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1. Introduction

An incremental formulation of the basic equations of the finite element method is described in this
paper. These basic equations are used in stress and strain analysis in structures in which plastic strains
have occurred. By numerical analysis of the structure in a non-linear range the external loads are
applied in increments. It gives a possibility of keeping track of the plastic zones spreading around the

geometrical discontinuity as external loads are increased. The elasto-plastic matrix D, was formed

for the case of plane stress. The dependence between incremental stress vector and incremental elastic-
plastic strain vector is established through matrix D, . The elements of the matrix D, will not be

constant in the case of elastic-plastic state in a structure. They will depend on instantaneous state of
stress and strain in a structure.

The paper deals with an analysis of stresses, strains, displacements and spreading of plastic zones in
the thin plates of finite dimensions with the geometrical discontinuities in the form of a circular hole,
an elliptical hole and a crack. The plates are uniaxially loaded, on stretching in-plane in the direction
perpendicular to the big half-axis of the élipse, or to the crack plane. The holes boundaries are free
from loading. The material of the platesis presented schematically as the elastic-perfectly plastic one.
The loading is increased uniformly and monotonously, so the local plastic strains occur on the
boundaries of the geometrical discontinuities. Consequently, a need for a non-linear analysis arises.
Namely, appearance of plastic strains will not immediately cause a plastic collapse of the whole plate.
Such an elastic-plastic state of the plate material can be allowed. The function of a plate as a structura
element will not be disturbed in that way. Finaly, it will have for a consequence a lighter structural
element or what is same, permissible loading of a structure will be greater. A possibility of appearance
of plastic strains in a structure requires reliable determination of stresses, strains and displacements.

2. Basic equations of the finite element method for structure analysisin an elasto-
plastic state

Using an interpolation function, an increase of displacements at any point within the finite element
df in dependence on an increase of nodal displacements dU for a particular elements can be written
as.

df =N dU (1)
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where N is the matrix of shape functions. The strain increment vector de within an element is shown
through the increase of displacements within the finite element df , i.e. through the increase of nodal
displacements dU in the following form:

de=ddf =B dU 2

Inserting the expression (1) into (2), it is clear that the matrix B equals d N, while the matrix d

represents a matrix of the differential operators. The stress increment vector ds isrelated to the strain
increment vector de by the matrix equation:

ds =Dde (3)
or, by taking into consideration the expression (2), we can write:

ds=DB dU=SdU @

where S=DB is the so called element stress matrix. The matrix D in the expression (3) contains
elagticity constants of the finite element material. In the case of isotropic, linear elastic materia it
assumes the foom D =D_, i. e. D is equal to the elasticity matrix [Owen 1980]. If behaviour of a

material is non-linear, i.e. plastic, then this matrix assumes the form D =D, i.e. it becomes elasto-

plastic matrix. Non-linearity of an elasto-plastic problem is noted just in the matrix D of the reological
constants of amaterial. A finite element equilibrium equation in arranged form, equals [Owen 1980]:

dF+dF,, =(3B D B dV) dU
v (5)

This equation can be written in a concise form as:

dF+dF,, =K,dU ©

where K, isthe element stiffness matrix which is equal to:
K.=0B DB dV
v (7
Vector of the equivalent forces in the finite element is obtained by means of a principle of virtual
displacements [Pustaic 1990], [Stok 1976] and it amounts to:
dFy, = ONdg.d A+ Ndv,dV
A \Y

8
Similarly, the equilibrium eguation for awhole structure can be written in the following form:

dR+dR,, =K dU ©

3. Elasto-plastic matrix D, in the case of plane stress

In the case of an elasto-plastic state in a structure the stress increment is connected with the strain
increment by a matrix equation [Pustaic 1991], [Pustaic 1990] and [Stok 1976]:
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ds =D,,de=D,(1-B'adD,)de (10)

The expression for an elasto-plastic matrix D, is obtained from the above equation:

D, =D,(I-B'aaD,) w

In this expression | is a unit matrix of the same order as an elasticity matrix D,. The elasto-plastic

matrix D, can be easily computed if we know the elasticity matrix D,, the flow vector a which

yields from the yield criterion and parameter A which yields from the work hardening hypothesis
[Owen 1980]. The expression (11) can be represented in the following way:

Dy, =D.- D, (12)
D, marks the so-called plasticity matrix which is defined by the equation:
—pn-1 =
D,=B"D.aaD, (13)

The elasto-plastic matrix D, isasymmetrical matrix.

In the case of a plane stress, the stress and strain increment vectors, ds and de respectively, are
defined asfollows:

ds=[ds,, ds,, dt,]

yl

dé=|[de,, de,, dg, ]

(14)
A deviatoric stress vector is.
S :[Sx’ Sy’ Sz’ SS(y] (15)
while his components amount:
1 1 1
Sx 25(2Sx-sy)’ Sy zg(zsy-sx)’ SZ:'§(SX+Sy), Sxy :txy
(16)
It is possible to write the Von Mises yield criterion in the following form:
2_3 2+2+2+22_2+2 +32
se—E(sX S, +S,+25 )=s +S -S.,S, X
(17)

The easticity matrix D, in the case of plane stress amounts [Owen 1980], [Pustaic 1991], [Pustaic
1990], [Stok 1976]:

é u
e é1 n 0 i
D, = ;¢ 1 04 (18)
1-n éo 0 ]_-nl;|
g 2 H
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The flow vector a = [F /{ls = 3s in the case of plane stress assumes the form [Pustaic 1990]:

I qF U
I —I
iTS 1s 0 i2,-s,0
R | SO B A | [}

aZigs V=3 S y=is, s,y
I vl 1 I\
ey 12, 1 8y b
Tar |
| txyb (19)

For defining the plasticity matrix D, according to the expression (13) it is necessary to determine the

scalar quantity B. The parameter A for the case of plane stress or general three dimensional state of
stress is defined as [Owen 1980], [Pustaic 1991], [Pustaic 1990], [Stok 1976]:

— e 2
A=4H's ] 20)
where H" is aso-called hardening function which is defined as H (e, ) =ds,/(de,) . This
guantity can be determined experimentally from asimple uniaxial yield test. Let us now form the
matrix product & D, a.According to [Pustaic 1990] and [Stok 1976] we shall have:
aD,a=—- [5- M), -5 )2 +2@1+n)s s, +18(L-n)t 2]
1-n (21)
If we introduce the substitution:
w=—1 [ a)s,-s )Z+2(1+n)s s +18(1-n)t 2]
1-n (22)
then the matrix product aD_a assumes the form:
aD,a=Ew 23)
The scalar quantity B will be equal [Pustaic 1990] and [Stok 1976]:
B=4H'sZ+Ew=—3S
1-n (24)
where amark S was introduced for a scalar quantity:
2 2 H'O
S=(1- n )gs\/+4s‘e X—=
E g (25)

The corresponding matrix product D, aa D, is determined in references [Pustaic 1990] and [Stok
1976] and amounts:
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- éa® ab agu
D.aa De:1 7 1 _Sha b? bgH
-n?1-n*& S0

The following marks were introduced:
a=(2-n)s,-(@1- s,
b=(2-n)s, -(@1-N)s,,

g=31-n)t,. 27)

On the basis of expressions (13), (24), (25), (22), (17) and (26) the final expression for the plasticity
matrix D, is obtained, in the case of plane stress:

- 1(§a2 ab agu
_ é a
Dp—l_nzxgéba b? b?@
BR & 9g'H (28)

If the elasticity matrix D, and the plasticity matrix Dp are known, then they can be condensed in one
matrix, the so-called elasto-plastic matrix Dep. This condensation is performed on the basis of
expression (12). When the elasto-plastic matrix Dy, is known, then the elasto-plastic strain increment

can be determined according to the formula (10), assuming that the stress increment vector ds is
known. On the basis of expressions (12), (18) and (28), the matrix equation (10), in the case of plane
stress, can be written in the following form:

ids, i & ¢ n oY @’ ab agi?ide,

i_¢ E ¢ U E le s e T
ids y= ;¢ 1 0 U- sx-aba b bgULX}deyy
fa L ¢l-ne 1-nu 1-n Sgga o ol lde
1%op g g 2 H g! Y

(29)

4. Discretization of the plate quarter with circular hole on thefinite elements

For an illustration of a numerical procedure, a thin rectangular plate with circular hole was modelled.
The dimensions of the plate were 192 x 96 x 2 mm. The diameter of the circular holewasd = 2r = 32
mm. The material model can be shown schematically as elastic-perfectly plastic. The yield stress for

the above mentioned material amounts s, = 310 MPa. The load acts in-plane of the plate. All

models were loaded on stretching.

Figure 1 shows discretization of the plate quarter with circular hole on the triangular and isoparametric
quadrilateral finite elements. The triangular finite element has three nodes in the triangle points. Each
node has two degress of freedom. Therefore, each element has six degrees of freedom. Distribution of
displacements by such elements follows the linear law. The stresses and strains will have the same
valuein al points of the finite element. The isoparametric quadrilateral finite elements have the nodes
in the points of a quadrangle. Each node has two degrees of freedom. Therefore, each element has
eight degrees of freedom. These elements are linear isoparametric finite e ements. Discretization of the
plate quarter on 286 finite elements with 171 nodes and 342 degrees of freedom is presented in figure
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la Intotal, there are 28 nodes with boundary conditions. Figure 1b presents discretization of the plate
guarter on the linear isoparametric quadrilateral finite elements. There are 105 finite elements
altogether with 125 nodes, 252 degrees of freedom and 25 nodes with boundary conditions.
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Figure 1. Discretization of the plate quarter with circular hole on the finite elements:
a) thetriangular finite elementsnet, b) an isoparametric quadrilateral finite elements net.

5. Presentation of the results obtained by the numerical modelling

5.1 Stressfields s, and s, in the case of purely elastic and elasto-plastic state of the plate

The stressfields s ,,s | ,t,, and s ,, aswell as the displacement fields u and v were determined by
the numerical analysis in all finite elements. The solutions in the elastic and elasto-plastic range will

be presented further in the text. The elastic solution was obtained by external load level s = gs v -

On the other hand, the elasto-plastic solutions were obtained for three different values of external load,
i.e 06s,, 08s, and 1.0s,. Figure 2a shows the stress distributions s, and s, in the

characteristic sections of the plate in elastic and elasto-plastic range, obtained by the triangular finite
elements with linear variation of displacements within the element. From figure 2ait is clear that the
stress concentration occurs near to the boundary of discontinuity. This phenomenon is more stressed in

the elastic range than in the elasto-plastic one. The stress s |, is aimost constant in the characteristic
section of the plate, dlong axis x, in the plastic range. It is a consequence of elastic-perfectly plastic
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material model.In figure 2b the stress field s, obtained by the linear isoparametric quadrilateral
finite elementsis shown, both in the elastic and plastic range.
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Figure2. a) Normal stresses s, and s, distributionsin some characteristic sections of the

plate, b) stressfield s | in elastic and plastic range; the result obtained with the linear
isoparametric quadrilateral finite elements

5.2 Presentation of the plastic zones spreading with increasing intensity of external loads

By the numerical analysis of a structure in the non-linear range, the externa loads are applied in
increments. It gives a possibility of locating the occurrence of first plastic strains on the boundaries of
circular discontinuity, or a possibility of keeping track of plastic regions spreading around geometrical
discontinuity as external loads are increased. The figure 3.a) shows the shape and the magnitude of the
plastic zones around the circular hole in the plate, and spreading of these zones with the increasing
intensity of external loads. These solutions were obtained with the triangular constant strains finite
elements, while those from figure 3.b) are the result of a problem analysis with the linear
isoparametric quadrilateral finite elements. Comparing the shape and the magnitude of the plastic

zones in figures 3.a and 3.b a good agreement of the obtained results for the same level of the external
loads can be confirmed.
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Figure 3.Plastic regions spreading around geometrical discontinuity with theincreasing intensity
of the external load, a) the solution obtained with thetriangular constant strainsfinite elements,
b) the result of a problem analysiswith thelinear isoparametric quadrilateral finite elements.
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6. Conclusion

A thin rectangular plate with the circular hole is modeled in order to illustrate a numerical procedure
for determination of the stresses, strains and displacements. Using the finite elements nets from figure

1, the stressfieldss ,, s, t,, and s, , aswell asthe displacement field u and v, were computed in

the elastic and elastic-plastic range. Some of the solutions are presented in figure 2. In the plastic
range the stress distribution s, in the section across x-axis is completely different from that in the

elastic range. The stress s, is amost constant through the whole mentioned section. It is a

consequence of an elastic-perfectly plastic material model of the plate. By numerical analysis of the
structure in a non-linear range the external loads are applied in increments. It gives a possibility of
keeping track of the plastic zones spreading around the geometrical discontinuity as external loads are
increased. Figure 3.a shows the shape and the magnitude of the plastic zones around the circular hole
in the plate which are obtained with the triangular finite elements. The solution from the figure 3.b is
the result of a problem analysis with the linear isoparametric quadrilateral finite elements. Comparing
the shape and the magnitude of the plastic zones in figure 3 a good agreement of the obtained results
for the same level of external loads can be confirmed. It is true both for the case when the plate is
modeled with the triangular finite elements as well as for the case with isoparametric quadrilatera
ones.
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