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ABSTRACT 
Using expertise and combining functionalities from different domains has led to a significant increase 
of information engineers have to deal with. It is hardly possible to identify influenced components in 
activities like change requests. A model containing tracelinks between the elements of involved partial 
models as an essential part of PLM based Systems Engineering helps to overcome this deficit. The 
main obstacle for a broad introduction of traceability is the significant workload involved in creating 
tracelink models as every element combination has to be examined for dependencies. This calls for an 
approach to support developers in creating tracelink models more efficiently. 
The presented approach Eco Tracing allows developers to significantly Economize modelling effort. 
In order to do so, the method uses the hierarchical structure of many models and a top-down analyzing 
approach to exclude element combinations prior user examination. Furthermore Eco Tracing allows 
choosing the desired level of detail flexibly while modelling. Eco Tracing is a promising approach 
helping to establish traceability in product development by reducing modelling effort significantly. 
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1 INTRODUCTION AND MOTIVATION 
A challenge many companies face today is the increasing complexity of products. Complexity is 
defined as a property of a system depending on the amount of system elements, the number of 
relations between them and the multitude of its possible states [1]. Regarding mechatronic product 
development there are numerous sources for complexity, such as the product’s augmented, cross-
domain functionalities. 
Embedding and integrating functionalities from different domains is a major source of innovation [2], 
but on the other hand it has led to a significant increase in information that developers have to deal 
with. It is impossible to oversee all implications of activities like change requests since influenced 
components from other domains cannot be identified. Thus, changes in complex systems are very 
difficult to handle [3]. This is especially challenging since changes occur very often: usually more than 
50% of system’s requirements get modified before it is eventually put into service [4]. Nonetheless 
there is little tool and methodological support for that challenge. 
During product development several partial models are created (e.g. function structure) all describing 
the final product. Between some elements of these partial models there is a dependency with regards 
to their content – e.g. function “cool passenger compartment” satisfies requirement “provide means for 
the regulation of passenger compartment temperature”. An approach to deal with the mentioned 
challenges is the continuous linkage between all partial models. Changes can be propagated efficiently 
and implications can be detected easily based on dependencies between partial models. These 
dependencies can be represented and documented through tracelinks, which mainly contain 
information about the linked source and target model elements. The degree to which a relationship can 
be established between those models is called traceability [3]. Especially in software engineering 
traceability is viewed as a measure of system quality and process maturity and is mandated by many 
standards such as MIL-STD-498, IEEE/EIA 12207, and ISO/IEC 12207. But also in Systems 
Engineering tracelink models can be of significant assistance. For example by automatically filling in 
information into QFD or FMEA spreadsheets helping to ease the use of established but infrequently 
used quality and reliability methods. 
The main obstacle for a broad introduction of traceability in system development is the significant 
workload involved when creating and maintaining tracelinks as well as the discrepancy between the 
persons modelling and using tracelinks [3]. In 2000 the US Department of Defence spent about 4% of 



their system development costs on traceability [5], emphasising the necessity to have a good and 
efficient traceability strategy [6]. 
The situation described calls for an approach to support product developers with methods and tools 
helping to reduce the necessary effort for primarily building up and controlling complex systems and 
dependencies between their comprising models. For this reason, the approach Eco Tracing presented 
in this paper focuses on how to use hierarchical characteristics to model tracelinks in an efficient way. 
It has been integrated in the software prototype Model Tracer, which is a tool for tracelink 
modelling [7]. 
In this paper, the state of the art and research is described in section 2 and the shortcomings in the area 
of tracelink identification are discussed in order to illustrate the motivation for Eco Tracing. Section 3 
introduces the Model Tracer, which is a tool for tracelink modelling. During the project ISYPROM the 
Eco Tracing method was integrated into the Model Tracer and tested in an industrial environment. In 
section 4, Eco Tracing, its basic principles, its effectiveness as well as its implementation are detailed. 
Section 5 provides an overview over the application of the Eco Tracing method in context of a 
systems engineering example. Section 6 concludes the findings presented in this paper and hints at 
further research in the area of tracelink identification and maintenance. 

2 STATE OF THE ART AND RESEARCH 
Procedure models are supposed to help developers coping with complexity in product development. 
Cooperation between different domains or departments is promoted through their application [8]. In 
most design steps models are created (e.g. requirements model, functional model, structural model), 
which represent different development perspectives on the same system. These models are developed 
based on each other. In this way, e.g. functions of a system are derived from the requirements, which 
have been defined before. Since this happens implicitly, dependencies between partial models are 
usually not documented [9].  
A way to cope with this problem is to establish traceability between different partial models by 
explicitly linking the information contained in the models. Maurer proposes the use of matrices for the 
connection of information. He differentiates between Design Structure Matrices (DSM), Domain 
Mapping Matrices (DMM) and Multi Domain Matrices (MDM), which are a combinatorial 
advancement of the first mentioned. Goal of his studies is to analyse, control and improve the 
dependencies of complex systems. For this purpose he suggests a number of analysing techniques that 
allow for the identification of connected structures by rearranging matrices or the tracing of impact 
chains. For visualisation purposes he uses matrices or strength based graphs, if the number of 
connected elements becomes too large. Both visualisations can be derived from each other and are 
included in the commercial software Loomeo [10], [11]. 
The Change Prediction Method (CPM) tool developed at the Engineering Design Centre in Cambridge 
combines different visualisation techniques that help understanding a system. The CPM tool aims at 
decision assistance by providing effective and intuitive information visualisation regarding the 
prediction of change propagation [12].  
METUS by ID-Systems provides functionalities to specifically model functions, subfunctions, 
components and modules of a product as well as dependencies between their elements. These 
tracelinks are used by several analysis functions in order to e.g. optimize costs or the weight of the 
system in focus. To reduce the work to model and analyse the system, a PLM integration has been 
implemented, which enables METUS to acquire product information [13], [14].  
ToolNet, which was developed in a research project by DaimlerChrysler and EADS, completely 
follows this approach of acquiring information from existing sources. Partial models are created in the 
established authoring software while only tracelinks between the models are created and stored in 
ToolNet [15]. 
A complementary approach is followed by Reqtify. In this approach, tracelinks are not managed in an 
additional application but stored in the original documents with the help of references to elements of 
other documents. Reqtify is then used to visualise these tracelinks, perform several analyses and to 
export reports [16]. 
All described traceability approaches aim at an improvement of system’s understanding and model 
consistency during the development. This means that there are a lot of ways to use the already 
modelled tracelinks in a beneficial way. But none of the presented approaches propose any effective 
solutions on how to identify the dependencies between the partial models’ elements in order to model 



the tracelinks in the first place. Even though especially the manual creation and the effort necessary to 
achieve high connection quality (avoidance of wrong and missing dependencies) still pose high 
challenges for their application [3], [10]. Present suggested approaches for this problem, like the use of 
interdisciplinary workshops or the collection of existing data (e.g. QFD, TRIZ) still imply high efforts. 
Only in software development there are some approaches to generate tracelinks automatically, e.g. as 
the result of model transformation or the statistical interpretation of change histories in order to 
identify dependencies between items [3]. But these approaches either have not yet been adapted to 
challenges posed in mechatronic system development or can’t be easily applied to it because of 
different procedures (e.g. no model transformations). For this reason it is necessary to offer more 
methods and tools that help limiting the additional work effort in order to further integrate the creation 
of tracelinks in today’s system development reality. 

3 MODEL TRACER – A TOOL FOR DEPENDENCY MODELLING IN SYSTEMS 
ENGINEERING 

In order to cope with the mentioned challenges, a prototypical software tool was developed – called 
Model Tracer. The general approach of Model Tracer provides means to define tracelinks between 
different partial models (Figure 1). Each qualitative tracelink represents a general dependency between 
a pair of elements from two different partial models [7]. 

 
Figure 1: Process steps and models enhanced by tracelinks created with Model Tracer. 

Since different partial models are not necessarily created with the same tool it is important to allow 
tracelink modelling while avoiding to introduce “just another tool” that aims at replacing well 
established authoring tools. 
Therefore Model Tracer acquires all models from their specific authoring tools and visualises them in 
its own graphical user interface (GUI) as shown in Figure 2. During the project ISYPROM interfaces 
for common standards like ReqIF (Requirements Interchange Format) and PLMXML have been 
implemented to exemplarily prove feasibility. Basically the approach allows for importing and using 
any hierarchical model in Model Tracer if an interface is implemented. Model Tracer only saves 
information regarding the tracelinks and references to the connected models.  



 
Figure 2: GUI of Model Tracer 

With every start of Model Tracer, partial models are loaded from their proprietary databases. Modified 
and new elements are highlighted which helps guaranteeing actuality of data. As mentioned before, 
especially the laborious identification of dependencies is one of the biggest challenges and the main 
hindrance for an industrial application of methods to connect information.  

4 ECO TRACING - A SYSTEMS ENGINEERING METHOD TO MODEL 
TRACELINKS EFFICIENTLY 

To increase efficiency in tracelink modelling in the course of Systems Engineering two basic 
categories have to be considered. There are technological approaches using diverse algorithms to 
identify dependencies between elements; this is used for example in model transformation or 
automatic tracelink recovery [3]. On the other hand there are methodical approaches which help users 
to create tracelinks efficiently. The latter can be especially useful when initially modelling 
dependencies. For that activity a structured procedure is needed to make sure all dependencies are 
identified. A methodical approach to Economize tracelink modelling is introduced in this paper: Eco 
Tracing. In Section 5 details on how to apply Eco Tracing

4.1 Basic Principles for Eco Tracing 

 in Systems Engineering will be discussed. 

The analysis of other approaches in the field of system development reveals that traceability is rarely 
used in industry yet. A major reason for its lack of application is the high effort needed for the manual 
creation of tracelinks [12], [10]. A widely used approach makes use of interdisciplinary workshops 
where all possible combinations of elements of both partial models have to be considered individually. 
For each pair of elements a decision regarding their dependency has to be made [10]. Since many 
combinations of elements do not feature a dependency, their examination is unnecessary and thus 
causing additional costs. This means the biggest challenge is to identify the majority of elements, 
which do not have to be analysed, in advance. Furthermore, a high flexibility in choosing the 
necessary level of detail is desirable when modelling tracelinks. This flexibility gives users the 
opportunity to decide in which areas to model in detail and where to stop at a high hierarchy level to 
avoid high efforts. 



With this in mind, characteristics of nested hierarchical structures, which many models feature (e.g. 
requirements, functions or assemblies), in combination with a consequent top-down-approach can be 
used to exclude independent element combinations: In nested hierarchical structures, parent elements 
consist of or contain child elements (e.g. assemblies consist of parts) [17].  This leads to the 
conclusion that no child element depends on a certain element, if the dependency was dismissed for its 
parent element (which consists of its child elements). 

 
Figure 3: If there is no dependency between R1 and F2, no dependency exists between R1 

and all child elements of F2. 

Figure 3 is illustrating this conclusion: if there is no dependency between requirement R1 in the list of 
requirements and function F2 in the list of functions, there will be no dependency between R1 and 
sub-functions F2.1 and F2.2 either. 
This conclusion has been applied to requirements models, functions structures and product structures 
successfully. Since it is the main principle Eco Tracing is based on, it is recommendable to verify its 
applicability for any new model prior application. 
In the following section Eco Tracing

4.2 The Method Eco Tracing 

 is described in detail. 

As mentioned before Eco Tracing is a top-down-approach, meaning that users are starting every 
analysis at a high hierarchical level and work their way down to lower levels. In the example 
illustrated in Figure 4 the examination of dependencies following the Eco Tracing

Since parent elements contain or consist of their child elements, no dependencies from A1 to any of 
B1’s child elements are possible. That is why these combinations do not have to be analysed at all. To 
maintain this knowledge for later reference all combinations from A1 to every child element of B1 are 
marked with a flag meaning they have been examined for dependencies and dismissed (illustrated by a 
red cross in Figure 5). 

 approach would 
therefore start with the combination of A1 and all parent elements in model B (B1, B2, and B3). If no 
dependency is identified between A1 and B1, no tracelink is set (illustrated by a red cross in Figure 5).  

 
Figure 4: Examination for dependencies. 



 
Figure 5: Flagging dismissed dependencies. 

 
If a dependency is approved, a tracelink is set for this combination illustrated by a green check mark in 
Figure 6. The conclusion that “no child element depends on a certain element, if the dependency was 
dismissed for its parent element” is now inverted: it is very likely that at least one child element of B3 
features a property that has led to the affirmation of the dependency to A1. Therefore all possible 
combinations of A1 and all direct child elements of B3 (B3.1 and B3.2) are flagged (illustrated by 
green flags) meaning at least one dependency exists within those combinations (Figure 6).  
With the help of the flags it is possible to differentiate between: 
• Combinations of elements which have been examined and were rejected, 
• Combinations of elements which have not been examined yet, 
• Combinations of elements where dependencies are likely but no detailed examination has been 

performed. 
This differentiation of states is especially important as it enables users to discontinue the examination 
for dependencies at any time, allowing them to continue at a later time or to finish at any level of 
detail. 

 
Figure 6: Setting a tracelink and automatically flagging its child elements. 

After investigating all combinations of A1 and Bx the approach proceeds with the investigation of all 
green flagged combinations of A1 and Bx.x (in this case A1 – B3.1 and A1 – B3.2). When traversed 
all the way to the lowest user-chosen hierarchy, the investigation restarts with the next parent element 
in model A (in this case A2) from the beginning. 



4.3 Eco Tracing vs. conventional Dependency Examination 
In this section Eco Tracing is compared to the conventional way for dependency examination (e.g. 
workshops [10]) with the help of a simple example. This example is illustrated in Figure 7 and 
comprises two models with a total of 19 elements (white blocks) and 17 dependencies (red lines). For 
the purpose of calculation it is assumed that during the application of the conventional method all 
element combinations have to be examined, even though in praxis the analysis of some combinations 
could probably be dismissed by the experts. 

 
Figure7: Dependencies between model A and model B. 

Table 1 shows the same example as Figure 7 in a different visualisation type and with some additional 
information. All rows contain elements of model A whereas the columns comprise model B. It is 
assumed all elements are of interest and are examined. If a dependency between two elements exists a 
‘1’ is entered in their common cell otherwise a ’0’. All combinations examined with Eco Tracing 

The conventional way means to examine every combination of elements from model A with those 
from model B. Since there are eight elements in model A and eleven elements in model B, 

are 
in white cells, automatically dismissed ones in grey cells. 

88 
combinations
If 

 have to be checked for dependencies. 
Eco Tracing is applied not all combinations have to be checked since several dependencies are 

already dismissed on a higher hierarchical level. That is why only 32 combinations

Table 1: Comparison between Eco Tracing and a conventional method for dependency 
examination. 

 have to be checked 
(number of white cells in Table 1) which means the effort for examining 56 combinations is saved. 

 B1  B1.1  B1.2  B1.3  B1.3.1  B1.3.2  B2  B3  B3.1  B3.2  B3.2.1  
A1  0  0  0  0  0  0  0 1  0  1  1  
A2  0  0  0  0  0  0  1  0  0  0  0  
A3  1  0  0  1  1  0  0  1  1  0  0  

A3.1  1 0 0  1 1 0  0  1 1 0 0  
A3.2  1 0 0  1 1 0 0  0 0 0  0  
A3.3  0 0  0  0  0  0  0  0 0 0  0  

A3.3.1  0  0  0  0  0  0  0  0 0 0  0  
A3.3.2  0  0  0  0  0  0  0  0 0 0  0  

 
Under the assumptions made, the saving is about 60 %. But the effort which can be saved by Eco 
Tracing depends on the hierarchical structure of the models and in which hierarchy levels the 
dependencies exist. For example, if a parent element has few child elements, the effort possible to be 
saved is less than if it would have many child elements. Therefore no general conclusion about the 
effectiveness of the method can be quantified. 



4.4 Eco Tracing Prototype 
Eco Tracing as described in Section 4.2 is implemented as a plug-in of Model Tracer introduced in 
Section 3. The aim of Eco Tracing

When starting 

 is to guide users in a wizard-like environment through the process 
of examining dependencies while reducing the necessary effort. 

Eco Tracing

This selection dialog is especially helpful, when examining combinations of very complex models 
with a large quantity of elements. When for example dependencies between requirements and 
functions are examined it is possible to choose only the functional requirements, skipping the non-
functional requirements and thus increase clarity.  

 a selection dialog is displayed. In a first step parts of model A need to be 
selected. Based on this selection and under consideration of the flags that have been set before, a 
reduced view of model B is displayed. User support is given by excluding all elements of B that have 
already been examined or cannot have a dependency to one of the selected elements of model A, 
reducing the overall amount of information. Additionally users can further limit their selection within 
this reduced view of model B. 

Once a selection is made dependency examination begins. Figure 8 shows a screenshot of Eco Tracing

• Skip: Skipping the examination regarding a dependency between the two elements. All 
combinations of their child elements will also not be examined. 

 
in use. In the left and right column the selected models are displayed. The elements comprising the 
combination being examined at the respective moment are highlighted in green. For every 
combination users have three possibilities:  

• Dismiss: If there is no dependency between the elements, the tracelink is dismissed. All 
combinations of their child elements will also be dismissed. 

• Approve: If there is a dependency between the elements, a tracelink is set.  
For motivational purposes a progress bar has been added visualising the rapidly growing ratio of 
already examined and overall combinations. 

 
Figure 8: Examination of dependencies. 

Eco Tracing provides users with the opportunity to economize their modelling efforts significantly. 
Numerous element pairs can be excluded from examination before users even get to see them. Users 
are also given the possibility to choose the level of detail for tracelink modelling on the fly - skipping 
entire parts of a model if desired. By allowing different levels of detail within one and the same model 
combination, dependency modelling can be realised as accurate as necessary with as little effort as 
possible. Through the guided procedure implemented in the Eco Tracing wizard users cannot get lost. 
They are systematically guided through all possible combinations of elements selected and always get 
provided with relevant context information. Once a decision has been made Eco Tracing saves this 
information to preclude redundant modelling work and to allow cancelling the process at any time. 



5 APPLICATION IN SYSTEMS ENGINEERING 
In Figure 9 an interdisciplinary system development process is illustrated. It is an adaption of the V-
model according to VDI 2206 [2]. In the early phases of system development (represented by the left 
side of the V-model) a large amount of different models, determining the system’s properties, is 
developed. Furthermore, designing is an iterative process and prone to numerous changes. That is why 
the potential for cost savings with the help of traceability, once the tracelinks are modelled, is 
especially high. Eco Tracing

In the phase of 

 can efficiently provide tracelink information enabling continuity in early 
design phases, which are shortly described in the following paragraphs.  

Product Planning an alignment of the planned product with the business strategy is 
carried out. Business and system requirements are developed. During System Architecture Reflection 
the predecessor’s system architecture is used as an initial point for discussions about the new product. 
Innovations and new systems are roughly integrated. These changes and plans for the new product are 
consolidated in the Requirements phase into new and changed high-level requirements. These are 
further detailed during the Requirements Cascade until they can be allocated to product functions. In 
order to satisfy all requirements it is necessary to add, remove, change and restructure functions during 
the Development of Function Structure. In the Development or Adjustment of System Architecture new 
solution elements for executing functions are added, out-of-date ones are removed or changed and 
system boundaries are defined. The last step of the Continuous System Design, is the Partitioning of 
Models. All models developed during preceding phases (requirements, functions, solution elements 
and behaviour models) are partitioned to the disciplines: mechanics, electronics / electrics (including 
software development), services and process & resources. 

 
Figure 9: Allocating the described Eco Tracing example in a system development process. 

During ISYPROM a hypothetical industry-like example was developed according to the 
interdisciplinary system development process in order to verify elaborated methods. In the following, 
this example is used to explain the application of Eco Tracing. The described region of the process is 
marked with a red rectangle in Figure 9. The chosen example deals with an engineering adaptation of 
an existing air conditioning system for a car. Cause for the adaptation is the ratification of EU 
directive 2006/40/EC. A high level requirement is added requesting the compliance of the air 
conditioning with 2006/40/EC. As all high level requirements it is further detailed causing several new 
and revised system level requirements. One of which is the requirement to exclusively utilize 
refrigerant fluids with a maximum global warming potential (GWP) of 150. All requirements are 



added to the existing requirements model. Following, the new requirements have to be connected to 
the function structure to maintain traceability.  
Starting Eco Tracing a user needs to select both partial models which need to be examined. In this 
case: requirements and function structure. The selection is narrowed down to the new and changed 
requirements, while the unchanged function structure with its functions and sub-functions is selected 
as a whole. The Eco Tracing wizard then leads the user through the examination process. The user has 
to decide for each combination if a dependency between the elements is existent. For example, a 
tracelink has to be set between the described system level requirement “GWP of 150 or less” and the 
main-function “cool passenger compartment”. With the help of Eco Tracing

6 CONCLUSION AND OUTLOOK 

 only 12 of 30 main- and 
sub-functions contained in the function structure have to be examined in combination with this 
specific requirement. For five of these combinations tracelinks are established and seven are 
dismissed. Thus 18 combinations can be ignored, saving 60 % examination effort and accelerating the 
process. As mentioned before, this number strongly depends on the amount of levels in the models’ 
hierarchy. That’s why no general conclusion about the effectiveness can be made, but in several tests 
during ISYPROM the possible savings were between 60 % and 75 %. 

Recent projects have shown that traceability is of particular interest to industry when mechatronic 
systems are developed. The usage of Model Tracer aims to help developers to achieve effective cross-
model traceability and complexity management. 
In this paper a number of existing approaches to manage tracelinks have been presented, which 
provide sophisticated functions for an improved model consistency as well as understanding and 
analysis of systems. While they concentrate on the beneficial use of tracelinks, there is little support 
for their identification and modelling. 
In order to cope with this deficit, the approach Eco Tracing has been detailed which utilises 
characteristics of nested hierarchies, often found in models in mechatronic system development. In 
doing so, many combinations of elements which usually have to be analysed during tracelink 
modelling can be excluded prior examination. The possible savings in effort highly depend on the 
amount of levels in the hierarchy. But several tests could show that the possible savings compared to a 
conventional method (where all element combinations have to be examined) were between 60 % and 
75 %. An overview of the features of Eco Tracing and its benefits is provided in Table 2. 

Table 2: Features and Benefits of Eco Tracing 

Feature Benefit 
Economize Modelling Efforts 

Flag all child elements of rejected parent 
elements  

Skip unnecessary examination of a huge amount 
of element combinations 

  

Choose Level of Detail flexibly 
Top-down processing offers the opportunity to 
skip branches of the model if desired 

User can choose the level of detail for tracelink 
modelling on the fly  

  

Follow a guided Procedure 
Eco Tracing wizard  User is systematically guided through all possible 

combinations of selected elements 
  

Conserve Knowledge 
Examined element combinations are flagged and 
those decisions are saved 

Preclude redundant modelling work 

  

 
“Each method for automatic relationship discovery provides one piece of the puzzle, but to obtain a 
complete picture, we still need to fit the pieces together and develop methods to integrate them to 
provide a complete solution.” [3] Therefore the presented approach Eco Tracing is yet another piece of 
the puzzle towards a complete solution raising significance of traceability in industrial system 
development. 
Future research will focus on aspects of assistance for dependency identification and maintenance e.g. 
by use of methods from semantic web applications in order to identify false and missing tracelinks. 



The aim is to reduce the necessary effort to create and maintain dependency models and to gain a 
maximum benefit of them with respect to the overall quality of and a reduced development time for 
the developed system.  
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