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1. Introduction 
Procedures for the calculation of pre-stressed and dynamically loaded bolts are nowadays theoretically 
well known, practically tested and proved and also prescribed with different standards, regulations and 
recommendations [Richtlinie VDI 2230 2001]. Unfortunately, this is not the case with the calculation 
of true bolt operating loads. The issue is especially important at certain critical joints with evident 
uneven stiffness of supporting structures in the bolt vicinity and/or with uneven bolt distribution. In 
rotational connections, for example, bolted joints are used to fix rings of large-sized rolling bearings 
onto supporting structures. The effect of uneven stiffness of supporting structures on the external load 
distribution on the rolling elements of a bearing is an important issue also in bearings. Our group has 
researched [Prebil 1994, Prebil 1995] these effects. The findings have been included into an improved 
model to determine the maximum operating force FA in individual bolts in a joint [Prebil 1998]. The 
generalised model is based on the use of so-called elasticity and stiffness matrices of both structures 
joined by a bolted joint. In the continuation, the paper briefly presents the model for operating bolt 
load calculation and the method for the calculation of structure elasticity and stiffness matrices and 
presents a comparative analysis of the results obtained through different calculations and 
measurements. 

2. Definition of the algorithm 
The model for operating bolt load calculation (Fig. 1) is based on the following definitions, 
presumptions and generalisations:  

• A bolted joint joins two structures, A (supporting) and B (upper), which are made of Hook's 
ideal elastic material. All the deformations and displacements are small and remain in the 
elastic domain.  

• The entire bolted joint is located on one plane (the joining plane of two flanges). On this plane 
lies the x-y plane of a right-handed Cartesian co-ordinate system so that the positive +z axis 
points towards structure B (upper). The position of the co-ordinate system origin is not 
prescribed but it is only logical for it to be located in the center of gravity of the bolt 
distribution pattern. 

• The external forces and moments which affect the bolted joint act upon structure B and travel 
through a bolted joint onto structure A which is fixed (supported) in space. External loads are 
notated with the resulting force acting in the direction of the described co-ordinate system (Fz) 
and with the resulting moment acting around x (Tx) and y (Ty) axes of the co-ordinate system. 
Bolts in a joint are only loaded in the axial (z) direction.  
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• In calculation of the bolt operating force we take into account only elasticity deformations and 
those displacements in bolts, flanges and structures which run in the z direction of the co-
ordinate system, that is in the axial direction of the bolts. 

• The number of bolts in a joint is n and their distribution pattern is not prescribed. Bolt position 
is generally determined with the co-ordinates xi and yi, which are stated numerically as input 
data. Bolt position, i.e. the co-ordinates record, is usually presented in mathematical form with 
vector notation. 

• It is necessary to know or at least roughly estimate the dimensions of a bolted joint which are 
required in calculation of elasticity ?  or stiffness k of joint bolts and flanges (1). 
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Figure 1. Bolted joint model (bolts are distributed along circular path in this case) 

The elasticity of bolts and flanges (1) along with the corresponding forces, as defined in VDI 2230 and 
presented in Fig. 1, is the only elasticity taken into the account at classical methods of computation. In 
the expression, l is the length (of a bolt or flange), A is the surface of crossection, and E the elastic 
modulus of material.  
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The load and reaction forces on Fig. 1 are used to set up a system of three equations representing the 
static equilibrium of structure B:  

1 1 1

0, 0, 0 and .
n n n

z Ai x Ai i y Ai i Ai si pi
i i i
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= = =

− = − = + = = −∑ ∑ ∑  (2) 

Index s is used to represent the bolt and index p is used to represent the flange (Fig. 2). The bolt 
operating force is positive if it applies additional tension to the bolt, and negative if it causes additional 
compression of the flange (reduces bolt load). The force operates at positions where the elasticity of a 
bolt and flange and the performance of external loads cause a relative displacement (as of a stiff body) 
of structure B towards structure A. 
The shift of structure B is mathematically described with a geometric transformation of the co-ordinate 
system, which consists of its rotation about the y and x-axes (φy, φx) and the translation of u, v and w 
along x, y and z-axes (Fig. 1). Since the rotation angles are very small, equation can be simplified as 
follows (sinφ  → φ [rad], cosφ → 1) : 
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According to the mentioned presumptions, an elasticity deformation of a bolt and flange is only caused 
by rotations around the x and y-axes and a shift towards the z-axis. In this type of connections, 
position vectors running from the co-ordinate system origin to the bolts are relatively long, especially 
if compared with the clamping length of bolts or flange thickness. In such cases the elastic extension 
of a bolt or flange can be written in a simplified form as  

1i i y i x i i i y i x iif z z x y z w z x y wφ φ φ φ∆ = − = − + + + − = − + + . (4) 

If the elastic extension is positive, it results in an increased bolt load and a decreased flange load, and 
vice versa if the elastic extension is negative (Fig. 2). 
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Figure 2. Additional bolt (a) and flange (b) load 

On the basis of expressions (1) and (4) and the bolted joint loads diagram (Fig. 2), the expression to 
determine the operating force on individual bolts can be written as 

)()()( wyxkkfkkF ixiypsipsAi ++−⋅+=∆+= φφ . (5) 

Symbols ks and kp represent the stiffness [N/mm, N/m] of a bolt and flange respectively as defined in 
equation (1).  

3. Role of the elasticity of joined structures  
External load operation on structure B causes the operating force FAi. to be applied to the bolts of 
elastic structures A and B joints. Besides causing extensions and contractions of bolts and flanges, 
these forces also result in elastic displacements of both structures at bolt positions, which in turn affect 
the sizes of operating forces FAi because of uneven elasticity (stiffness) of structures. 
In accordance with the definitions stated in Chapter 2 and on the basis of Fig. 3 we can deduct that a 
positive operating force FAi causes in structure A a positive elastic displacement wAei in the z-axis 
direction, and in structure B a negative elastic displacement wBei in the z-axis direction. The vectors of 
elastic reaction forces of structures A and B upon the vector of operating force FA can be presented as: 

{ } { }, { } { }Ae A Be AQ F Q F= = − . (6) 



ANALYSIS TECHNOLOGIES 1288

z

r

Structure B

Structure A

ks

kp

∆f
i

w
A

ei
w

B
ei

FAi

FMi

FAiFMi  

Figure 3. Elastic displacements of structures A and B resulting from the operating force FAi 

Since the structures A and B are continuous, the operating force FAi affects elastic displacements of 
structures at position i and at all other bolt positions, and vice versa. The relation between elastic 
forces of structures and elastic displacements at bolt positions can be summarised in the following 
matrix equations: 

{ } [ ] { }, { } [ ] { }, { } { }Ae A Ae Be B Be Ae BeQ K w Q K w Q Q= ⋅ = ⋅ = −  (7) 

Matrices KA and KB represent the stiffness [N/mm, N/m] of structures A and B at bolt positions. The 
matrices are square matrices n x n in size, where n is the number of bolts in a joint. Later in the paper 
more shall be said about how to calculate these matrices for given structures.  
Elastic structure displacements (wAei, wBei) affect the extensions and contractions of bolts and flanges at 
their positions and, consequently, the actual operating force size. A bolt operating force at position i 
can in this case be presented as:  

( ) ( ) ( ) ( )Ai s p i ei s p y i x i Aei BeiF k k f f k k x y w w wφ φ= + ⋅ ∆ − ∆ = + ⋅ − + + − +
 (8) 

From the equations in (7) a relation between elastic displacements of structures A and B can be 
derived and written as: 

}{][}{][][}{][][}{ 1
BeBABeBABeBAAe wKPwKPwKKw ⋅−=⋅⋅−=⋅⋅−= −

 (9) 

Expressions (6) and (7) can be used as the basis for the equilibrium system of n equations: 

0}{}{][ =+⋅ ABeB FwK  (10) 

Expressions (8) and (9) help us obtain the final matrix notation of the equilibrium system (10): 

1
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System (11) has n equations and n+3 unknowns (elastic displacements {wBe} and body displacements 
φy, φx, w). The missing three equations are obtained from the equilibrium with external loads (2), 
which can be presented in matrix form as follows:  
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The size of all matrices is n x n and they are written in square brackets. Column vectors of n lengths 
are written in wrapped brackets, while superscript T represents the mathematical operation of 
transposing a matrix. The expression {a}T {b} is therefore a scalar product of vectors a and b. [I] is the 
unit matrix, {1} is the unit vector. The linear system of n+3 equations (11 and 12) can be solved with a 
suitable numeric algorithm (e.g. LU decomposition) or with a suitable software tool for symbolic and 
numeric calculation (e.g. Mathematica). The next step is to use equation (8) to calculate the actual size 
of operating forces at all bolts.  

3.1 Elasticity and stiffness matrices of joined structures  
The presented model is relatively simple for it enables a more accurate calculation of bolt operating 
loads with a reasonably easy method for solving the linear system of equations. Nevertheless, it 
requires calculation of the elasticity and stiffness matrices of structures A and B for bolt positions in 
structures (defined in the 3D Cartesian co-ordinate system). The task can be solved using any suitable 
method for linear elastic structure analysis. Modern engineering practice recommends the use of a 
commercial CAE package for FEM (Finite Element Method) analyses [SAS 1998]. 
Structures (A and B separately) need to be modelled accurately by using appropriate structural linear 
elastic elements (beam, shell, solid – Fig. 4). It is necessary that the mesh in the joint vicinity is 
sufficiently dense and that there are nodes at bolt positions. For practical reasons it is also advisable to 
logically enumerate the nodes at bolt positions (ascending sequence reflecting bolt distribution – e.g. 
along a circular line). When conducting an elasto-static analysis, structure A (supporting) is supported 
at positions and in the way that imitates the actual supports. Structure B (upper) is supported at 
positions where the structure is affected by external loads, and in the way it is affected.  
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Figure 4. FEM model of mobile crane (shell FEM elements) and elasticity matrix caculated for 
36 bolt positions on structure A 

For each structure the n load cases (n is the number of bolts) are prepared. The i-th load case is the unit 
force {0,0,1} in the +z direction, which is applied at the node in the mesh where the i-th bolt in the 
structure is positioned. We are only able to use the results of the analysis to create an elasticity matrix 
of the structure ([PA], [PB]) if we calculate for each load case the displacements of the structure {wXe} 
in the z-axis direction for all nodes where bolts are located. Every element Pij [mm/N, m/N] of an 
elasticity matrix of structure represents a displacement in the z direction at position j, which is caused 
by the application of unit force in the z direction at position i. The stiffness matrix of the studied 
structure is calculated by inverting (K=P-1) [Wolfram 1993, Press 1990] elasticity matrix of this 
structure. Every element Kij [N/mm, N/m] of the stiffness matrix of structure represents the reaction 
force in the z direction at position j caused by unit displacement in the z direction at position i. 
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Provided the model is carefully designed and the results obtained with an FEM analysis are logical, 
elasticity matrix inversion should not be a difficult task. If the nodes at which displacements are 
calculated are logically enumerated, every row in an elasticity matrix represents discrete values of the 
displacement curve of the structure in the z direction along a connected path on which bolts are 
distributed (often a circle, a rectangle, …). A 3D representation of such a matrix is a continuous 
surface with dominant diagonal elements (Fig. 5). These matrices are well conditioned and invert 
easily.  

4. Advantages of the method  
A calculation of the elasticity and stiffness matrix is quite time consuming. We need to build an FEM 
model which is sufficiently accurate, carry out an analysis for a considerable number of load cases and 
perform a relatively extensive research into the analysis results by using suitable macro programs of 
the CAE package or specially designed applications in the suitable programming language. Although 
most of these tasks can be automated to a high extent, the question of whether and when the use of the 
described method is sensible in comparison with the classic FEM analysis of the entire joined structure 
is well justified. Our experience shows that the presented method has the following main advantages: 
 

• The method can be further generalised by considering different stiffness information for each 
bolt and present it as numeric input value. Changing the data for bolt and flange stiffness is a 
relatively simple task.  

• Structure elasticity matrices can be determined with a linear elastic FEM analysis which is 
quite straightforward and fast. Structures A and B are dealt with separately, which facilitates 
modelling and decreases computation times (Fig. 4).  

• The method facilitates analyses of individual structure effects by allowing one of the 
structures to be considered an ideal stiff structure ([P]=a[I], a<<1). 

• If the external joint load changes, only a system of equations (11, 12) with a different load 
vector needs to be solved to perform the analysis. 

• In case of minor changes in bolt positions or changes in the number of bolts distributed along 
the same (or almost the same) path, new elasticity matrices can be calculated with the 2D 
interpolation of the original elasticity matrix of the structure. It is advisable that in such cases 
the original elasticity matrix is defined with an FEM analysis for a sufficient number of nodes 
along the bolt distribution path. It is sensible to increase node density at positions where the 
elasticity of the structure changes faster and at positions where higher bolt concentration is 
expected in case of uneven bolt distribution. 

• Often there is a need to analyse joints which allow for different mutual inter-orientation of 
structures A and B (rotation of structure B round the z-axis). In rotational connections, for 
example, bolts are used to fix rings of large-sized rolling bearings onto the structures. When 
applying the described method, changes in inter-orientation can be simulated with a 
corresponding movement of the elements of the rotational structure B elasticity matrix. The 
simulation of rotation is accurate for the angles determined by the angle between the x-axis of 
the co-ordinate system, and position vector to the k-th bolt. 

 
The FEM analyses to determine elasticity matrices can nowadays be carried out on average 
workstations with appropriate CAE software in a relatively short time. Further analyses of bolted 
joints can be performed with appropriate software applications on an average personal computer. 

5. Comparison of calculated and measured values  
The described method was first tested on a rotational connection in the mobile crane Metalna MTA 
180. The aim of the test was to study the effect of uneven stiffness of the supporting structure of the 
crane (on a truck) and upper construction on which the hydraulic telescopic boom of the crane is fixed. 
Since our primary interest was the effect of uneven stiffness upon the forces in rolling elements, we 
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made relatively accurate FEM models of both structures by using shell elements (Fig. 4). For better 
comparison we later made highly simplified line FEM construction models by using beam elements.  
Elasticity matrices of both structures were calculated for 121 positions in the pitch circle (Dl = 1208 
mm) of evenly distributed rolling elements of a single row ball bearing. Pitch circles of bolted joints in 
the outer bearing ring with the supporting structure and the inner ring with the upper structure were 
not much different in diameter from the bolt pitch circle (Do = 1265 mm, Di = 1150 mm). In the bolt 
area structure stiffness did not undergo any significant changes. Consequently, the elasticity matrices 
of structures were calculated for 36 evenly distributed bolts from the original matrix with a 2D 
interpolation. In production of the bolted joint in the outer ring, elastic bolts M16x115 and a clamping 
length lk = 75 mm were used, while in the inner ring in the joint was executed with elastic bolts 
M16x85 and with a clamping length lk = 50 mm. 
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Figure 5. Comparison of distribution of calculated and measured operating bolt loads between 
the bearing ring and the supporting structure of the mobile crane 
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Fig. 5 shows the distribution of operating bolt forces applied to the outer bolt ring which are calculated 
with different methods and compared with the values measured in a life-size object. Seemingly strange 
external load with tilting moment Ty = 555,3 kNm (Tx = 0) and the axial force Fz = -123.3 kN results 
from the inclination of the crane boom and the available weight on the test field.  
Fig. 5 and other calculations and measurements show a substantial deviation of highest values for 
operating forces calculated with the described method (up to 135% higher) from the values deriving 
from the presumption on ideal stiff structures. Calculated value for the maximum operating force 
obtained with experience method recommended by large sized bearing producer Hoesch Rothe Erde in 
his catalogue [Hoesch Rothe Erde 1989] is only 15% higher than at stiff structures. Operating bolt 
loads calculated with described enhanced method are in good agreement with the measured values, 
which was further confirmed by results obtained in other load cases and in other inter-orientations of 
joined structures. 

6. Conclusion 
Compared with classic methods for calculation of operating bolt forces, which presume ideal stiff 
structures, the method presented in this paper requires a relatively high effort if better results are to be 
obtained. Nevertheless, the presented method which is based on the use of elasticity and stiffness 
matrices is rather generalised. The creation and use of appropriate software applications offers 
opportunities for automated matrix calculation. In comparison with the classic FEM analysis of 
complete joined structures, the complexity of FEM analyses would thus be significantly reduced along 
with the time needed to obtain appropriate results.  
Judging from the experience, the presented method can be of great usability in certain typified bolted 
joints which require numerous variations in product development, especially as regards the form and 
size of bolts, the number of bolts and the distribution of bolts along a more or less limited path and 
which require calculations at different inter-orientations of joined structures.  
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