

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11
15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK

DESIGNING MECHATRONIC SYSTEMS: A MODEL-
INTEGRATION APPROACH
Ahsan Qamar1, Jan Wikander1 and Carl During
(1) KTH-Royal Institute of Technology, Sweden (2) Micronic Laser Systems, Sweden

2

ABSTRACT
Development of mechatronic products requires different types of design models in order to support
both domain-independent specifications and domain-specific principles. This research aims to find out
how system-level modeling can support mechatronic design, and how the integration of system-level
modeling and domain-specific modeling can be supported during different design phases. A design
example of a hospital bed’s propulsion system is presented to show firstly the relationship between
conceptual design and system-level modeling, and secondly the need for integration of system level
and domain specific design models. An integrated modeling and design infrastructure is proposed to
support abstraction between mechatronic design models, hence supporting co-evolution of design
models. The paper concludes that a mechatronic design problem can be better supported through such
an integrated design approach. However, usability of this approach needs to be further supported by
more case studies in the future

Keywords: Mechatronics, system design, design infrastructure, model integration

1 INTRODUCTION
Technical systems today have to support a large number of functions at reduced cost. The efficiency
and cost effectiveness gained by implementing the required functionality through electronics and
computer software has become a major driver towards development of mechatronic products. These
products are characterized by increased integration of mechanics, electronics, and computer software,
requiring companies to establish cross-disciplinary teams consisting of several domain-experts.
Tomiyama et al. [1] state that multi-disciplinary product development (as in mechatronics) introduces
difficulties such as the need for an inter-disciplinary design language, how to deal with different
stakeholders, and how to deal with inter-disciplinary design problems. Mechatronic design requires a
collaborative effort between different domain experts within the cross-disciplinary team. However,
each domain contains different collections of design methods and tools. An overall mechatronic design
method is yet to be conceived. As engineers do not necessarily possess cross-domain knowledge, it is
difficult for an individual to understand the inter-disciplinary problems, especially in the context of
complex products. Therefore, communication between involved domains is essential throughout
different design phases in order to avoid integration problems in mechatronic product development. In
addition to this, technological advancements and increased functionality contribute to high complexity
in designing mechatronic products.
Modeling is an important design activity, where modelers try to gain information about consequences
of their decisions early in design. Buur and Andreasen [2] state that the success of a mechatronic
design project depends especially on the ability of the designers to communicate and visualize their
ideas to the rest of the group. Design models permit a designer to describe his or her thoughts for
better understanding, both individually and by the group. Depending on the design stage, a design
model can be abstract or detailed. A design model should be carefully developed to model only the
product properties necessary at the current design stage [2]. This restriction in scope is necessary:
firstly, since information about a design problem increases through different phases of design,
secondly, because a design model with too many product properties will become unnecessarily
complex to serve the purpose for the designer. Hence, product design is based on different design
models reproducing different product properties. In a mechatronic design scenario, design models vary
between different domains. Some of these models define and describe the product from the domain
perspective such as mechanics or electronics; others are used to evaluate product properties within a
domain such as dynamic analysis of a mechanical design.

The partitioning between different mechatronic domains is laid very early in product design. By
defining function principles to the function structure, the designer allocates different technologies to
the product function/sub-functions (design concept). However, this often leads to an isolated
development within a domain, and optimization of the individual modules, rather than the complete
system. Buur et al. [2] and Gausemeier et al. [3] state that specifying a mechatronic design concept
requires a new design model. Buur et al. [2] define the new model types to support abstract function
structure independent of a technology, function principles supported through different technologies,
and specification of the interfaces between different technologies. Gausemeier et al. [3] utilize a new
modeling language for supporting abstract function structure, domain-spanning function principles,
and interfaces.
One of the main ideas behind the research treated in this paper is to utilize design models that are
suitable to capture domain-independent specifications. At the same time, the designer can apply multi-
technological function principles to the design concept. The domain-specific models evolving from
these multi-technological function principles can be integrated with the domain-independent model,
the other main proposal of this paper.
Since design evolves not only from one design phase to the next, but also in between domains, it is
important to support abstraction between models of different engineering domains. Moreover, it is also
important to keep the design models consistent with each other if a certain design model is modified at
a certain design stage. One approach towards achieving this abstraction is through model
transformations. Some examples of integrating design models through model transformations are
presented in [4] and [5]. Consistency between mechatronic design models has been discussed in [6].
While these approaches extend the software engineering principles towards model-based development,
this paper aims to explain the relationship between design models within a mechatronic design
problem, and proposes a solution to multi-domain model integration. The paper utilizes a design study
of a servo-propelled hospital bed performed at the Department of Machine Design at the Royal
Institute of Technology, Sweden, to answer questions such as:
1. How to establish an initial domain-independent design specification through a design model, and

obtain a complete system view required in a mechatronic design problem?
2. How to establish relationships between domain-independent and domain-specific design models?
3. How to integrate different design models developed at different design stages?
The remaining part of the paper is structured to answer the above questions as follows. Section 2
discusses model-based design in relation to engineering design methods. The section proposes a
solution for solving the communication problem between domain experts in a mechatronic context
(question 1). Section 3 presents the design study of the hospital bed system highlighting the
conceptual design phase where domain-specific design models were also utilized. Section 4 is about
answering the question: how to integrate models (question 2), and how better design can be achieved
through model integration, supported by a small example (question 3). Section 5 concludes the paper,
including a discussion on proposed future work.

2 MECHATRONIC DESIGN AND MODEL-BASED DEVELOPMENT
Model-based engineering (MBE) is about elevating models in the engineering process to a central and
governing role in the specification, design, integration, validation, and operation of a system [7]. The
systematic design approach from Pahl & Beitz [8] shows three main product design phases: conceptual
design, embodiment design, and detailed design. During these design phases, models increase in detail
with the passage of time, and abstraction between models needs to be supported in order to manage the
modeling process as a whole.
Design activities for a mechatronic system are typically performed by a multi-disciplinary team of
domain experts. Different design methods (available in different domains) are followed by the domain
experts, who are unlikely to possess inter-disciplinary knowledge to get a detailed enough
understanding of the whole design problem. Therefore, it is difficult to establish a common
mechatronic view; rather different domain views are established and the dependencies in-between are
not clear. Hence, it is necessary to establish some means of communication between such views in
order to avoid integration problems. Frey et al. [9] classify the communication between two design-
domains in terms of communication possibilities between persons, between methods, between models,
and between analysis tools. We argue that for a mechatronic design problem, two possibilities can be
undertaken to attack the communication problem:

1. A mechatronic design methodology could be followed. VDI2206 [10] introduces such a design
methodology. However, it does not cover the management of dependencies between mechatronic
design domains. Also, the means to support abstraction between system-design and domain-
specific design (per VDI2206) are lacking. A vertical abstraction adds detail to a model or
reduces it, while a horizontal abstraction typically takes place between models of the same detail,
often in different domains. As highlighted by Buur et al. [2], new mechatronic design models are
needed that support both domain-independent and multi-domain modeling capability. Some
modeling languages, such as Modelica [11] and MapleSim [12] support the creation of multi-
domain design models (spanning different stages of VDI2206). However, domain-independence
is also important for the different domain-experts to share a common product view. We conclude
here that a single multi-domain modeling language cannot provide a solution for mechatronic
design problems, a conclusion also supported by Shah et al. [5]. Such a language is difficult to
develop, support, and evolve with time.

2. A framework that supports mechatronic design can be utilized. Here, we can let the domain
experts utilize the existing methodologies inside each domain, and provide means of
communication between domains through the framework. As suggested by Frey at al. [9], a
person-to-person and method-to-method communication is either error-prone, or not directly
possible. Even though the communication between analysis tools is possible, however, it is based
only on execution of design models and not their development. Therefore, a model-to-model
communication is employed during this paper, which allows for both vertical and horizontal
abstraction during model-based development.

Figure 1. Model—based development in engineering design in the context of an integrated

modelling and design infrastructure for mechatronic system design

For communication through multi-domain models in a perspective of engineering design, an
infrastructure is required, supporting evolution of design models while design proceeds between
different design phases. The infrastructure should support development of domain-independent design
models and specification of interfaces between design domains, development of domain-specific
design models, and integration between all these design models. Such an infrastructure is vital to
integrate multi-domain models, which is a key proposal of this paper, as explained in Section 4.
Conceptual design is a dynamic phase in terms of change in design and interaction of designers. Initial
product synthesis – being part of conceptual design – serves as a basis for developing an abstract
function structure and corresponding function principles. In a model-based development with model as
the primary artifact, it is important to capture the product synthesis information inside models. In
agreement with Gausemeier et al. [3], we will use the term common specification language to denote a
common platform for different domain experts to define and specify a system. Figure 1 shows that a
system-model can be developed through a common language, based on the findings of product
synthesis phase. Here, the interfaces between chosen design concepts can be specified starting in a
black-box manner and continuing towards increasing detail. The Systems Modeling Language
(SysML) [13] is a general purpose modeling language where a modeler can specify a system to a level

that enables its association to other design models [14]. We utilize SysML to represent the multi-
domain function principles through generic SysML constructs. The resulting model can be utilized as
a common design model, by building relationships with other design models. The relationships can be
built by utilizing the extension capability in SysML to create domain-specific parts of the system
model (Figure 1), where the parts are built with concepts of a particular domain. The proposed
integration infrastructure allows integration of the domain-specific design models with the domain-
specific parts of the system model. Hence, as the design progresses through domain-specific design
models, the system model also increases in detail. Design iterations continue to take place between
different design stages, and design models consistently evolve through the integration infrastructure
(Figure 1). Another approach is to first create domain—specific design models based on product
synthesis (red arrows in Figure 1). The resulting design models can be related with each other by
transforming them into the system model through the integration infrastructure. We do not strictly
propose to follow this order or the order starting with the system model, to leave flexibility for future
work.

3 DESIGN EXERCISE: A SERVO-PROPELLED HOSPITAL BED
This section is based on a mechatronic design example in order to better reflect on the following
questions (rephrased from questions: 1, 2, and 3 in section 1):
• How to establish relationships between domain-independent and domain-specific design models?
• How to integrate different design models developed at different design stages?
By performing a design exercise on the hospital bed example, we try to identify the needs for the
integrated modeling and design infrastructure, and determine how dependencies can be managed
through the SysML model. The aim with the exercise is to design an active (driven) wheel module
which can be utilized on common hospital beds. The design activities performed within the
conceptual design phase are explained in the subsequent sections.

3.1. Conceptual design
During conceptual design, a group of designers were provided with a set of requirements for the
hospital bed. The design team consisted of six team members with backgrounds in mechanical
engineering, electrical engineering, control engineering, system engineering and computer science.
The requirements for the design of the wheel module were classified in different categories on a white
board, and used as a reference throughout the initial conceptual design phase. Some of the main
requirements for hospital bed are presented below; the rest is omitted for space concerns:
• Bed speed of 2 m/sec on a maximum 5o

• Being able to turn on the spot and move in any direction (driving configuration, control)
 slope (power, driving requirements)

• Wheel solution packaged as one module (sensor, motors, control, wheel module configuration)
Based on these requirements, the design group discussed the following main points:
• Which configuration of driving and steering (number and placement of active wheels: propulsion

system configuration) will provide the best solution in terms of drivability, steering, and cost
effectiveness. Six different configurations were discussed.

• How to provide a modular solution, yet one that works on current hospital beds. This includes
decision on sensors (wired/wireless), power required to move maximum load, battery (central or
distributed), battery charging scenarios, and mechanical interfacing.

• Configuration of driving and steering within one wheel module assembly (wheel module
configuration). Two configurations were discussed, knowing available wheels and information
about drive and steering actuators. The braking requirement for each wheel was also discussed to
be accounted in the solution.

• A central controller is required to control the driving and steering of the bed as a whole, by
controlling the available drive and steer actuators in each wheel module assembly.

• Safety considerations in relation to the use of wireless devices, patient safety and comfort
requirements.

During the initial conceptual design phase (lasting for 5 hours), an initial decision was made on some
of the concepts. However, some concepts needed further analyses before any decision about them
could be made. Some of these concepts were:
• Wheel-module configurations

• Analysis of driving, steering and braking actions in relation to bed movement for six different
propulsion system configurations, and two different wheel module configurations

• Controller complexity for different wheel module- and propulsion system- configurations
• Which battery is suitable for the bed, i.e. an analysis of power to weight ratio and cost

considerations of batteries
• Relationship of distributed battery and central battery in connection to wired and wireless

sensors, and the cost difference for each concept
Different propulsion system configurations led to six possible design alternatives, all providing driving
and steering capability. These concepts were compared in a weighted decision matrix (omitted here
due to space concerns) against a set of basic design criteria. The decision matrix showed that the
propulsion system configuration based on either a diagonal configuration or a fully configurable
configuration as the most feasible options. The same result is modeled inside a system-model (Figure
3(b)) which is discussed in the following section.

3.2. System design/modeling
After completing the initial conceptual design, the requirements for the wheel module along with the
possible solution concepts were known (working structure). A system model was built based on these
findings. The suitability of SysML as a modeling language during the conceptual design phase has
been documented in [15] and [16]. This section will present a few snapshots of the SysML model,
especially its relation to the performed synthesis, and to the creation of domain-specific models.

Figure 2. (a) Use cases showing manual and propelled operation of bed. (b) Top-level

overview of bed showing main actors. (c) A set of requirements for the power subsystem

Figure 2(a) shows the manual and automated driving use cases performed by the bed operator. The
accelerate, brake, and steer use cases are performed by the operator manually. The top-level structure
of a hospital bed is shown in Figure 2(b), containing the main actors and the environment in which the
bed operates. The system HospitalBed contains parts (regardless of technology) mentioned in the parts
compartment. Figure 2(c) shows some of the derived requirements, in this case for the power
subsystem. All models in Figure 2 are developed based on the information obtained through the
product synthesis phase of the design exercise. The main structure of the hospital bed propulsion
system is shown in Figure 3(a), showing different subsystems. Each subsystem contains a combination
of multi-domain components, represented through general purpose semantics. The interfaces between
different system components (represented by generic constructs) can also be specified.
The ChassisSubsystem in Figure 3(a) contains two to four WheelModule blocks. This is based on the
conceptual design phase discussion deciding that there will be a minimum of two active wheels on
each bed, and each wheel will be enclosed as one complete module with driving and steering
capability (Modular Components Constraint). The six alternative propulsion system configurations are

compared against stated criteria by a weighted objective function (WheelModuleObjectiveFunction)
used inside the WheelModulePerformance TradeOff block (Figure 3(b)).

Figure 3. (a) Main Structure of the propulsion system (b) A model of a trade-off study for
propulsion system configuration alternatives. The criteria such as configurability etc. are

represented as measures of effectiveness (moe) of each alternative.

During the conceptual design phase, a discussion was made about off the shelf wheel-motors, only
requiring a steering mechanism to provide a steering and driving capability in one module. Based on
the wheel-motor, two configurations for the wheel module assembly were discussed, as represented in
Figure 4(a). Each configuration consists of a drive motor-wheel unit and a steering
actuator/transmission as constituent parts. Interfaces Drive and Steer are provided interfaces to each
configuration, letting the drive motor and steer configuration to interact with the wheel-module
configuration. Interface Sensor (to measure angle and velocity of wheel) is a required interface, letting
the wheel configuration send sensor measurements to other blocks. Configuration 1 consists of a
gearing with a steer motor to steer the drive motor assembly (Figure 4(b)). Configuration 2 contains
freely revolving driving assembly with the drive wheel mounted off the vertical rotational axis of the
steering assembly. A brake modulator inside the steer assembly locks the drive assembly at the
required angle. Position encoders were selected to measure the steering and driving rotation angles.

Figure 4. (a) Two alternatives for wheel module configuration. (b) Internal block diagram

showing internal connections for configuration 1

In order to make a decision about the wheel module configuration, it was important to realize each
configuration in terms of form, and analyze them in terms of behavior. For this purpose, a CAD model
and a dynamic analysis model for each configuration were built, as discussed in section 3.3.
For the controller, a centralized architecture and a distributed architecture was considered. Although
both the architectures were also dependent upon selection of wireless or wired transmission, it was
decided to control the angle and velocity of each wheel through a local controller (Figure 5(b)). If a
wireless transmission is considered, a local battery can power the wheel module and the local
controller. In this case, a wireless transceiver would send data to the main controller and receive
reference commands from it as shown in Figure 5(a). Figure 6 shows the complete distributed control
architecture with two wheel modules and the user interface inputs. It can be noted that in case of wired

transmission, the interface WirelessData and WirelessCmd will be replaced by wire connections. In
this case, a central battery can also be considered relevant instead of a localized battery.

Figure 5. (a) Wheel module in distributed architecture. (b) Internal structure of local

controller, and its interface with the wheel module configuration 2

The system-level modeling through SysML proved to capture the information gathered during the
synthesis phase effectively, as displayed through different SysML diagrams. Moreover, all SysML
diagrams presented here are consistent with each other. This means that introducing a change in one
diagram during design leads to relevant changes in other diagrams too. The SysML tool (MagicDraw
[20]) supports keeping different SysML diagrams consistent with each other.

Figure 6. Architecture of a distributed controller with the user interface buttons, and two

wheel modules in the diagonal propulsion system configuration

3.3. Domain-specific design
As discussed earlier, the decision about some of the components, configurations, and alternatives
needed further analyses through domain specific models. This section provides a limited overview
about mechanical design and analysis of the wheel module, in order to make a decision about the
wheel module configuration assembly and the relevant components. Other issues such as controller
bandwidth, energy supply and communication between wheel modules etc. were also discussed.
However they are not presented here due to space concerns.

Wheel module assembly design
The CAD modeling of the two wheel module configurations was performed to get an estimation of the
size of the whole module and to know the necessary components. The wheel-motor model was utilized
to construct the assembly. The two concepts can then be compared based on manufacturing cost,
safety, and performance criteria. Figure 7 (a) and (b) show the two configurations.

Analysis of wheel module configurations
In order to analyze how the bed moves with each wheel module configuration, a dynamic analysis
model was created. The multi-domain physical modeling and simulation tool MapleSim [12] was used

Figure 7. CAD models of wheel module configurations. Both configurations contain the

same drive motor and wheel (a) Configuration 1 with steering motor for steering (b)
Configuration 2 with brake modulator for steering

to construct an initial simplified model of the two concepts. This analysis also highlights the control
complexity of each configuration. Figure 8(a) shows the rigid body model using configuration 1.
Figure 8(b) shows the rigid body model using configuration 2 with the brake modulator represented as
a clutch that locks or releases the drive wheel. Both configurations gave acceptable performance.
However, configuration 2 (i.e. utilizing a brake modulator to provide steering) requires an intelligent
control strategy to control steering angle, whereas configuration 1 is a much simpler control problem.

Figure 8. Design models created to analyze the bed movement. (a) Configuration 1 (b)

Configuration 2, the clutch mimics the brake modulator. A planar force in each driven wheel
mimics the steering and driving actuator in both configurations

The above design and analysis through domain-specific design models was necessary in order to take
a decision about wheel-module configuration – a situation which is typical to most mechatronic
system developments. This further emphasizes the need to integrate the system-model with these
domain specific design models in order to ensure consistency while designing. Section-4 throws
further light on this topic.

3.4. Dependencies between domain-models
Through the SysML model, the design concept for the propulsion system was specified. Further
domain-specific design provided more information in order to make decision about sub-systems,
components, and alternatives. The domain-specific models were created based on information
obtained from the SysML model. For example, the CAD model in Figure 7(a) was made based on the
initial sketches made during conceptual design phase, which led to creation of figure 4(b). The
information about wheel, wheel-motor, steering motor and steering configuration was needed before
the CAD model could be created; a dependency between the SysML model and the CAD model.
Moreover, the dynamic analysis model in Figure 8(a) was created based on the propulsion system
configuration, a dependency between CAD model, SysML model and the dynamic analysis model.
Since the SysML model contains the wheel module requirements and the complete system structure, it
is important to keep this model consistent with other design models. A change in e.g. the CAD model

during design iteration should be traced back to the corresponding model element inside the SysML
model, a problem of multi-view consistency as explained in [5]. The following section presents our
proposed infrastructure for integrating models.

4 INTEGRATING MODELS FOR ABSTRACTIONS IN DESIGN
Several iterations may take place both between the design phases and between the corresponding
design models before the design process is complete. Each model contains a certain level of detail. For
example, SysML provides a rather abstract system view, whereas, a CAD model provides a detailed
view. Figure 9(a) shows a domain-independent system-model, and the corresponding domain-specific
models that are typically created during design.

Figure 9. (a) Iterations between multi-domain design models, and abstraction during

different design phases (b) Integrated modeling infrastructure based on EMF

Keeping the domain models consistent with each other requires means to manage inter-domain
dependencies. A domain-model contains information that has relation to other domain-models
(dependencies). It also contains information that is relevant only within the domain-model itself. We
utilize a meta-modeling approach to characterize the information relations between domain-models. A
meta-model specifies the abstract syntax of a modeling notation [17]. A meta-model for a domain
specifies the concepts that exist within that domain [5]. Therefore, different domain-models comply
with different meta-models. By defining relationships between these meta-models, it is possible to
write transformations between models, which comply with those meta-models. We utilize the Eclipse
Modeling Framework (EMF) [18] to define the meta-model of each domain, and we define relations
between meta-models through a rule-based language (ATL) [19]. Figure 9(b) shows the integrated
modeling infrastructure, in this case involving two domains: mechanical CAD, and dynamic analysis.
Inside EMF, a model is represented as an Ecore model. Therefore, each domain is specified through a
domain-meta model in Ecore, e.g. MCAD Ecore meta-model (Figure 9(b)).
Since SysML is a general purpose modeling language, the aim of using SysML is to create a system
model independent of any domain or technology. However, our proposition to establish relationships
between domain-models through SysML requires SysML to support domain-specific concepts. This
has been supported in SysML through creation of profiles. A profile extends the SysML meta-model
with the needed domain-specific constructs. Figure 9(b) shows two profile blocks, each relating to a
domain-specific model. For example, the SysML MCAD profile model contains a model built with
MCAD concepts such as: assembly, part, relations etc. An MCAD-specific SysML meta-model can
then be created as an Ecore model. For dynamic analysis (DA) models, a DA-specific SysML meta-
model can be created. Relationships between the SysML model and the domain-specific part of the
SysML model are necessary to establish a link between the system design and the domain-specific
design. This can be achieved by allocating (manually) elements/components in SysML model to their
counter parts in domain-specific part of the SysML model. In this way, the relationships between
different design models can be established (inter-domain dependencies) through the SysML model, by

establishing allocation relationships between SysML model and the corresponding domain-specific
parts of it. For example, in Figure 9(b), it is possible to establish relationships between the MCAD
model and the dynamic analysis model (DA) by establishing relationships between the SysML model
and the SysML MCAD Profile Model, and between SysML model and the SysML DA Profile Model.
These relations can be manually drawn, or can be automated. An automation procedure requires
relating a concept in one meta-model to a corresponding concept in the other meta-model and writing
transformation rules based on those relations. Figure 9(b) shows an ATL transformation between each
domain model and the domain-specific part of SysML model in EMF.

4.1. Integration Example
This section will illustrate an integration example between the MCAD model of the hospital bed wheel
unit and the SysML system model. Figure 10(a) shows a generalized meta-model for MCAD, based on
constructs such as assembly, part, variable, relation etc. There are differences between MCAD tools,
which can lead to a different meta-model for each tool. However, we propose a generalized meta-
model to be adapted for a domain such as MCAD, and aligning different modeling languages within
the domain to that meta-model. An important consideration here is that the proposed MCAD meta-
model does not contain all MCAD concepts; rather it only contains constructs relating to the type of
information that we are interested to obtain from MCAD tools.

(a) (b)

Figure 10. (a) MCAD meta-model in EMF Ecore (b) Configuration 1 represented in Ecore

A model complying with the MCAD meta-model can be created by making API calls to the MCAD
tool of choice. We utilize Solid Edge [21] in this example, and populate a Solid Edge Ecore model
(representing the MCAD Ecore model) through a developed parser (see Figure 9(b)). The same parser
allows us to create a model inside Solid Edge based on an Ecore model. Hence, it is now possible to
represent the wheel-module assembly configuration 1 as an Ecore model shown in Figure 10(b).
The SysML profile for MCAD is based on MCAD concepts, which are extended from the SysML
meta-model elements. For example, a Part extends a SysML block etc. Figure 11(a) shows
SysML4CAD profile meta-model represented in Ecore. Another parser is used that populates an Ecore
model complying with SysML4CAD domain-specific meta-model. The same parser allows creating a
SysML MCAD Profile model from an Ecore model (see Figure 9(b)). Figure 11(b) shows the wheel
module configuration 1 as SysML4MCAD Ecore model.
Declarative ATL rules can be specified for each meta-model construct, to create a target model
element based on the source model element. This completes a transformation between MCAD and
SysML4CAD. In a similar fashion, transformations will be written between the DA model and
SysML4DA model based on their corresponding meta-models as shown in Figure 9(b). At the end, the

relationships between SysML4CAD profile model and SysML4DA profile model can be specified, to
describe the dependencies between the two domain specific design models.

(a) (b)

Figure 11. (a) SysML profile for CAD (SysML4CAD) in Ecore (b) Wheel module
configuration 1 represented as an instance of SysML4CAD profile

4.2. Mechatronic procedure, domain models under SysML Umbrella
The extended system model allows us to first establish an overall overview of the mechatronic system,
to specify the function principles, and to specify the principle solution through a common specification
language. Through the model integration framework, domain-specific views are integrated, and
dependencies and consistency between design models are maintained via the system model. We
believe that establishing abstract system information through the system model and keeping other
design models consistent with the system view provide good support for identifying inconsistencies
among design models, and avoiding integration failures as a result. The integration infrastructure can
in this way support development of better mechatronic design solutions.

5 CONCLUSION
In this paper, a proposal for mechatronic design infrastructure based on the integration of design
models is presented. Mechatronic product development requires a common specification language for
different domain experts to communicate with each other. It also requires design models that can
support multi-domain constructs inside one modeling language to be able to model a mechatronic
concept. Though some modeling languages support multi-domain modeling and analysis (such as
Modelica), other design models are very domain-specific. Using SysML to establish a domain-
independent system model, and establishing relationships and means for automated integration with
other design models is the main theme of this paper. The paper presents a step by step construction of
a SysML model and some domain-specific models for the design problem of a hospital bed’s
propulsion system. System level modeling can play a major role in mechatronic product development,
thus it has to be supported through all development phases. The proposed integration infrastructure
enables us to maintain both the system model and domain-specific design models throughout the
product development process. A small integration example between an MCAD model and a SysML
model is presented to exemplify our proposal. Future work targets extending the model-integration
example towards a more comprehensive integration example between: SysML, MCAD, and dynamic
analysis (DA), evaluating the support potential of this approach during mechatronic design phases.

ACKNOWLEDGEMENT
The authors are thankful to Carl-Johan Sjöstedt, Daniel Frede, Daniel Malmquist, Hamid Shahid, and
Mohammad Khodabakhshian for their valuable inputs in performing the hospital-bed design-study.

REFERENCES
[1] Tomiyama T., D'Amelio V., Urbanic J. and ElMaraghy W., Complexity of Multi-Disciplinary

Design. Annals of the CIRP, 2007, 56(1), pp 185-188
[2] Buur J. and Andreasen M. M., Design Models in Mechatronic Product Development. Design

Studies, 1989: 10(3), pp 155-162
[3] Gausemeier J., Schäfer W., Greenyer J., Kahl S., Pook S. Management of Cross-Doamin Model

Consistency During the Development of Advanced Mechatronic Systems. Proc. Internationl
Conference on Engineering Design, ICED’09, Stanford, California, USA, 2009

[4] Johnson T. A., Paredis C. J. J. and Burkhart R. Integrating Models and Simulations of
Continuous Dynamics into SysML. Proc. 2008 Modelica Conference, Germany, March 2008.

[5] Shah A. A., Kerzhner A. A., Shaefer D. and Paredis C. J. J. Multi-View Modeling to Support
Embedded Systems Engineering in SysML. Lecture Notes in Computer Science, Graph
Transformations and Model-Driven Engineering, 2010, Volume 5765/2010, pp 580-601

[6] Hehenbrger P., Egyed A. and Zeman K. Consistency Checking of Mechatronic Design Models.
Proc. ASME 2010 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, IDETC/CIE 2010, Montreal, Canada, 2010

[7] Estefan A. J. Survey of Model-Based Systems Engineering Methodologies, Technical Report,
Revision B, Incose Focus Group, 2008

[8] Pahl G., Beitz W., Feldhusen J. And Grote K., Engineering Design- A Systematic Approach,
2007, (Springer-Verlag), ISBN 3-540-19917-9

[9] Frey E., Ostrosi E., Roucoules L. and Gomes S. Multi-Domain Product Modelling: From
Requirements to CAD and Simulation Tools. Proc. Internationl Conference on Engineering
Design, ICED’09, Stanford, California, USA, 2009

[10] Association of German Engineers, VDI-guideline 2206, Design Methodology for Mechatronic
Systems, Berlin, 2004

[11] Modelica Association, Modelica Language Specification V3.2, 2010,
https://www.modelica.org/documents/ModelicaSpec32.pdf

[12] Maplesoft, MapleSim V4.5, http://www.maplesoft.com/products/maplesim/
[13] Object Management Group, OMG System Modeling Language Specification V1.2, 2010,

http://www.omg.org/spec/SysML/1.2/PDF/
[14] Friedenthal S., Moore A. and Steiner R. A Practical Guide to SysML- The Systems Modeling

Language, 2008, (MK/OMG Press), ISBN 978-0-12-374379-4
[15] Wölkl S. and Shea K. A Computational Product Model for Conceptual Design Using SysML.

Proc. ASME 2009 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, IDETC/CIE 2009, California, USA, 2009

[16] Follmer M., Hehenberger P., Punz S. and Zeman K. Using SysML in the Product Development
Process of Mechatronic Systems. Proc. International Design Conference, Design2010,
Dubrovnik, Croatia, 2010

[17] Czarnecki K. and Helsen S. Feature-Based Survey of Model Transformation Approaches. IBM
Systems Journal, 2006, Vol. 45, No. 3, pp. 621-645

[18] Eclipse Foundation, Eclipse Modeling Framework (EMF), 2009.
http://www.eclipse.org/modeling/emf/

[19] Eclipse Foundation, Atlas Transformation language (ATL), 2009,
http://www.eclipse.org/m2m/atl/

[20] NoMagic, MagicDraw UML/SysML V16.9, http://www.magicdraw.com/
[21] Siemens PLM Software, SolidEdge, 2010,
 http:// www.plm.automation.siemens.com/en_us/products/velocity/solidedge/index.shtml

Contact: Ahsan Qamar
PhD. Candidate
KTH- Royal Institute of Technology,
Division of Mechatronics, Department of Machine Design,
Brinellvägen 83, 10044, Stockholm, Sweden
Email: ahsanq@kth.se, Web: www.md.kth.se/~ahsanq

https://www.modelica.org/documents/ModelicaSpec32.pdf�
http://www.maplesoft.com/products/maplesim/�
http://www.omg.org/spec/SysML/1.2/PDF/�
http://www.eclipse.org/modeling/emf/�
http://www.eclipse.org/m2m/atl/�
http://www.magicdraw.com/�
http://www.plm.automation.siemens.com/en_us/products/velocity/solidedge/index.shtml�

