this paper to consider acquiring only the existence, or not, of binary 
dependencies between a predefined list of elements in a system. We do not consider procedures for 
eliciting the ‘strength’ of connections or for eliciting the elements that comprise a system. 



Table 1: Some approaches to analysing a system structure represented as a DSM 

Analysis Description, application 
Clustering Identifies clusters, where elements within a cluster possess many dependencies with 

each other but few with elements in other clusters. 
Distance matrix The distances between the system elements. It can be realigned to identify groups of 

indirect dependencies. 
Matrix of indirect 
dependency 

The number of paths between any pair of elements. 

Partitioning, 
sequencing 

The reordering of the rows and columns of a DSM in order to place all elements a) on 
one side of the diagonal or b) at least close to the diagonal has several names such as 
partitioning or sequencing. 

Banding Indicates mutually-independent groups of consecutive elements in a given sequence. 
Change propagation Identify how change initiated in one subsystem can propagate through dependencies 

to ultimately require rework in many others 
Process simulation Identify how rework generated by interdependent tasks adds to project lead time 

2 BACKGROUND 
It has been said that all models are created for a purpose; and that while all models are wrong, some 
are more useful than others. This section discusses some of the aspects of data acquisition which 
influence the utility of a model to support a given purpose, and reviews some prior research regarding 
data acquisition for the Dependency Structure Matrix (DSM). 

2.1 Different sources of information 
A number of acquisition-related activities are required to create any DSM. Some of the key activities 
are shown in Table 2 (in reality these steps may be disordered and iterative). 

Table 2: Some key activities in acquiring information for a DSM model 

Activity in acquisition process Example (for vacuum cleaner) 
1. Identify breadth of modelling Entire product (but not user or use context) 
2. Identify depth of modelling Major parts (all mouldings but not screws etc.) 
3. Identify types (and sub-types) of element Modules (e.g., cyclone) and parts (e.g., mouldings) 
4. Identify types (and sub-types) of dependency Physical connections only – spatial mechanical, spatial static 
5. Create (possibly hierarchical) list of elements Handle, cyclone rear moulding, cyclone top moulding, etc. 
6. Elicit dependencies between elements Via dismantling workshop 
7. Check data Via cross-checking 
Considering the elicitation of dependency information, which is the focus of this paper, several 
methods may be used. These include: 

• Direct extraction of dependencies from databases or other ‘hard data’ (e.g., a PLM 
system or links on the world-wide web) 

• Analysis and superposition of existing documentation (e.g., process maps or org. charts, 
each covering some part of the system to be modelled) 

• Questionnaires/Surveys in which dependencies are elicited directly (e.g., asking: who do 
you talk to in an organisation?) 

• Workshops with domain experts (e.g., working systematically across rows and columns and 
considering each possible dependency in turn) 

2.2 Different perspectives of dependencies in a system 
The more complex a system is, or the more stakeholders interact with it, typically the more 
perspectives are available from which information can be elicited and from which a model of 
dependencies can be built. A complex system such as an organisation or a process, which to a large 
extent exists only in the minds of its stakeholders, can be considered to contain several sorts of 
information that can be viewed from different angles and perspectives. For instance, some people are 
closely involved in a particular design process and therefore have detailed knowledge, whereas others 
may only have a broad overview of that process, on a more abstract level. Some would consider work 
in a process to be divided into business functions whereas other would organise their view according 
to lifecycle phases. Some participants would see the pertinent border of a system to be wide, whereas 



others would set the modelling scope more narrowly. Furthermore, not all participants have equal 
knowledge of a system – which should be considered when acquiring data. Depending on the type of a 
system, knowledge about its dependencies may take several forms. These can be considered along 
different axes, including: Objective vs. Subjective dependencies (e.g., connections in a product vs. 
communication flows in an organisation; Tacit vs. Explicit knowledge; and Internal vs. External 
information (i.e., information which must be elicited directly from process participants vs. that which 
can be identified from documents). 

2.3 Prior research on data acquisition for the DSM 
One of the main issues associated with data acquisition for the DSM is overcoming problems of 
scaleability. While a benefit of the DSM method is its suitability for systematic consideration of 
possible connections, this benefit is quickly eroded as the number of elements increases, because the 
number of potential dependencies is n2

In general, moderately large DSM models may be difficult to elicit for a number of reasons, including: 

 – n, where n is the number of elements. Thus, eliciting the 
connections between 10 elements requires consideration of up to 90 cells, while a matrix with 100 
elements requires consideration of 9,900 cells. Complex engineering systems, such as aircraft or 
design organisations, may easily contain thousands of elements which could be modelled.  

• High effort. A lot of effort is required to consider all possible dependencies, as explained above. 
• Distributed knowledge. People may not know about the whole system; it may be difficult to 

identify who should be asked about what, and it may be necessary to negotiate regarding the 
existence (or not) of particular dependencies. 

• Disorientation. In a large matrix, dependencies may be easily placed in the wrong cells – due to 
alignment difficulties or disorientation when faced with a large grid. 

• Ambiguity. System elements may be misinterpreted if they are similar or given similar names, so 
that dependencies may be mistakenly identified. 

• Interface limitations. It is difficult to visualise large matrices, using computer software or paper 
methods – “like viewing a map through a letterbox”. 

• Fatigue. Modellers may become fatigued; typically the cells in the first few rows of a large matrix 
are more carefully considered than the last few when identifying dependencies. 

A number of authors have discussed approaches to mitigate such concerns when acquiring data for the 
DSM, aiming to reduce acquisition effort, to improve modelling quality, or both. Many of these 
authors have quantified the effort reductions of their approaches, in terms of the number of elicitation 
operations required for different schemes. Some of the existing approaches are summarised in Table 3. 

Table 3: Examples of approaches to support DSM data acquisition in the literature 

Approach Explanation Effort implications Quality implications 
Element 
hierarchical-
sequential (effort 
reduction) 

Elicit one matrix connecting 
dependencies between subsystems, 
to rule out possible dependencies at 
lower level (e.g. [1]) 

Reduce effort by 
focusing elicitation 
(not all cells require 
consideration) 

Possibly leads to missed 
dependencies between 
weakly connected 
subsystems 

Element 
hierarchical-
sequential (quality 
improvement) 

Elicit one high-level matrix and one 
low-level matrix. Look for 
discrepancies (e.g. [1]) 

Increase effort 
(subsystem 
dependencies also 
required) 

Improves quality by 
hierarchical comparison 

Element 
hierarchical-
concurrent 

Divide the system into subsystems. 
Have groups of experts elicit 
dependencies within a subsystem, 
and interface dependencies (e.g. [4]) 

Reduce effort by 
focusing elicitation  
(although interfaces 
elicited multiple times) 

Improve quality (of 
interface descriptions 
only) 

Dependency 
hierarchical-
concurrent 

Break down dependency type into 
sub-types, elicit matrices, then 
combine. (e.g. [5]) 

Increases effort Improves quality by 
deeper consideration of 
the existence (or not) of 
a dependency 

2.4 Summary 
The ultimate objective of methods to support data acquisition for the DSM is to reduce effort and/or 
improve quality. In one sense, improving quality can be considered as minimising errors in the model. 
However, for many systems which are too complex or subjective to access directly, it is difficult to 



quantify ‘error’ – even in principle, because the model itself provides the only baseline for 
comparison. Therefore, in this paper we aim to develop methods to help identify and minimise 
disagreement between views of a system, which we view as helping to ‘triangulate’ between 
perspectives and thus reach a better understanding. We consider that such disagreements may include: 
• Disagreements in perspective/interpretation – i.e., different models take a different scope or 

focus, or disagree on the existence (or not) of a dependency. 
• Disagreements in data – i.e., data does not reflect the system as represented by other data. 
• Disagreements in transcription – i.e., the modeller may make mistakes while creating a model, 

which as a result unintentionally differs from their understanding of it. 

3 APPROACH OVERVIEW 
The premise of this paper is that disagreements in models can be highlighted by comparisons between 
different points of view, allowing their reconsideration and ultimately improving data quality. We 
consider comparisons between a given model and: 
• A prior understanding of the system that model represents; 
• Another model elicited by another person or method; 
• Another model elicited from a different perspective or different level of abstraction. 
In particular, comparisons are made using the following guiding principles: 
• Network structure constraints can highlight disagreements between a model and an 

understanding of the system type. Knowledge of the type of system represented in a DSM can 
provide information to the elicitation process which results in better-quality DSM models. 

• Structural comparison between models can highlight disagreements between models. 
Multiple views of the dependencies in a system, elicited from different perspectives, can be 
compared from a structural point of view, highlighting potential weaknesses in the data and thus 
assisting the modeller in raising its quality. 

Each of these principles is discussed in greater detail below. 

 
Figure 2: Comparison of data on different levels of abstraction 

3.1  Network structure constraints 
If prior knowledge about a system is taken into account, it is possible to place very basic network 
structure constraints on the DSM. For instance, a matrix of structural interactions between physical 
parts, or of communication frequency between individuals in an organisation should be symmetric. 
Likewise, a reporting network in an organisation, or certain workflows, should contain no cycles. 
Considering these constraints, it is possible to identify marks which are not bidirectional or cycles in 
the network, and highlight them for consideration by the modeller. Each item thus identified suggests 
that a mistake has been made, and helps pinpoint its possible location. 



3.2  Structural comparison between models 
A system can be viewed from many different perspectives. However, all these views should have 
some aspects in common. Thus it should be possible to spot some inconsistencies in a system model 
by comparing two or more different perspectives. This strategy is used by several of the approaches 
listed in Table 3; but is expanded here as it is central to our proposed approach. 
The most conceptually straightforward comparison approach is to elicit the dependencies between a 
set of system elements twice, by different methods or from different stakeholders, and compare 
directly. However, this is effort-intensive. 
A second approach, summarised in Figure 2 is to compare a detailed DSM with a more abstract DSM, 
where multiple elements in the detailed DSM can be mapped to one in the abstract DSM. (For 
instance, a set of parts in the detailed DSM of a product might be mapped to a single module in the 
abstract DSM). Apart from reducing effort in comparison to the first approach, a secondary benefit of 
this method is that the dependencies in the abstract DSM can potentially be elicited by people that are 
broadly familiar with the system concerned but do not necessarily have all the detailed knowledge. 
The two matrices can then be compared directly, by assuming that a mark between two elements in the 
abstract DSM should correspond to one or more dependencies between their sub-elements in the 
detailed DSM. The approach taken in this paper aims to extend this idea by comparing matrices 
according to their structural characteristics, as explained below. 
From a structural analysis standpoint, all discrepancies between two supposedly-congruent views of a 
system are not equally important. Where multiple discrepancies exist, it should be possible to focus on 
those which are likely to have most significance to a structural analysis of the system. Thus, we 
propose that dependencies in two perspectives of a system can be ranked according to their structural 
importance, according to multiple criteria. If the two models do not agree, but the structural 
significance of the disagreement is low according to some criteria, it might be said that comparison of 
the perspectives indicates high-quality data. On the other hand, if the comparison indicates that the 
matrices have high structural disagreement, it might be said that further elicitation work is necessary to 
refine the information. Furthermore, it may be possible to pinpoint the important disagreements, thus 
helping to focus efforts to improve the data. 

4 CRITERIA FOR STRUCTURAL COMPARISON BETWEEN DSM MODELS 
In this section, we discuss metrics which were considered as the basis for structural comparisons 
between DSM models in this paper. The comparison approach is then illustrated through two case 
studies of dependency structure elicitation. 

4.1 Network comparison metrics 
Numeric comparison metrics convert each matrix into a single number. The numbers can then be 
compared directly to see if the matrices agree according to the criterion of interest. 

Degree of Connectivity 
All existing edges (EE) between the elements (n) are put in relation to the quantity of all possible 
edges (PE) for both DSMs being compared. The ratio (R) between EE and PE is known as the degree 
of connectivity. Mathematically this can be described as follows: 

EE = count of all existing edges Equation 1 

PE = n x (n - 1) Equation 2 

R = EE / PE Equation 3 

This ratio results in the degree of connectivity (DoC) which can assist plausibility checks in similar 
systems or models of the same system [6]. To enable comparisons, the DoC for a detailed matrix 
should be less than or equal to that for a abstract matrix of the same system (because one connection in 
a cell in the abstract matrix implies at least one in the equivalent cells of the detailed matrix). 

4.2 Dependency comparison metrics 
Dependency comparisons convert each matrix into a matrix of numbers, where each cell in the result 
indicates the importance of the corresponding dependency in the original matrix according to a 
particular criterion. These metrics can then be compared for different views of the same system to 



highlight large discrepancies. To compare metrics from matrices of different sizes, it is necessary to 
map the score for each dependency in the abstract DSM onto the equivalent dependencies in the 
detailed DSM. The means by which this is achieved depends on the metric under consideration, as 
discussed below. 

Minimum distance 
The minimum distance metric describes the shortest possible distance between two given elements by 
traversing dependencies in the structure. A distance of one, for example, means that a direct 
dependency exists between the two elements. A distance of two indicates that the shortest path 
between the two elements is of length 2. A matrix containing binary direct dependencies (DD) is 
equivalent to a distance matrix of length one (ID1), and can be transformed to a distance matrix with 
indirect dependencies (ID2) of length two by squaring – and so on for higher powers. Mathematically: 

ID1 = DD Equation 4 

ID2 = ID1 x DD = DD2 = ID12

Dn = ID(n-1) x DD Equation 6 

 Equation 5 

The minimum distance metric between any pair of elements may thus be calculated by finding the 
lowest value of n for which the dependency first appears in Dn.  
For the structural comparison, it is necessary to compare minimum distances for matrices of different 
size. This requires consideration of the number of detailed sub-elements which are wrapped up into a 
single abstract element. For instance, if two elements in the detailed matrix are wrapped into one in the 
abstract matrix, the four distance values are added, divided by four and divided by its square value. 
This considers the fact that that elements which are connected through a short chain of dependencies 
generally have stronger influence on each other than pairs that are connected only via long chains. 

RV (detailed) = ∑ 1/ (4 * SEV2) Equation 7 

A further step is required to take the higher number of subelements on the detailed level into account. 
For each of the two matrices, cell values that are above the average value of all cells in the given 
matrix are set to 1; otherwise, the cell value is set to 0. The matrices are then combined by setting the 
value of a given cell to 1 if the two matrices are in agreement for that cell (both 0 or both 1); otherwise 
the value is set to 0. This single matrix is then unwrapped to yield an x-y graph as shown in Figure 4. 
To illustrate application of this metric, the top graph shows comparison of a detailed DSM to an 
abstract DSM which exactly summarises it. The lower graph shows the same matrix with one incorrect 
dependency introduced. This highlights the impact of the incorrect dependency on the minimum 
distance between several other pairs of elements. The ‘amount’ of discrepancy as revealed by this 
metric depends both on the structure of the data and the location of the error. It can be used to 
highlight and compare the potential importance of discrepancies. 

 

The same data, with one 
incorrect dependency 
randomly introduced 

Abstract matrix exactly 
represents detailed matrix (all 
dependencies wrapped up) 

 
Figure 4: Example comparison using minimum distance criterion 

Number of indirect dependencies of length N 
Whereas the distance matrix is built from the lowest possible length of indirect dependency, the 
number of indirect dependencies metric, concerns the number of indirect dependencies between a 
given pair of elements for a given path length.  
The value (RV) of a given cell in the abstract matrix is generated as follows. The value (V) shown in 
the matrix of indirect dependencies of a specific length is multiplied by the amount of relations (AR) 



in the detailed DSM. This takes into account that the relations between subelements do not all need to 
exist if the corresponding relation exists on the abstract level. 

RV (abstract) = V x AR Equation 8 

The value (RV) of the same cell for the detailed matrix is calculated as follows. The degree of filling 
of subelements is calculated dividing the number of existing relations (EE) by the number of possible 
relations (PR) for the given matrix. This value is multiplied by the amount of indirect dependencies 
per sub-element of length four and scaled by an appropriate value to allow direct comparison. 

RV (detailed) = 0,125 x (EE / PR) x ∑ SEV Equation 9 

These values are calculated for each cell in the matrix and plotted on a 2D chart using similar 
technique to that described above. Using the same example as above, this is plotted in Figure 5 to 
illustrate. In each chart, the RV for each cell in the detailed matrix is shown in grey; the corresponding 
RV for the abstract matrix is shown in blue. This metric clearly highlights the location of 
discrepancies, but also the magnitude of their impact in terms of the number-of-indirect-dependencies 
metric. 

 

 
Figure 5: Example comparison using number of indirect dependencies criterion 

4.3 Summary 
The three metrics discussed above are not an exhaustive selection of the comparison criteria that could 
be used. They were chosen for illustrative purposes and are used in the case studies described below. 
Any network structure metric could be used for identifying important discrepancies; for instance, 
Kreimeyer [7] identifies over 100 metrics that could be adapted to serve this purpose. Ultimately, the 
particular set of metrics which should be used would depend upon the purpose for creating the matrix. 
For instance, the sensitivity of a process simulation or change propagation analysis to differences in 
certain metrics might be more pronounced than others. In such cases, the more critical metrics should 
be identified and used as the basis to support elicitation. On the other hand, if the objective is to elicit 
an overall system structure without a particular analysis in mind (for instance, to gain overview of a 
product architecture), or to create a model for multiple purposes, it might be appropriate to consider a 
broader set of metrics when comparing multiple views of a system to consider their quality. 

5 CASE STUDIES 
To illustrate the proposed approach, case studies were undertaken in which multiple models were 
elicited of 1) the structure of components in a product; and 2) the communication flows in an 
organisation. These DSMs were created using the Cambridge Advanced Modeller software, and a 
structural comparison was performed to highlight discrepancies in the DSMs for each case. 

5.1 Product DSM of a vacuum cleaner 

System overview 
The vacuum cleaner fulfilled the criteria of being simple enough to understand and comprising a 
manageable amount of elements, while remaining complex enough to justify modelling and being able 
to sensibly cluster the list of parts into modules to obtain an abstract DSM for structural comparison. 
Figure 6 shows the device which was used, the Argos Value VC9730S-6. 



Data acquisition 
Acquiring lists of elements. The vacuum cleaner was taken apart and 30 parts identified, focusing on 
‘major’ parts such as mouldings and not including connectors, screws, clips etc. On the abstract level 
two different modularisations were identified – namely, a 5 x 5 and 7 x 7 DSM. 
Acquiring dependencies for detailed DSM. To identify all spatial connections between the parts, 
disassembly workshops were held with each of eight participants. Each participant was given the 
vacuum cleaner with fasteners removed to ease disassembly. They were also given the empty 30x30 
matrix, with instructions to capture spatial connections between the listed parts. The time taken to 
elicit the detailed level DSM (435 possible relations) was about an hour for each participant.  
Acquiring dependencies for abstract DSMs. All three abstract level DSMs (37 possible relations) 
were filled during similar workshops. Five people did this independently. These people were not 
involved in the detailed elicitation workshops, thus had not encountered the detailed description of the 
vacuum cleaner. On average, this took about 10 minutes for a participant to elicit all three abstract 
level DSMs, for a total of 20 possible relations. 

Overview of acquired data 
In the abstract DSMs shown in Figure 6, each relation between clusters is shown if at least three of the 
participants see a relation between clusters. In the detailed DSM, a mark is shown if at least four of the 
eight participants had identified a relation between those elements.  

 

 
Figure 6: Different views of the vacuum cleaner and connections within it. 

Analysis of acquired data 
Comparing the 30x30 and 5x5 matrices according to the hierarchy criterion results in a 90% match. 
Both DSMs are entirely symmetric, which does not highlight any possible errors on the symmetry 
criterion and suggests a good-quality model. As expected, the degree of connectivity for the detailed 
DSM is lower than for the abstract DSM. Finally, Figure 7 shows the comparison between the detailed 
(30 x 30) and the abstract level DSM (5 x 5) using the two dependency comparison metrics. 

 
 
Indirect 
dependencies 

Distance 

 
Figure 7: Cell-wise comparison of the dependency comparison metrics shows few 

disagreements between models 



The metrics thus indicate that the two DSMs are strongly in agreement with regards to the basic 
structural criteria discussed. This suggests that the model is of high quality, which was expected 
because the system being modelled was largely objective, not too complex, and the two models each 
represented an agreement between multiple modellers working independently. 

5.2 Organisation DSM of a research group 

System overview 
The second case study is the elicitation of an organisational DSM based on the communication flows 
in the Engineering Design Centre (EDC) in the Engineering Department at the University of 
Cambridge. This differs from the first case in that the existence (or not) of a dependency is potentially 
far more subjective, and because knowledge of communication flows is distributed among many 
people. Thus, more disagreements would be expected than for the vacuum cleaner model. 

Data acquisition 
Acquiring lists of elements. The lists of elements were acquired directly from the EDC website. For 
the detailed DSM, 47 researchers working in the EDC were identified (not including academic staff). 
For the abstract DSM, the seven research themes within the EDC were listed. 
Acquiring dependencies for detailed DSM. An online survey was constructed and distributed to 
capture the interaction between individuals. Each member of the EDC identified on the list of elements 
was asked to rate the frequency and intensity of communication with every other member (i.e., to 
work down the list of 47 and select either none, low, medium or high for each of frequency and 
intensity). Individuals were also asked to identify which of the 6 research themes they work in, where 
each person may work in more than one theme. 45 of 47 members completed the survey. 
Because only binary dependencies are considered in the structural comparison metrics, the responses 
were filtered to show a dependency between two people if a medium or high level of communication 
was described for both frequency and intensity. This filtered out the weaker dependencies within what 
would otherwise be a very strongly-connected model, and allowed its treatment as a binary matrix. 
Acquiring dependencies for abstract DSMs. The interaction between research themes was extracted 
in two ways, resulting in two abstract matrices. Firstly, each EDC member was asked, while filling out 
the survey described above, to also indicate the levels of communication (frequency and intensity) that 
they had with each of the 7 themes as a whole. Thus, if they spoke to any person within a given theme 
on a daily basis, they would select ‘high’ for frequency of communication with that theme. These 
responses were compiled into a single 7x7 abstract DSM using the filtering procedure outlined above. 
Secondly, five Senior Research Associates were asked to separately fill a 7x7 DSM indicating the 
frequency and intensity of communication they believed occurred between the seven research themes. 
These 5 DSMs were filtered individually, then accumulated into a single abstract DSM by including 
only those dependencies which at least 4 of the 5 participants had identified. 

Overview of acquired data 
The three DSMs which were acquired are shown in Figure 8. 

Analysis of acquired data 
The comparison between the detailed matrix and each of the two abstract matrices, according to the 
structural metrics, is shown in Figure 9 and discussed below. 
Comparison of detailed DSM to abstract DSM obtained through survey 
The hierarchy constraint shows well over 50% correlation between the detailed organisation DSM and 
the abstract DSM obtained through the survey. This shows that relationships between members of the 
EDC and between research themes match fairly well. In cases where no relations between research 
themes exist, no or few relations between their members exist, and vice versa. Considering the 
symmetry constraint, both levels of abstraction were expected to be completely symmetric, yet this 
was not entirely the case. Closer examination of the underlying data set suggested that certain 
respondents responded across all interactions that the level of communication to their colleagues is far 
higher than their colleagues perceive it. This systematic bias, perhaps due to imprecise wording in the 
survey, accounted for the missing symmetry and could be corrected. 



  

 
Figure 8: Three views of the communication flows in the EDC, between individuals elicited 
from survey (left), between themes elicited from survey (right, top) and elicited directly from 

senior researchers (right, bottom) 
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Figure 9: Comparison of detailed DSM to abstract-survey DSM (top) and SRA-DSM (below) 

Comparison of the two matrices using distance metrics also highlights quite a number of mismatches. 
This suggests that the data on the two levels do not perfectly fit together. This suggests that there are 
still discrepancies that need revisiting if the two matrices are to agree with regards to this metric.  
Considering the indirect dependencies, the graph suggests the two matrices match reasonably well. 
There are several issues that might be worth looking at, specifically cell numbers 1, 16, 17, 25, 37 and 
43 as the difference is quite high in these. 
In summary, the match between the data elicited through the EDC online survey at different levels of 
abstraction does not completely match, even though the same people have elicited it. Some aspects are 
quite good and suggest a strong basic match. Nevertheless, there are some inconsistencies especially 
with the minimum distance and the amount of indirect dependencies. A possible suggestion could thus 
be: certain relations need to be reconsidered on both levels of abstraction. To localise these, the metric 



high amount of indirect dependencies might need to be broken down into several areas of the whole 
detailed DSM to spot where exactly mismatches might be. 
Comparison of detailed DSM to directly-elicited abstract DSM 
The abstract DSM filled directly by the SRAs is not symmetric either; just as the detailed one. The 
reason is the same as with the detailed DSM and has been described earlier in this Subsection. The 
degree of connectivity seems of equal quality just as the distance matrix; the according graph shows 
less but larger inconsistencies. The matrix of indirect dependencies, however, shows a better matching 
abstract DSM. Especially cells number 1, 16, 17, 37 and 43 have improved. Cell number 25 turns out 
to be a worse match. 

5.3 Summary of case studies 
Product DSM. A product DSM is less complicated and more straightforward than an organisational 
DSM as less subjectivity and personal perception play a role. In this paper, the product DSM 
illustrates how the structural comparison metrics can differentiate between high- and low-quality data. 
Organisation DSM: The metrics clearly show that, while the models have major consistencies, they 
are not totally alike. This is clearly shown by the presentation of the comparison along a single axis, 
which facilitates interpretation of the differences between values for particular cells. The data itself is 
highly subjective, as the symmetry constraint showed through indicating that the different participants 
had different views on the meaning of a strong or weak dependency. During the processing of survey 
data to create the DSMs, the data turned out to be affected by transcription errors. Some relations were 
missed, others which should not have existed were marked. Running the metrics resulted in an unusual 
looking set of graphs. Especially the metric matrix of indirect dependencies was able to locate where 
errors had been made; each error was considered to determine whether it could be easily explained and 
corrected. The case study seems to illustrate how comparison of models elicited using different means 
and from different perspectives, using structural metrics, can add value to the modeller and can supply 
her/him with additional information and insights. These insights can be used to highlight subjectivity 
as well as potential mistakes in transcription and other sources of error. 

6 DISCUSSION 
The results suggest that it is possible to raise the quality of data during the elicitation process by taking 
different views and perspectives of the same system. The comparison of consistency between the two 
or more levels, using structural metrics, allows insights about the data quality that has been elicited. 
Interestingly, it seems possible to gain insights that can help improve data quality, even without 
considering the real-world implications of the metrics that are discussed. 
The approach outlined in this paper is only a starting point which aims to highlight the potential for 
using structural comparisons to assist in data acquisition for the DSM. Clearly, there are many 
opportunities to improve the analysis which has been outlined here, and systematise it as a paper-based 
method or even as a process embedded in a DSM software tool. In terms of the theory, a key aspect 
that needs attention is the multitude of different structural aspects that could be considered. Even if 
one structural aspect suggests an inconsistency between the matrices, the elicitation could still be 
correct because data is lost in comparing abstract and detailed models. Likewise, different metrics 
would most likely suggest different disagreements or different levels of importance for particular 
disagreements. The approach discussed in this paper only considers binary DSMs. Many of the 
methods could be adapted relatively easily for binary MDMs; however additional issues arise when 
considering DSMs or MDMs containing information about the dependencies, such as their strength. 
Finally, it is important to highlight that the approach can only pick up inconsistencies between 
different perspectives. In the event of the same error occurring on both levels of abstraction the 
metrics will not work. The approach also cannot help distinguish which is the ‘correct’ value, when 
multiple models are in disagreement. However, by pointing out the potential discrepancy, we propose 
that structural comparisons may help modellers focus their efforts and result in better-quality models. 

7 CONCLUSION 
The DSM is a useful technique to gain insights into a complex system, such as a product, process or 
organisation. However, the quality of data in the DSM can significantly affect the quality and 
believability of insights gained through study of that model. Various methods have been proposed to 
assist with DSM knowledge elicitation, aiming to reduce effort of acquisition or improving quality of 



models by considering and comparing data acquired from different levels of abstraction. This paper 
has proposed and illustrated an extended approach in which the structural importance of disagreements 
between perspectives of a system is considered. We argue that highlighting the structural importance 
of disagreements can help focus the modeller’s attention on those potential errors which may have 
most impact on the structurally-oriented analyses for which DSMs are often used – such as 
modularisation and simulation. Initial application of the ideas to two realistic DSM-modelling case 
studies seem promising, but much further work is required to systematise the proposed method. 
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