
 
 
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11 
15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK 
 

NEUTRAL DESCRIPTION AND EXCHANGE OF 
DESIGN COMPUTATIONAL WORKFLOWS 
Gondhalekar A. C.1, Guenov M. D.1, Wenzel H.2, Nunez M.1, Balachandran L. K.

ABSTRACT 

1 

Proposed in this paper is a neutral representation of design computational workflows which allows 
their exchange and sharing between different project partners and across design stages.  This is 
achieved by the de-coupling of configuration and execution logic. Thus, the same underlying 
workflow can be executed with different (fidelity) models and different software tools as long as the 
inputs and outputs of the constituent process are kept the same. To this purpose, an object model is 
proposed to define different simulation objects, their scope, and hierarchy in the simulation process. 
An XML based computer readable representation of workflows based on the proposed object model, is 
also suggested. The application of the proposed representation is demonstrated via a case study 
involving the exchange of workflows between two design partners. The case study also demonstrates 
how the same workflow can be executed using different execution tools and involving different 
fidelity models.  
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1. INTRODUCTION 
 
Increasing market demands for more efficient and capable products in recent years have lead to an 
increasing product complexity. At the same time, the pressures for shorter lead times and better cost 
effectiveness have resulted in business models involving multiple partners.  However, the difficulties 
recently encountered, for example, by the global aviation industry with regard to delivery have 
demonstrated that such complexity cannot be solved only by gradual improvement of existing 
practices.  A major European project aiming to tackle these problems is CRESCENDO [13]. One of 
the major aims of the project is to research and develop enabling methods and tools which will make a 
reality the design of a complete virtual aircraft, up to certification. The paradigm adopted in 
CRESCENDO is named the Behavioural Digital Aircraft (BDA). BDA is seen as the capability 
which will be able to federate and interact with different models thus enabling a seamless behavioural 
simulation of the aircraft throughout the development lifecycle and across the extended enterprise. In a 
sense BDA is expected to evolve into a Functional/Behavioral ‘Mock-Up’ and to become 
complementary to the Digital Mock-Up, which currently is indispensible with regard to geometry, 
topology and product lifecycle management (PLM) in general.  
In this wider context and ambitious global aims, the objectives of the research presented in this paper 
have been to develop the first steps towards enabling interoperability and reusability of automated 
computational design workflows. Taking the extended enterprise as an example, there may be good 
reasons (such as protection of intellectual property, security, etc.) why the partners may prefer to use 
their own code/software to operate on shared computational workflows. Such policy is also relevant in 
cases of a transition from one stage of the design cycle to the next (for example, from conceptual to 
detailed design), where the physics is the same but the model-details are different. In such cases, 
although the underlying computational workflow logic is the same, the actual models and the 
tools/software used to execute these models may be different. It is therefore important that a neutral 
description of computational workflows is available, which can be shared easily. This in turn, 
necessitates that the logic of the dynamically configured computational workflows is decoupled from 
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the implementation. Using a biological term as metaphor, the neutral description is intended to serve 
as some sort of a ‘computational DNA' (not to be confused with bio-molecular computing

In this paper, we present an XML based neutral representation of computational workflows, primarily 
focusing on low fidelity simulations. Currently the idea of employing a standard and neutral 
description for a process is discussed in the literature mainly in relation to the process industries and to 
business process modelling. There are standards such as BPMN (Business Process Modelling 
Notation) and BPML (Business Process Modelling Language), set by the OMG group [2][4], which 
use graphical notations to represent business process in a neutral way, independent of the 
implementation environment. Available is also an ISO standard for the representation of process plant 
lifecycle information [3]. The representation proposed in this paper follows the philosophy of the 
above mentioned standards, but in the specific context of model-based computational processes. It is 
more focused on addressing the needs of the design (simulation) community by incorporating 
simulation specific taxonomy. The intention is that the proposed XML implementation would allow 
workflow description to be parsed by computer programs in order to facilitate the automation and 
sharing of computational processes. 

) to facilitate 
the sharing and exchange of simulation information and associated knowledge. 

The rest of the paper is arranged in four sections. The next section explains in detail the proposed 
object model and XML syntax used for the development of the neutral description of computational 
workflows. Section 3 gives a practical example on exchanging computational workflows in a neutral 
format between two different partners. Finally, conclusions and proposed future work in this area are 
presented in Section 4. 
 

2. APPROACH 
 
In order to achieve a neutral description of a computational workflow, it is necessary in the first 
instance, to agree upon common definitions of the building blocks (objects) of any simulation process 
such as data, models, simulation tools and so forth. Such a set of definitions is referred to in the field 
as ontology, taxonomy or the more practical term - object model. We have chosen to use the latter 
term in this paper. Once the object model is established, the next task is to decide on the representation 
of this object model in a computer readable format, XML in this case. 
It is important to mention at this stage that the simulation objects can have different meaning 
depending on the fidelity level of the simulation. For example, at conceptual design stage, when 
dealing with low fidelity computation, the models are seen as executable programs whereas in high 
fidelity FEA (Finite Element Analysis) and CFD (Computational Fluid Dynamic) simulations, meshed 
geometry can be seen as a model. Within the CRESCENDO project, a considerable effort is being 
made to agree upon a global object model which covers different fidelity levels in simulation 
processes. The object model presented below is an extension of the object model presented in [1]. 
Historically it has been tailored to meet the needs of low fidelity simulations within conceptual and 
preliminary design stage. It is demonstrated later on in the paper how such workflows can be shared 
with tools enabling higher fidelity simulations. 
 
Object Model: 
 
• 

Data includes strings, scalars or arrays which constitute the most fundamental objects in the 
computational workflow class hierarchy. Data comprise the inputs and outputs of a model. Data 
attributes include:  name (string), type (string), nominal value (string/double/integer/double 
array), unit (string), min (integer/double), max (integer/double). 

Data  

• 
Model is an object in computational workflows that provides a set of output data after 
performing a series of computational operations upon specific input data objects. From an 
implementation point of view, such an approach allows to integrate within workflows any model 
object as a generic black box, regardless of whether it is an empirical formula, a proprietary 
computer code, or a script to run external applications.  

Model  

Attributes: Name (string), Inputs (Data), Outputs (Data), Auxiliary (Boolean) 



Methods: Execute 
 
Here, Auxiliary attribute determines whether the model will be considered while 
configuring/scheduling the workflow. For models with 'Auxiliary=true', the models act as global 
functions accessible from other models without being part of the computational workflow. For 
example, in aircraft design, a function to calculate air properties for a given altitude can be 
implemented as an Auxiliary model which can be accessed by several models within the 
computational workflow, potentially with different input values.  

• 
Sub-process is an object which stores a collection of suitable models for allowing the 
computation of a specific simulation, along with their sequence of execution. It is important to 
note that the execution sequence of a given set of models may be different depending on the 
inputs and outputs required by the user. This is due to, not least to the fact that, choosing a 
variable to be independent, i.e. to be an input into the computation, while its default state is 
actually an output of a model, would require numerical inversion of the latter. This in turn 
would dictate a possible change to the execution logic [8].  

Sub-process  

Attributes: Name (string), Execution Sequence (string array), Inputs (Data), Outputs (Data) 
Methods: Execute 

• 
When models are grouped together to form a sub-process with user defined inputs and outputs, 
some models may be involved in feedback loops due to shared input/output variables. The 
models can be re-arranged so as to minimize the number and the length of feedback loops. This 
will reduce the computational time while solving the coupled system. In the final arrangement, 
the models with feedback loops are grouped together in a structure called strongly connected 
components (SCCs). These SCCs are then solved iteratively by applying an appropriate 
numerical method. The SCC class is similar to the Sub-process class with an additional 
treatment to solve it iteratively.  

Strongly connected components (SCC) 

Attributes: Name (string), Execution Sequence (string array), Inputs (Data), Outputs (Data), 
feedback_variables (Data), numerical treatment (Treatment) 

 
Figure 1 shows an example of a strongly connected component in which Model 5 feeds back to 
Model 3 via Models 6 and 4. This type of arrangement has to be solved using iterative 
algorithms. 

 

 
Figure 1. An example of a strongly connected component (SCC) 

 
• 

A modified model is essentially a reversed model with one or more of the inputs changed to 
outputs and vice versa. A reversed model  is solved using appropriate numerical methods such 
as fixed point iteration or Gauss-Newton method.  

Modified Model: 

Attributes: Name (string), Inputs (Data), Outputs (Data), original model (Model) 
 
For object model implementation, the four classes described above (viz. Model, Sub-process, SCC, 
and Modified model) are inherited from an abstract class ModSub because of their commonality. 
  



• 
A Treatment object consists of numerical methods which can be applied at different levels in the 
hierarchy of a computational workflow. In the current implementation, a treatment can be 
applied on models, or sub-processes. Examples of a treatment can be a numerical differentiation 
treatment applied on a model, or an optimization treatment applied on a sub-process. A 
treatment applied on a model or a sub-process results in a set of output data. A treatment object 
has an attribute Template, which describes all relevant parameters for the treatment. For 
example, for an optimization treatment, the template may store objective functions, constraints, 
design variables, and other settings required by the optimizer. For a Genetic Algorithm 
optimization, these settings may be the number of generations, population size, etc. 

Treatment:  

Attributes: Name (string), Template (string array) 
• 

A Study object is an assembly of a specific model/sub-process with a particular treatment 
applied on it to carry out a required design process. A study can be considered to be similar to a 
sub-process, but at a higher level in the class hierarchy. Moreover, the realization of complex 
design processes can be achieved by nesting study objects.  

Study:  

Attributes: Name (string), model (ModSub), treatment (Treatment), Output (File), studies 
(Study) 
Methods: Execute 
 
Figure 2 shows the class diagram using UML notations.  

 

 
Figure 2. UML representation of the object model 

 



Though the SCC class inherits from the Sub-process class, by definition, an SCC cannot contain 
another SCC inside it. This is represented in the object model diagram using an additional constraint 
applied on the SCC class. 
 
XML representation of simulation objects 
 
The next step, once the objects which are manipulated during the simulation at hand have been 
defined, is to represent a computational workflow in a computer readable format. In the present work 
an eXtensible Markup Language (XML) based representation is chosen. XML was originally created 
to structure, store, and transport information [5], and thus it is inherently better structured compared to 
other ASCII text formats. In addition, XML can be easily parsed by different computer programming 
languages.  
In the proposed XML format, each object in the computational workflow hierarchy is represented by 
respective containers. Thus, the XML file will have different containers, namely, data, model, sub-
process, SCC, modified model, treatment, and study containers. Each container takes the structure of 
the respective class, and describes all attributes of that class. Figure 3 shows, as an example, the 
structure of the data container and the model container in XML format. 
 

 
Figure 3. An example of data and model container in XML format 

 
The top level container is the project container, which stores all simulation objects, treatments, and 
studies. In the current XML notation, unlike in BPMN, the connectivity of different simulation objects 
is implicit and can be derived from the description available in the XML file. In future, another section 
can be added in the XML file to specify the connections explicitly by using graph modelling notations 
such as the one proposed in GraphML [6]. 

3. CASE STUDY 
 
The concept of sharing the neutral description of computational workflow, presented in the above 
section, was demonstrated as one of the Proof Of Concepts (POCs) at a CRESCENDO project 
workshop. For the case study, AirCADia and Isight/SEE [9] were used as the candidates for 
computational workflow exchange. AirCADia is a flexible generic tool for complex systems early 
design, analysis and optimization, and is based on the Workflow Management Device (WMD) kernel 
presented in [11,12]. Unlike existing capabilities for model-based design which link (high-fidelity) 
tools in a predetermined sequence, AirCADia dynamically builds a computational workflow 
depending on what variables are given to the system as inputs by the analyst. Isight/SEE is a tool 
which provides an extremely flexible framework for assembling and managing ready-to run 
computational workflows. A sample computational workflow automatically configured using 
AirCADia was exported in XML format to Isight. The workflow was then re-created inside 



Isight/SEE, by using an XML parser program and an appropriate translator. Figure 4 shows a 
schematic representation of the case study. 

 
Figure 4. Schematic representation of the case study 

A sub-set of models from an aircraft sizing test-case, Ultra Simplified Model of Aircraft (USMAC), 
was used for this case study [7]. USMAC is an edited aircraft conceptual design test case supplied by a 
major aircraft manufacturer, consisting of a set of 97 models and 125 variables. Despite being 
simplified, USMAC is still representative of a complex multi-physics system description based on 
non-linear models. The illustrative sub-set considered in this case study consists of only 4 models used 
for aircraft fuselage and tail sizing. In AirCADia, these models were put together to form a sub-
process. The computational workflow scheduling algorithms developed during earlier research [7] 
were used to schedule the execution sequence. Figure 5 - the top half, shows a matrix representation of 
the workflow in Incidence Matrix (IM) form [1], where the models appear in the rows and the 
variables in the columns. The shaded entries (green and red) indicate that a variable is an input to or an 
output from a model(s), respectively.  The graphical representation of the same execution sequence is 
shown in the bottom half of Figure 5. 

 
 Figure 5. IM and graphical representation of the sub-process 

This computational workflow created in AirCADia was exported in the XML format to another 
partner at a different location. Figure 6 shows a screenshot of the XML file with different class 
containers. Since there are no SCCs, Modified models, Treatments, and Studies in the workflow 
considered for the case study, the corresponding containers appear empty in the XML representation. 



 

 
Figure 6. Computational workflow description in XML format 

At the partner’s location, the XML file is parsed using a tailor-written groovy script, which is a 
dynamic language for Java Virtual Machine (JVVM) [10] to replicate the same workflow in 
Isight/SEE. The equations for these models were automatically converted to either pre-defined 
MATLAB or Excel components in Isight/SEE. Figure 7 shows the screenshot of the same 
computational workflow in the Isight/SEE environment.  
 

 
Figure 7. Reproduction of the same computational workflow in ISIGHT 

As discussed earlier, representing the workflow in a neutral format essentially de-couples the two 
tasks, workflow configuration and workflow execution. To demonstrate this further, the model 



'fin_lever_arm' from the original workflow, which calculates the length of fin lever arm, was replaced 
by a 4-step process to calculate the same output, but this time with a higher model fidelity. As long as 
the input and output of the new detailed 4-step process are kept the same as in the original model, the 
same computational workflow can be used. Figure 8 shows the screenshot of Isight/SEE with the 
updated process which has the same execution sequence but with modified execution details. 
 

 
Figure 8. Replacing a component in the original workflow with 4 step process 

 

4. CONCLUSIONS 
The proposed approach to neutral description of computational workflow enables the exchange of 
computational workflows between different design partners. It also allows workflow logic to be 
effectively decoupled from the execution details. Such decoupling is extremely useful in the cases of 
collaborative design, where partners intend to use proprietary methods and tools for executing some 
parts of the workflow.  
The proposed approach also enables to couple simulations of different granularity in the same 
workflow. The XML representation had been found to be a structured way of sharing simulation 
object models, and the availability of well tested XML parsing routines in different programming 
language is expected to make it a preferred choice for workflow description and exchange. 
The heart of this research is the simulation object model, which is currently restricted to cater for low-
fidelity simulations used predominantly during the early design stages. A challenging task lies ahead 
in the CRESCENDO project – to develop a global object model, which will enable complete range of 
simulations, spanning the whole product development cycle. It is expected that these efforts will result 
in a standard for computational workflows description, in-line with existing data exchange standards 
such as STEP [14].   
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