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ABSTRACT 
Product development of complex products and their corresponding production systems continue to 
provide challenges in industry as well as interesting and challenging research questions. Recent 
research in the area has aimed at increased understanding and development of an integrated product 
and production system-modeling framework supporting cross-functional collaboration and 
concurrency. In this context, a well-known challenge in industry is the problem of how to ensure 
correct and complete sets of parts for manufacturing of different product variants. In striving towards 
integrated modeling capabilities this is one of several fundamental problems to be addressed. Thus, 
this problem has been in focus for the research work reported on in this paper. The work includes a 
framing of the concepts of completeness, consistency, and compatibility. Based on this framing a case 
study is conducted exploring the possibilities and implications involved in using the modeling 
framework to include supporting functionality. The case study is ongoing and preliminary findings are 
included in this paper. 
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1 INTRODUCTION 
Systems engineering is an important field of research. It aims at a more systematic development 
process, characterized by a method- and model-based cross-functional collaboration and concurrency, 
supported by information management tools. Information management tools are an important pre-
requisite to enable the required information sharing as well as provide for necessary traceability. 
Furthermore, explicit information carried in formal information management tools are a fundamental 
pre-requisite and starting point for knowledge capture and reuse. The dependencies identified between 
product and production implies a need to strive for cross-functional collaboration, which highlights the 
need for information models and tools capable of describing the product and the production systems 
using one integrated model. 
Based on a systems theory approach, recent research has resulted in an integrated modeling framework 
supporting collaborative design of product and production systems [1]. Included in that work 
dependencies and interactions within product and production systems has been elaborated and an 
integrated product and production systems model is presented. However, a deceitfully simple question 
to request the model to produce a complete list of parts required to manufacture a specific product 
variant reveals the need to provide additional thoughts on the concept of completeness. 
The work presented here is a first step towards increased understanding of the issues involved and 
their implications on some additionally needed capabilities in the modeling framework. In other 
words, the scope of the paper is mainly to problematize on completeness, consistency and 
compatibility. The ongoing case study serves to contribute empirical data to the discussion of the 
problem and as a source of increased understanding of the validity of proposed solution approaches as 
well as potential hidden challenges and pitfalls. First, a short description of the modeling framework in 
[1] is presented. Then, the issues of completeness, consistency, and compatibility are presented and 
elaborated. An ongoing exploratory case study aiming to enhance the modeling framework is 
presented. Finally, some conclusions and reflections are provided.   



2 INTEGRATED PRODUCT AND PRODUCTION MODEL 
Some of the important aspects of the modeling framework [1] used as a starting point for the work 
presented in this paper are outlined below for convenience and in order to highlight some important 
features and aspects of the framework. This is done through describing three important cornerstones. 
The first cornerstone illustrates some important fundamental aspects of the framework. The 
framework was originally proposed by Claesson [2], and further enhanced by Gedell [3], aiming to 
support structured development of complex, variant rich and platform-based design by means of re-
use and information sharing. It has some important advantages to point out:  
• It can represent any system of interest. This capability can be used to represent any abstract 

system while not being limited to, for example, physical parts.  
• Multiple similar designs can be represented by one parameterized model, a model with a design 

bandwidth defined by its parameters. This can provide an overview and definition of the product 
range the design is capable of supporting, which is an important aspect in platform design. With 
reduced duplication of work the workload is minimized. Quality is improved since the possibility 
for mistakes is reduced as a consequence of a reduced number of models to maintain. 

• A system is described by means of design solutions. The amount of details, in other words, the 
granularity of the description depends of the purpose of the model. Consequently, there is no 
right amount of details, it depends of what the model is intended to support. The level of detail is 
to some extent guided by the need to provide sufficient description of the performances to be 
expected from a particular design solution. Furthermore, the design solution – in its context – will 
collaborate with other design solutions resulting in emergent properties. Comprehensive system 
models include these emergent properties as well as how these arise from the collaborating 
subsystems. 

• A design rationale model is used to explain why a design solution is chosen, in terms of what set 
of requirements that the design has to meet. The design rationale model consists of design 
solutions, functional requirements, constraints and relation objects [3]. The relation objects 
carries the information why a design solution is considered a good choice to meet the 
requirements. When design rationale [4] is included within the model its usability in terms of 
modification and re-use in highly improved. Those that are interested in the design can easier 
understand why a design solution is chosen when the reasoning behind that choice is presented 
together with the functional requirements and constraints that it fulfils. 

• Extensive designs can inadvisable be model as monolithic units. Though a design is not the sum 
of its parts, as will be discussed in the next chapter, it is practical to break complex phenomena 
into parts. For example, the parts may easier be identified as usable in multiple designs with the 
advantage of economy by scale as one driver. Another example is when multiple stakeholders, 
organizations and companies want to have a clear division of responsibility. Extensive designs 
can be described as systems composed of sub-systems, which – in their turn – are composed of 
sub-systems in a recursive fashion. Composition includes how a system presents its 
configurability to potential super-systems as well as how a system selects and configures sub-
system. 

The second cornerstone in the integrated product and production model [1] are the interactions 
between the product model and the production model. The framework is based on systems theory and 
Hitchins [5] gives some valuable input to the importance and effects of interacting in the statement: 

 “A system is an open set of complementary, interacting parts with properties, capabilities, and 
behaviors emerging both from the parts and from their interactions”.  

There are several important aspects that can be extracted from this sentence. 
• A systems behavior is a consequence of the system itself and its interactions with other systems 

as well as its own internal structure and internal interactions. In other words, it is not meaningful, 
nor possible to describe and understand the behavior of a system without considering its context 
as well as its internals. 

• Thus, the behavior of a system is not simply the sum of the behavior of its parts, as opposed to 
reductionism. Decomposing, without a mechanism to model emerging behavioral characteristics 
of the system is a simplification and will consequently have shortcoming. 

• Finally, even though not explicitly mentioned in the citation above, systems behave differently in 



different stages in their lifecycles (Figure 1). This can be illustrated if we consider a system 
model of a car. When a car is being produced in a plant it can be seen as two systems (the car and 
the plant) that interact with each other. The car is in its manufacturing lifecycle, whereas the plant 
is in its use lifecycle phase. Focusing on the system model of the car, this model of the car has 
previously been in its definition (or development) stage of its lifecycle. Then, after being in its 
manufacturing lifecycle stage it will be entering its supply and use cycles of its life. 

The temporal duration of super-systems formed by interacting systems varies. Super-systems can be 
formed with the intention to have a relatively long duration like the use lifecycle phase of consumer 
products. A super-system, which is formed to describe the production lifecycle phase of a product, will 
have a short duration. For example, when parts are placed in a fixture, to be positioned before welding, 
they together can be seen as a temporary system. Similarly, every interaction that takes place during a 
products production phase and the production systems are possible to view as short-lived super-
systems. 

   
Figure 1, Super-systems formed of interacting systems during certain lifecycle phases. 

The third cornerstone is the ability to allow multiple overlapping (partial) models. The interacting 
design solutions (Figure 2) can for modeling purposes be encapsulated in order to represent interacting 
systems for different purposes as indicated by the shaded areas with different colors to the right in the 
figure. Nothing restricts a design solution to participate in several different encapsulations.  
 

 
Figure 2, Two alternative elaborations and encapsulations [5]. 

Together these three cornerstones provide a foundation for the integrated product and production 
model [1]. How products and production processes relates to each other is facilitated by viewing the 
production processes as something going on within a production system, and similarly viewing the 
product (system) and production system as a temporarily formed super-system, i.e. a system in its own 
right. 
Figure 3, which is borrowed from [1], is used to illustrate an integrated model. The body-in-white is 
composed of the roof panel production system (160) and the roof panel. That exemplifies how systems 
originating from different organizational parts of the company (product and production) seamlessly 
form an integrated model. The interaction align with pin & hole, describes how the production 
system’s (the fixture’s) positioning pin interacts with the product’s (the roof panel’s) positioning hole. 
Finally, the body-in-white and the body shop can exemplify a temporary system, as they together 
forms a system during the body-in-white’s production phase. 
 



 
Figure 3. An integrated model representing a subset of a car and a subset of a plant [1]. 

3 COMPLETE, CONSISTENT AND COMPATIBLE 
One of the key drivers behind the originally proposed framework [2] was the understanding of the 
product development process as a journey from an incomplete and inconsistent state of affairs towards 
a final gate “start of production” (or SOP) when the state of affairs should be characterized by a 
complete and consistent model capable of providing the information required to run large volume 
series production. Enabling a model to support an incomplete and inconsistent situation is rather easily 
achieved, for example, by simply avoiding putting any formal requirements on the model. The 
challenge, however, was not to just simply allow for an incomplete and inconsistent model. The 
challenge is rather to provide modeling mechanisms that allow the modeler to understand and identify 
when the model is incomplete and/or inconsistent in order to provide him opportunities to recover and 
correct such a state if it is of importance to do so. From an overall perspective, the speed of a product 
development process is equal to the speed of convergence from an incomplete and inconsistent model 
to a complete and consistent state. 
The term complete can, deceitfully, be perceived as an absolute term, “When everything is there it is 
complete”. However, an absolute definition vanishes at a closer look upon the issues involved. For 
example, using Google define we find two representative results from a search on complete: (1) having 
every necessary (…) part, and (2) with all the necessary parts. Instead of an absolute meaning, 
complete depends on a relative or subjective opinion of what is necessary.  
Requirements and their solutions generally co-develop during the design activities. We initially focus 
on the solution part of a product description in order to provide a starting point for reasoning about 
completeness. The manufacturing of a product can be used to illustrate a concrete situation where 
completeness may be a problem. When a product is manufactured as an assembly of parts, how do we 
know and ensure that exactly the required set of parts are selected and assembled? The required set of 
parts required to assemble the product can be said to be complete in the sense that these parts are both 
required and sufficient to form the product – they are necessary. Adding or subtracting a part from this 
set would make the set either incomplete (one or more parts lacking) or redundant (one or more parts 
to many). This may seem as a trivial thing to achieve. However, when producing complex and variant 
rich products (like cars) there are a couple of thousand parts required per product and thousands of 
product variants possible to produce – each variant requiring a specific set of parts in order to be 
complete. 
For the reasons mentioned above, the question – What parts constitute a complete set of parts for the 
assembly of a product variant? – is by far not trivial and most relevant. The situation described clearly 
shows that the answer to the question is that – it depends. It depends on which variant of a product that 
is to be produced. Clearly, different product variants will have different sets of parts depending on 
which features the product shall have as well as on the set of requirements it must fulfill. For example, 
a set of parts, that is complete for a low content product, will most certainly be incomplete for a high 
content product. The conclusion drawn from this is that complete is a relative concept that describes if 
some fundamental need is met. Our challenge is to explore if, and how, this issue can be handled using 
our modeling framework. 



Thus, for the modeling framework to be able to make a statement about the completeness of a design, 
it is required to include a request, or expectation, of the modeled design. This request or expectation 
will establish a statement on what is necessary. The criterion for completeness is met when the 
modeled design solutions leaves none of the explicitly stated requests or expectations unanswered. The 
modeling framework, therefore, must include modeling mechanisms to formulate and establish these 
requests and expectations as well as modeling mechanisms allowing the modeled design solutions to 
provide responses to such requests and expectations. 
Having provided a base for reasoning on completeness we now turn our interest to the concept of 
consistency. In logic, a consistent theory is one that does not contain a contradiction. The lack of 
contradiction can be defined in either semantic or syntactic terms. Consistency, in general, is also used 
in a slightly different way meaning a harmonious uniformity or agreement among things or parts or 
something of a regularly occurring, dependable nature. However, in this context we refer to 
consistency in the former meaning that consistency among a set of statements implies that no 
contradiction logically follows from these statements. 
To include reasoning about consistency in our modeling framework we must examine it to identify 
where we are making statements that may lead to a contradiction. First we observe that unless we 
provide more than one statement about “the same thing” there is no possibility for a logical 
contradiction to arise. An example may be that we define a parameter, let’s say a length of some 
design solution. As long as this parameter has no associated value, the model in a way could be said to 
be inconsistent, since a value is more or less required. However, it is probably more straightforward to 
view this situation as incomplete – we lack a value for a parameter. Then, someone assign this 
parameter a value. Now, unless the model contains other statements on this parameter and its value, 
the model is consistent and the value assigned to the parameter is simply a statement of fact – a kind of 
axiom. This clearly shows that in order to fruitfully discuss whether or not a model is consistent, the 
model must include mechanisms to make several different statements about the same entity. When all 
of these statements agree, we conclude that the model is consistent. Otherwise, we conclude that we 
have an inconsistency in our model. Looking at the model as a tool used to support product 
development during early phases on the journey from incomplete and inconsistent towards a more 
complete and consistent situation it is of no interest to just eliminate inconsistency, but rather provide 
support to identify inconsistencies in order to support understanding of the causes and thereby moving 
the sequence of design decision further.  
As stated above, the modeling framework must allow that multiple statements can be made on the 
same entity (or fact). Another example of this might be allowing different stakeholders to use different 
evaluation methods to obtain a performance value. Even though the individually returned performance 
values may differ this is not a sufficient ground in itself to conclude that they are inconsistent. 
Provided that all these statements (performance values) according to some criterion agree with each 
other we still may conclude that the model is consistent. If they to some extent, again according to 
some criterion, disagree we may conclude that our model is inconsistent. Consistency as defined in our 
context can only be evaluated when there are more the one statement available about an entity, and a 
method as well as a criterion to determine whether there is a contradiction among these statements or 
not. 
Moving the focus to the third issue – compatibility – we first recall that our integrated product and 
production-modeling framework is based upon a system oriented modeling approach. The framework 
provides several opportunities to represent complex and configurable systems that are defined and 
described as collections of collaborating sub-systems. The modeling mechanisms provided to define 
and describe these collaborations are primarily through interfaces and interactions. The modeling 
mechanism referred to as composition is used to identify which systems to include in such a 
collaborative collection. A consequence of collecting a set of systems with an expectation that they 
will collaborate is that the corresponding set of interfaces and interactions thereby obtained will – in a 
sense – connect and fulfill their expected behavior. Interfaces that in this way have been able to 
connect and fulfill their expected behavior can be viewed as compatible, i.e., they are capable of 
providing the requested and expected levels of collaboration. However, this is a conclusion that might 
not be possible to draw looking on a single interaction only. The reason for this is that we need to 
allow observation of emerging properties that we may have modeled on a “higher” system level. Even 
though an interface may seem locally ok, it may be the case that the results on important emergent 
properties are not as requested or expected. The implication here is that conclusions on compatibility 



when viewing a system collection can be successively made starting at an individual interaction 
among a couple of interfaces and then successively propagating towards higher system levels ensuring 
that compatibility among the collaborating systems are maintained on all system levels. Another 
interesting issue regarding compatibility is that if offered capability meets or exceeds requested 
capability the request and response are compatible, otherwise offered capability is incompatible with 
request. 
An important aspect to consider is that the quest for a complete, consistent and compatible model must 
not limit the models capability to handle incompleteness, inconsistency and incapability during the 
model’s design lifecycle. In the design phase incompleteness and inconsistency must be allowed, for 
example due to conflicting design alternatives or stakeholders’ prioritizations. To rigid processes or 
tools will hinder design activities and likely create frustration, for example due to reduced 
organization efficiency or deviation from prescribed processes and rules. To summarize, it is 
necessary for a design model to support incomplete and complete, inconsistent and consistent, and 
incompatibility and compatibility. 

4 IMPLICATIONS FOR THE INTEGRATED MODEL 
The modelling framework as it has evolved to the state described in [1] does not really include any 
mechanisms to support the kind of reasoning described above regarding completeness, consistency, or 
compatibility. In order to enable our modeling framework to include mechanisms to support issues on 
completeness, consistency, and compatibility we must provide some form of automated, or semi-
automated, reasoning support. Formally, automated reasoning is a research area in its own right (e.g., 
see [7]). The objective of automated reasoning is to write computer programs that assist in solving 
problems and in answering questions requiring reasoning [8]. In a semi-automated reasoning such a 
program is used in an iterative fashion; that is, you can instruct it to draw some conclusions and 
present them to you, and then, based on your analysis of the conclusions, it can in the next run execute 
your new set of instructions. Alternatively, you can use such a program in a batch mode, that is, you 
can assign it an entire reasoning task and await the final result. The intention in our case is to enhance 
the modeling framework with some basic capabilities to provide for a first step towards a semi-
automated reasoning with focus on our issues concerning completeness, consistency, and 
compatibility. An interesting overview of different forms of automated reasoning is provided in [9]. 
Reasoning is a process of drawing conclusions from facts. For the reasoning to be sound, these 
conclusions must inevitably follow from the facts from which they are drawn. In other words, 
reasoning is not concerned with some conclusion that has a good chance of being true when the facts 
are true. Indeed, reasoning as used here refers to logical reasoning, not of common-sense reasoning or 
probabilistic reasoning. The only conclusions that are acceptable are those that follow logically from 
the supplied facts. 
This rather strict definition of reasoning is not really what we are aiming for in our ambition to provide 
a modeling framework capable of supporting concurrent product and production development. An 
engineering solution does not seek to claim that it is logically right – an engineering solution is one 
solution – among many potential solutions – that valued in the context of a set of expectations and 
requirements is good enough. What makes it so difficult is the vast amount of design parameters 
possible to decide upon and the many performances upon which expectations and requirements are 
placed. A further complication is that many of the most important performances upon which we place 
expectations and requirements are emergent properties on higher system levels and thus very difficult 
to attribute to any particular set of design parameters where the design decisions actually are taken. 
The consequences of the design decisions emerge from a whole range of design decisions rather than 
from any one decision in particular. 
The mechanisms available to us within our modeling framework to start our journey towards 
providing some form of semi-automated reasoning along the thinking outlined above are primarily our 
parameters. In [2] three semantically different kinds of parameters were distinguished: design 
parameters, performance parameters, and variant parameters. The understanding of these are that 
design parameters are those parameters that a design engineer or a decision maker can influence and 
decide upon their values in order to form design solutions in accordance with their intentions. 
Performance parameters are additional parameters that provide information about the consequences or 
outcomes from the design solutions in terms of observable properties of interest. The understanding of 
how parameters depend on other parameters is captured introducing a new modeling element referred 



to as a parameter map. Variant parameters are a kind of convenience mechanism that, for example, 
enables us to refer to huge sets of parameters with one simple statement of a value of a variant 
parameter. Conversely, the value of a variant parameter may be derived from an observation of the 
values of a set of other parameters, thereby providing a sort of automated categorization of which 
variant we currently are dealing with. With these basic modeling elements in place the first step 
towards an ability to provide a simple form of semi-automated reasoning is in place. 
Another mechanism we will need to introduce is a possibility to define expressions and/or constraints. 
For example, we will need to establish a constraint expressing that a certain performance value must 
exceed a required value. Another example might be the performance parameter weight that we would 
like to minimize while also requiring it to be below a threshold value. Since we also want to support 
multiple opinions and allow for more than one statement on an entity, we furthermore need to provide 
explicit mechanisms supporting which statements we are taking into account during an evaluation of a 
constraint or expression as well as how we arrive at a certain conclusion. Yet, another issue to provide 
for in the modeling framework is how to initiate and trigger evaluations of constraints and expressions 
as well as how conclusions and results from parameter mappings are allowed to propagate forming a 
chain of successive mappings and conclusions. The steps taken regarding these concerns in the work 
reported here only touch upon these subjects in a basic and simple manner. More elaboration on this 
particular topic is beyond the scope of this work.  

5 AN EXPLORATORY CASE STUDY 
The purpose of the exploratory case study is to apply the thoughts on completeness, consistency, and 
compatibility outlined above. Further, the aim is to enhance the modeling framework in practice and 
examine the capabilities achieved through the enhanced framework. The approach taken in pursue of 
this exploration was to apply the framework in an attempt to model a car program (products) and the 
production system required to manufacture these products. The intent is to apply the framework and 
use it to describe and define current and next generation products and production system(s) as well as 
the platform(s) upon which these are based and derived. The study is conducted in collaboration 
between academic and industrial partners and based upon accumulated industrial experiences as well 
as research results obtained from many years of research in the area. The models created shall include 
solution bandwidths, architecture definitions, and definition of the platform(s). The approach is to 
define and maintain a complete and consistent holistic model while continually refining, detailing, and 
extending the model through elaboration and encapsulation. 
As mentioned in the introduction, information management tools are required prerequisites for dealing 
with these models. Since the authors are unaware of any existing tool that can be used to capture, 
maintain and manage the information model defined in the framework, the study also include the 
creation of a prototype tool with enough functionality to work with the modeling aspects in focus of 
the study. Creating and using this prototype tool will provide valuable insights in itself and be a 
learning platform both in terms of modeling methodology and in terms of usability requirements on a 
future and more efficient tool. 
From a scientific point of view the expectations on the case study are that it will provide both 
empirical validation of the proposed integrated product and production modeling framework and new 
insights in new questions for future research. From an industrial point of view the case study will 
enable an update on the modeling frameworks state-of-art and subject it to some relevant industrial 
issues in order to gain understanding about current modeling capabilities as well as experiences and 
knowledge about important issues to develop further in the future. 

6 CONDUCTING THE CASE STUDY 
The aim of the case study is to examine the capability of the enhanced modeling framework regarding 
the defined issues on completeness, consistency and compatibility. In order to achieve this, the model 
will have to include both system level aspects such as product variants and performance expectations 
and detailed design decision on design parameters and the consequences of these in resulting 
performances. Furthermore, it is of interest to include possibility to model both physical and functional 
interactions on physical part level as well as emerging performances on higher system levels. A choice 
to model the chassis system in a car was made while it provides all the above opportunities and also 
includes well-known system level performance expectations (braking distance of a car). A chassis 
system of a car also provides many opportunities to model product variation.  



Besides the modeling of an example system using the framework, the case study includes creating a 
prototype information management tool. There are two main reasons. First, the authors are not aware 
of any existing tool with the functionality to host the modeling framework and its required 
functionality. Second, the expected extensions to the modeling framework required in order to address 
the described issues on completeness, consistency and compatibility are not known in detail as to what 
functionalities the modeling framework and the information tool must be capable of providing. The 
case study is expected to shed some more light and understanding on these aspects. 
Creating an information management tool for the proposed framework is by no means a simple and 
straightforward task. The first issue to deal with is that the definition and documentation of the 
framework is provided through the description and references provided above. As a consequence, any 
missing or ambiguous elements must be given complementary and assumed definitions. The second 
issue to deal with is that this work in itself is of an exploratory character having the implication that it 
is not entirely known beforehand exactly what has to be included in the information management tool, 
nor what functionalities it is expected to be able to provide. Both issues combine to a very ambiguous, 
unclear, and incomplete situation and foundation for creating an information tool. Thus, if this tool 
were to be created by a third party, the amount of work required to bring clarity to these issues would 
be almost overwhelming and require a lot of time and resources to be spent on creating more formal 
requirements for this tool. The approach taken in this exploratory study is to define and create the tool 
in parallel with the ongoing modeling and conceptual work.  
In order for this to be feasible the information tool is conceptually divided into two major areas of 
functionality: information capture and information visualization. The work conducted so far has been 
to enable information capture of all (or most) modeling entities defined in the modeling framework as 
well as extending the framework with some modeling entities discovered to be of vital importance in 
order to address the research questions on completeness, consistency, and compatibility. 
 

 
Figure 4. User interface to capture and define modeling entities. 

The prototype information tool is developed using a C#-environment and is initially a single user and 
standalone application using simple files for data storage. 
The user interface of the tool follows a more or less one-to-one mapping of the information model 
defined in the framework. Several sets of tabbed pages (Figure 4) have been used to provide an easy 
contextualization for each of the model entities to be defined. 

The approach to create a product model including necessary elements to explore completeness, 
consistency, and compatibility takes is illustrated by Figure 5. The approach utilizes as a starting 
point, those physical parts of the chassis system that are required in order to manufacture a 
vehicle, illustrated by rotor and brake pad in the figure. Since the chassis exists in several 
different variants several sets of physical parts will be included in the model. The variability is 
represented in the figure by parameters, e.g. two rotor diameters. Depending on the product 



variant to build, this starting point provides requirements on the model to define how product 
variants will utilize different sets of parts. Thus, the model must include several additional model 
elements representing higher system levels, exemplified by chassis, until the vehicle system 
level, i.e. car, is modeled and described. On vehicle level both performance expectations (e.g. 
braking distance in fr:braking) and vehicle variants (e.g. sportiness derived from driving 
experience) are added to the model, thereby providing a starting point for examination of 
completeness as well as consistency. Starting with adding model elements on the vehicle level 
requesting a certain level of performance (in this case exemplified by braking distance) a request 
for a performance response has been defined. Until such response is provided the model is 
incomplete. In order to resolve this incomplete state the model must include additional elements 
capable of providing a connection between part level performances and delivered performance on 
vehicle level.  

 

 
Figure 5. A subset of a car with the evaluation information flow (arrow D, E, F, G, C, H), the 

source for a variant parameter (arrow A), and a top-down design approach (arrow B).  

Two elements in Figure 5 contribute in evaluating the designs performance relative the requirements, 
evaluation in brake selection and performance model (perf.mod.) in brake system. The information 
flows from the design solutions to the performance model (arrow D, E and F), to the evaluation (arrow 
C and G), and the result from the evaluation (arrow H) to car. Together these arrows form a bottom-up 
evaluation. 
Attempting to establish this connection from design solutions to the car clearly showed that it is 
virtually impossible to form such a performance model by following a physically oriented product 
breakdown structure. As a consequence, the model must be capable of managing several overlapping 
modeling elements in order to provide for both a response on which parts to use for manufacturing and 
for calculation to evaluate achieved performance. 



The brake system’s performance model in Figure 5 is elaborated further in Figure 6, as a mean to 
model emergent properties. In order to model emergent properties, parameter mappings are utilized in 
design solution elements of abstract sub-systems, in this case chassis. This system representation 
provides the ability to host performance models that for example map the different angles of the 
chassis corners’ (toe in, camber, caster etc.) contributions to performance measures on ride and 
handling. These and other similar design parameters contribution to the chassis behavior and 
performance requires an abstract dynamic chassis model (Figure 6) to be included. 
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Figure 6, Illustration of some elements in a dynamic chassis model for Brake System. 

Attempting to establish this connection from design solutions to the car clearly showed that it is 
virtually impossible to form such a performance model by following a physically oriented product 
breakdown structure. As a consequence, the model must be capable of managing several overlapping 
modeling elements in order to provide for both a response on which parts to use for manufacturing and 
for calculation to evaluate achieved performance.  
The modeling elements outlined above constitute the prerequisites for a software agent to evaluate if 
necessary sub-systems are included. In other words, the modeling framework includes modeling 
mechanisms to formulate and establish requests and expectations as well as modeling mechanisms 
allowing the modeled design solutions to provide responses to those requests and expectations. 

7 CASE STUDY RESULTS AND CONCLUSIONS 
In performing the case study it is evident that deep insights of the design intent as well as the design 
itself are required in order to create appropriate descriptions and models. The focus for the case study 
was to model the vehicle chassis system and how it contributes to vehicle behavior through the 
different parts used. It was, however, an interesting experience for the researcher creating the model to 
realize that the task required knowledge way beyond his own, even though the researcher is an 
experienced senior engineer with long automotive experience. Even to briefly describe expected 
performances on car level and list a number of sub-systems requires deep and extensive knowledge. A 
respect for expert knowledge is a lesson to remember. In other words, our conclusion is that the 
product model preferably should be created and maintained as close to the source of knowledge as 
possible, i.e. by the designers themselves.  
Further, concerning expert knowledge, modeling of performance will range from the complete vehicle 
down to individual parts. That range is seldom covered by a single person, but of a number of 
specialists that together covers the range from details to complete design. This puts even more 
emphasis on capabilities for supporting highly dynamic collaboration when using the described 
framework. 
A strong benefit of creating a tool in parallel with the modeling research lies in the clarity that is 
required by the software tool in order to ensure proper capture and functionality for the modeling 
elements identified in the research. Furthermore, the requirement to actually capture the modeling 
entities using a software tool provides a higher level of clarity also in the approaches taken to the 
system modeling as such. In doing so, it becomes almost brutally clear where the modeling framework 
is supportive and where it has some weaknesses or missing elements or concepts. 
The case study is still ongoing and results presented here are preliminary and based on the work done 
so far. 



8 REFLECTIONS ON RESULTS AND CONCLUSIONS 
In the early framing of the research scope presented a brief literature search was made in order to find 
a starting point and baseline. The outcome was rather disappointing and it was difficult to find a set of 
appropriate references upon which this research could be founded. 
The completeness of a design is not absolute, but depends on the expectations of the design. The 
designs completeness can to a limited extent be evaluated against a list of expectations. There is, 
however, no known way to ensure whether this list in itself is complete or not. Obviously this is a 
recursive problem where it is only possible to state that completeness depends. The consequence is the 
need, presented above, to define a criterion of completeness in each and every case. 
To illustrate and support the statement that the completeness of a design is not absolute, we can refer 
to Roozenburg and Eekels [6]. A design does not have functions (and thereby behavior and 
performance) on its own. Rather, a designs behavior (function) depends of the design itself (the four 
boxes in the upper left corner in Figure 7) in combination with its mode and condition of use. How a 
design is to be used is outside the control of the design itself. Actually the number of possible 
combinations of mode and condition of use is an infinite number. Based on this reasoning, the findings 
presented must be seen as initial steps in understanding and addressing issues on completeness, 
consistency, and compatibility. 
 

 
Figure 7: Product functioning [6]. 

A simplistic view and illustration of the problems dealt with above is presented in Figure 8. This 
generic feedback-loop shows the causality between expectations and performance responses from the 
design. It is our intention to apply the same approach of reasoning to the problems regarding 
consistency and compatibility. 
 

Evaluation of 
the design.

Requests and 
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Figure 8: Conceptual illustration of the involved information blocks when evaluating 

completeness, consistency and compatibility. 

The approach and findings presented has been found to provide a valuable starting point for further 
research on these topics. 

ACKNOWLEDGEMENTS 
This work was carried out at the Wingquist Laboratory VINN Excellence Centre within the Area of 
Advance – Production at Chalmers, supported by the Swedish Governmental Agency for Innovation 
Systems (VINNOVA). The support is gratefully acknowledged. 

REFERENCES 



[1] Gedell, S., Michaelis, M., Johannesson, H., Integrated Model for Co-Development of Products 
and Production Systems – A Systems Theory Approach, 2010, (Accepted by Journal of 
Concurrent Engineering) 

[2] Claesson, A., A Configurable Component Framework Supporting Platform-Based Product 
Development, 2006 (Doctoral Thesis, Division of Product and Production Development, 
Chalmers University of Technology, Göteborg, Sweden) 

[3] Gedell, S., Platform-Based Design - Design Rational Aspects within the Configurable 
Component Concept, 2009 (Licentiate Thesis, Division of Product and Production Development, 
Chalmers University of Technology, Göteborg, Sweden) 

[4] Andersson, F., The Dynamics of Requirements and Product Concept Management, 2003 
(Doctoral Thesis, Division of Product and Production Development, Chalmers University of 
Technology, Göteborg, Sweden) 

[5] Hitchins, D. K., Advanced Systems – Thinking, Engineering, and Management, 2003 (Norwood, 
MA: Artech House) 

[6] Roozenburg, N. F. and Eekels, M. J., Product Design: Fundamentals and Methods, 1995 
(Chichester: Wiley) 

[7] Portoraro, F., Automated Reasoning, 2010 Winter Edition (The Stanford Encyclopedia of 
Philosophy

[8] Wos, L., Overbeek, R. Lusk, E., Boyle, J., Automated reasoning: Introduction and Applications, 
1992 (McGraw Hill) 

, Zalta, E. N. (ed.)), 
http://plato.stanford.edu/archives/win2010/entries/reasoning-automated/ 

[9] Bonacina, M. P. and Martelli, A., Automated reasoning, 2006 (Intelligenza Artificiale,  
III(1-2):14-20, Marzo/Giugno) 

 

Contact: Stellan Gedell 
Chalmers University of Technology 
Product and Production Development 
412 96 Göteborg 
Sweden 
Tel: Int +46 (0)736 278525 
Email: stellan.gedell@chalmers.se 
URL:http://www.chalmers.se/ppd/SV/organisation/avdelningar/produktutveckling/personal/doktorander
/gedell-stellan 

Stellan Gedell is currently a PhD student at the Department of Product and Production Development 
at Chalmers University of Technology in Gothenburg, Sweden. He started his PhD studies at 
Chalmers University of Technology in 2008 focusing on integrated platform-based product 
development. 

mailto:stellan.gedell@chalmers.se�

