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1 INTRODUCTION 
Managing product development (PD) processes is complex due to the many factors that influence 
process behaviour and performance. These factors can stem from different process abstraction levels 
and may be related to process architecture or high-level project issues. One way to analyse and 
optimise a process considering all these viewpoints is to represent the variety of influences from 
different process abstraction levels within a single modelling framework. In this paper, an method to 
achieve this by combining Design Structure Matrix models with System Dynamics is presented. The 
potential of the method is demonstrated through analysis of a hypothetical PD process. This analysis 
shows how it is possible to study the combined influence of process architecture, as represented in a 
DSM, and high-level project and management strategies, as represented in the feedback loops of an 
SD model. Furthermore, a typical source of uncertainty found in many PD projects – uncertainty 
regarding the duration of individual activities – is incorporated in the combined model to show how it 
is possible to improve the robustness of recommendations derived from simulation results. It is shown 
how managers may use this method to narrow down the possible range of their action.  

2 APPROACH 
Process models are an abstract representation of real processes, constructed from a certain perspective 
for a specific purpose. Depending on this purpose, process models may adopt different views and 
abstraction levels. This paper focuses on the combination of two commonly applied modelling 
approaches, Dependency Structure Matrix (DSM) and System Dynamics (SD), which take different 
abstraction levels. We show how combining these two approaches allows consideration of multiple 
perspectives and issues concurrently. 
DSM models of PD processes represent activities and their interdependencies in a concise matrix 
format, allowing the modeller to describe the architecture and details of a PD process on the task level 
(Browning et al., 2005). In terms of architecture, the model can represent the process, its sub-processes 
and constituent tasks. By viewing tasks as information processing units, DSM models show 
information flows between activities. These dependency relationships have a significant influence on 
the course of the process because they determine the tasks which are possible to attempt at any state of 
project progress. In terms of process details, DSM models can include information about task 
durations and resource requirements, and can represent uncertainty in task duration as well as the 
likelihood of iterations occurring (Carracosa et al., 1998). These process details and architecture-
related characteristics, as captured in a DSM model, are useful in identifying iterations in the PD 
process and exploring their potential impact on process lead time. 
SD models, on the other hand, view processes from a higher abstraction level than DSM models. In 
SD, PD processes are modelled as collections of identical work packages (WPs). WPs are assumed to 
flow at certain ‘rates’ between ‘stocks’ that indicate the current execution state of each WP, according 
to a generic rework cycle which can be complemented by feedback loops that govern how flow rates 
change over time (Cooper et al., 2002). One of the main factors that determine the flow rates in SD 
rework cycle models, such as that described by Ford and Sterman (1998) is the so-called 'process 
concurrence relationship'. This specifies the percentage of WPs which are possible to attempt at every 
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possible state of project progress (or it can alternatively be formulated as the percentage of WPs 
already complete at each time in the project). The standard SD rework cycle is used to model 
undiscovered rework due to WPs that are believed to be done but in fact contain undiscovered errors, 
and to investigate how this false belief may influence process behaviour when these errors are 
discovered at a later stage. Apart from rework discovery, influences imposed on process behaviour by 
project constraints such as resource size and project deadlines and management policies are modelled 
as elements of dynamic feedback systems. These feedback systems allow the study of causal 
relationships between influencing factors and process behaviour, and the design of policies to change 
this behaviour for better process performance (Lyneis and Ford, 2007). Thus, SD models are useful to 
explore and understand the dynamics of process behaviour on an overall-system level, providing a 
means to investigate issues that cannot be easily represented in a DSM model. However, in some 
respects they are quite abstract since they do not directly account for the structure of dependencies and 
information flows in a particular process. 
This paper shows how the two modelling approaches described above can be integrated in order to 
capture both the high-level project issues described by SD models and the task properties/task 
dependency information represented in DSM models. This provides a simulation and analysis 
framework to explore process behaviour in a more holistic way than either approach can provide in 
isolation. In an earlier paper (Le et al., 2010) we present a method to integrate these two modelling 
approaches by transforming a flow-chart style task network model into the rework cycle of an SD 
model. This paper extends the initial result by (1) applying the method to a DSM process model and 
(2) showing how uncertainty in task duration can be incorporated in the analysis. In particular, 
different task durations can influence the order in which activities are executed, resulting in a set of 
different project schedules and lead times. Thus, accounting for uncertainty in task duration and its 
associated influences can improve the robustness of insights derived from process simulation.  

 

 
Figure 1. Integrated modelling and simulation framework 

 

Figure 1 illustrates our integrated modelling method on a high level. A DSM model is used as the 
starting point to capture task-level details of a specific PD process model from the information 
dependency perspective. The second step is to automatically transform the DSM process architecture 
into rework cycles of an SD model. In particular, the sub-processes of the DSM model are transformed 
into individual rework cycles in the SD model. Dependency relationships between tasks in the DSM 
sub-processes are used to determine the process concurrence relationships in each SD rework cycle. 
The derivation of process concurrence relationships can be achieved as follows. First, the DSM model 
is simulated to obtain a lead time with a specific task schedule that can be visualised as a Gantt chart 
(no resource constraint is assumed to avoid schedule distortion). This chart represents a variant of 
possible task orders evolving from the model underlying dependency relationships. Second, by 
knowing the start and end dates of each task depicted in a chart, it is possible to calculate (1) the 
individual and (2) the cumulative percentage contribution of each successive time step to the overall 
project scope achieved in terms of number of tasks completed. Then, by equating a time unit of DSM   
task duration with a WP in SD terms, process concurrence relationships of an SD model can be 
derived from the process completion profile (PCP). These relationships specify the percentage of WP 
available for attempt according to a given progress state at each time step (for more details of the 
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transformation method see (Le et al., 2010). Finally, once a rework cycle (with its process concurrence 
relationships) is generated, the SD model can be completed by adding SD model elements to the 
rework cycle. These include management policies and other feedback systems (Ford and Sterman, 
1998). 
Apart from process architecture-related characteristics, the model transformation method considers 
details of activities captured in the DSM which influence the course of the PCP. For instance, 
variabilities in task duration yield different task execution orders and process lead times, which are 
revealed when multiple simulation runs are executed. In order to account for such variability, which 
can be modelled through probability density functions associated with each task, Monte-Carlo 
simulation of the process as represented in the DSM is used to obtain a probabilistic distribution of 
different project lead times with different task schedules that could be visualised as Gantt charts. Each 
outcome provides a different process completion profile. By converting every PCP resulting from 
DSM simulation into a specific process concurrence relationship representing that outcome, then 
generating and simulating the SD model for each concurrence relationship, it is possible to explore (1) 
how the process could behave under task duration uncertainty, and (2) the set of SD input variable 
combinations that are more robust than others, i.e., able to deliver satisfactory process performance In 
the face of this uncertainty. 
The method outlined above is currently implemented using a combination of automatic and manual 
analysis. A fully-automated implementation is currently under development as a plug-in for the 
Cambridge Advanced Modeller platform (formerly P3). Once complete, this should allow fast and 
seamless application of the transformation to any process modelled as an activity DSM in that 
software. 

3 CASE STUDY 
To illustrate how the method can be applied to investigate the impact of multiple influencing factors 
from different process abstraction levels, a hypothetical process model with twenty four tasks was 
synthesised (Figure 2, left). In this hypothetical model, each task was assigned a triangular probability 
distribution function representing its duration. Project schedules generated from the DSM model 
through Monte-Carlo simulation were then used to calculate project completion profiles, from which 
process concurrence relationships of rework cycles in the SD model were derived as outlined in 
Section 2.  
 

 

Figure 2. Models of the hypothetical process 
 

In the resulting SD model shown in Figure 2 (right) the variables ‘Resource size’ and ‘Overlapping 
degree’ are modelled as management levers (input variables), with the resource size varying between 4 
and 7 and the overlapping degree ranging from 15% to 50%. It is assumed that overlapping of tasks 
results in rework whose amount is characterised by an exponential function, implying that the later the 
overlapping starts, the lower the proportional amount of work package that needs rework, and vice 
versa. Furthermore, it is assumed that work pressure arises when the number of tasks available for 
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execution is greater than the capacity provided through the resource size. This has the negative impact 
of a decrease in resource efficiency, resulting in longer work package processing time (Figure 2, 
right). Based on these simple assumptions the SD model simulates all possible combinations of the 
two input variables – resource size and overlapping degree – for all the process concurrence 
relationships calculated from each project schedule derived from Monte-Carlo DSM simulation. 
Figure 3 (left) presents the results from all simulation runs of this SD model in a parallel coordinates 
plot (Fua et al., 1999). In this figure (as in all the figures hereafter) all values are normalised by 
dividing them by the maximum value in their respective category, e.g. overlapping value of 0.4 results 
from 20% over 50%. This type of plot allows values of all combinations to be plotted in one figure 
and, hence, provides a good overview of how multiple output variables depend on multiple input 
variable values. Figure 3 (left) shows that the majority of simulations yield duration mean values 
between 0.46 and 0.75, and that cost mean values are concentrated in the interval (0.77, 0.93). The 
lines within these duration and cost mean value intervals also indicate that there is a trade-off between 
duration and cost.  
In order to find a combination of input variable values, which would yield target outcomes that are 
robust to task duration uncertainty modelled in DSM, ‘Duration variants’ and ‘Cost variants’ are 
computed to ‘Duration variance’ and ‘Cost variance’ (Figure 3, right). These values represent 
statistical variances of all simulated duration and cost outcomes. By specifying acceptable upper limits 
for both duration and cost values, it is possible to identify input variable combinations that can meet 
the specified range of process performance. In this example the duration mean is set to be less than 0.6 
and the cost mean to be less than 0.83 (rectangles in Figure 3, right). This filtration yield seven 
combinations of input variable values (see Figure 4, left), which then undergo a variance filtration to 
search for the more robust combinations. In this example, the maximum duration variance is set to be 
0.1 and the maximum cost variance to be 0.15 (rectangles in Figure 4, left). Only three combinations 
remain (Figure 4, right) that can meet this specification, whereas the line labelled with ‘RC’ seems to 
offer the best outcome. 
 

 

Figure 3. Aggregating simulation results 
 

To further contrast the robustness of the input variable value combination labelled with ‘RC’ (see 
Figure 5, left) it is compared to a different combination of input variable values, with the resource size 
being 0.86 and the overlapping degree being 1 (Figure 5, right). This combination yields similar 
duration and cost mean output values. However, the ranges of duration and cost variants – caused by 
task duration uncertainty modelled in the DSM – are much greater than those of the robust 
combination. Thus, the robust combination poses the better choice in an uncertain project 
environment. 
Despite the simplicity of this example, the case study has shown how the integrated simulation and 
analysis framework can be used to capture influencing factors from different process abstraction levels 
– the degree of task overlapping (related to process architecture) and reduced efficiency of resource 
due to work overload (related to project environmental issues) – and analyse their impact on process 
performance. By filtering the simulation results it is possible to narrow down the range of alternative 
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management actions and, hence, to provide support to managers in decision making. Furthermore, 
with the incorporation of task duration uncertainty, the robustness of process performance can be 
explored, adding more value to insights derived from simulation results.  
 

 

Figure 4. Finding robust strategy 

 

 

Figure 5. Robustness comparison 
 

4 SUMMARY & OUTLOOK 
The initial results of the integrated simulation and analysis method presented in this paper have 
reflected its potential to evaluate impacts of factors from different abstraction levels on process 
behaviour within a single framework. Also, by taking task duration uncertainty into account it is 
possible to investigate the robustness of process performance to duration variabilities.  
Further work needs to be undertaken in order to account for more influencing factors and make this 
method useful for practitioners. In terms of duration uncertainty it would be interesting to investigate 
how the shape of task duration distribution (e.g. normal, left- or right-skewed distribution) may favour 
different management actions or policies. Apart from task duration, uncertainty in iteration can 
significantly influence process behaviour and will need to be considered as well. Furthermore, Pareto-
front analysis can be applied to exploit further insights from simulation results. In order to carry out 
such sophisticated analysis, the model transformation has to be executed fully automatically within a 
modelling platform (i.e. Cambridge Advanced Modeller) which is in the process of implementation to 
date. Achieving these steps can make such a method useful for managers. 
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IntroductionIntroduction

• Factors influencing project lead time can be 
related to:

– Process uncertainties (e.g. task duration, 
iteration occurrence) 

– Process architecture (e.g. activityProcess architecture (e.g. activity 
overlapping)

– Management  policies (e.g. workload, 
schedule pressure)schedule pressure)

– Etc.

• Modelling and simulation can be applied to• Modelling and simulation can be applied to 
explore:

– Impact of constraints 
Sensitivity to variabilities/uncertainties– Sensitivity to variabilities/uncertainties

– Direct and indirect impact of management 
policies
Etc

Source: http://www-edc.eng.cam.ac.uk/cam/
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DSM – SD ComparisonDSM SD Comparison

DSM models Rework cycle models

Viewpoint � Network of  tasks in a matrix 
representation

� Phases composed of stocks and 
flows containing work packages

Source: Cooper’s rework cycleSource: http://web.mit.edu/

p g p g

Key elements � Dependency relationships
� Constraints & Uncertainties 

� Rework cycle (stocks & flows)
� Process concurrence relationship

F d f d d f db k l� Feed-forward and feedback loops

Purposes/
Strengths

� Process architecture
� Iteration loops

� Process behaviour analysis
� Management policies
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Research questionsResearch questions

• Can an integrated modelling framework help to design robust g g p g
process architectures and optimise lead time?

• How can such a framework be developed?How can such a framework be developed?
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Framework (1/3) - OverviewFramework (1/3) Overview

System DynamicsDSM Model System DynamicsDSM Model

Project  
environment

Rework cycleProcess 
architecture

Process 
behaviourModel

environment

Model 
transformation

Management 
policies

Insights for g
process 

improvement
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Framework (2/3) – Model transformationFramework (2/3) Model transformation

DSM model elements SD model elementsDSM model elements SD model elements

P
� Sub-processes � Rework cycles

Process 
architecture � Task dependency 

relationships � Process concurrence 
relationships

� Activity duration 
(uncertainty)

Process details � Resource requirement under development

Iteration &� Iteration & 
Rework behaviour

under development
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Framework (3/3) – Process concurrence relationshipsFramework (3/3) Process concurrence relationships

DSM Model Simulation • DSM model with

– Task dependency relationships 

– Task duration as triangle-pdf

DSM Project Progress Profile_n

Completion ProfileSchedule

• Set of simulated project lead times 
with specific schedules

• Process completion profile based
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Process completion profile based 
on start and end dates of each task

• One time unit of DSM task duration 
0%
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Time = one work package in SD

Process conc rrenceProcess concurrence 
relationships
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Case study (1/3) – Building the modelCase study (1/3) Building the model

• Model transformation:
– Hypothetical model with 

PDF durations
– Baseline case: no 

++

iteration
– Monte-Carlo simulation

++
• Extending the rework cycle:

A ili i bl d
+

+ +

+ +
+

_ – Auxiliary variables and 
key feedback systems 
(arrows) 
A i f f db k+ + – Assumptions for feedback 
system influences                   
(“+” and “-” signs)
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Case study (2/3) – AnalysisCase study (2/3) Analysis

• Task duration uncertainty results 
in performance uncertainty  pe o a ce u ce a y

• Trade-off between project 
duration and cost (circled)

• Filtering out acceptable values of 

RC

mean output parametes

• Searching for robust process 
ith l i l
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Case study (3/3) – Finding robust strategyCase study (3/3) Finding robust strategy

• Similar mean values

• Less sensitive to task duation• Less sensitive to task duation 
uncertainty due to smaller 
ranges of output parameter 
variants
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Summary and outlookSummary and outlook

• Framework can encompass influencing factors addressed by 
different modelling approachesdifferent modelling approaches

• Provides insights into process robustness in the light of task 
duration uncertainty
F th k ill i l d• Further work will include
– Comparison of integrated framework simulation results with task 

network model’s results
Th d l t ( it ti t i ti )– Theory development (e.g. iteration uncertainties)

– Tool development (i.e. implementation in the Cambridge Advanced 
Modeller)
E l ti f i f li ti ( ti it l i ith– Exploration of scenarios of application (e.g., activity overlapping with 
iteration, frequency of design review)

– More sophisticated analysis (e.g. sensitivity of lead time to task 
duration uncertainty)duration uncertainty)

– Etc.
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