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1. Introduction 
An incremental formulation of the basic equations of the finite element method is described in this 
paper. These basic equations are used in stress and strain analysis in structures in which plastic strains 
have occurred. By numerical analysis of the structure in a non-linear range the external loads are 
applied in increments. It gives a possibility of keeping track of the plastic zones spreading around the 
geometrical discontinuity as external loads are increased. The elasto-plastic matrix epD  was formed 

for the case of plane stress. The dependence between incremental stress vector and incremental elastic-
plastic strain vector is established through matrix epD . The elements of the matrix epD  will not be 

constant in the case of elastic-plastic state in a structure. They will depend on instantaneous state of 
stress and strain in a structure.  
The paper deals with an analysis of stresses, strains, displacements and spreading of plastic zones in 
the thin plates of finite dimensions with the geometrical discontinuities in the form of a circular hole, 
an elliptical hole and a crack. The plates are uniaxially loaded, on stretching in-plane in the direction 
perpendicular to the big half-axis of the ellipse, or to the crack plane. The holes boundaries are free 
from loading. The material of the plates is presented schematically as the elastic-perfectly plastic one. 
The loading is increased uniformly and monotonously, so the local plastic strains occur on the 
boundaries of the geometrical discontinuities. Consequently, a need for a non-linear analysis arises. 
Namely, appearance of plastic strains will not immediately cause a plastic collapse of the whole plate. 
Such an elastic-plastic state of the plate material can be allowed. The function of a plate as a structural 
element will not be disturbed in that way. Finally, it will have for a consequence a lighter structural 
element or what is same, permissible loading of a structure will be greater. A possibility of appearance 
of plastic strains in a structure requires reliable determination of stresses, strains and displacements. 

2. Basic equations of the finite element method for structure analysis in an elasto-
plastic state 

 

Using an interpolation function, an increase of displacements at any point within the finite element 
fd  in dependence on an increase of nodal displacements Ud  for a particular elements can be written 

as: 

UNf dd =  (1) 
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where N is the matrix of shape functions. The strain increment vector ed  within an element is shown 
through the increase of displacements within the finite element fd , i.e. through the increase of nodal 
displacements Ud  in the following form: 

UBfde ddd ==  (2) 

Inserting the expression (1) into (2), it is clear that the matrix B equals Nd , while the matrix d  
represents a matrix of the differential operators. The stress increment vector sd  is related to the strain 
increment vector ed  by the matrix equation: 

eDs dd =  (3) 

or, by taking into consideration the expression (2), we can write: 

USUBDs ddd ==  (4) 

where BDS = is the so called element stress matrix. The matrix D in the expression (3) contains 
elasticity constants of the finite element material. In the case of isotropic, linear elastic material it 
assumes the form eDD = , i. e. D is equal to the elasticity matrix [Owen 1980]. If behaviour of a 

material is non-linear, i.e. plastic, then this matrix assumes the form epDD = , i.e. it becomes elasto-

plastic matrix. Non-linearity of an elasto-plastic problem is noted just in the matrix D of the reological 
constants of a material. A finite element equilibrium equation in arranged form, equals [Owen 1980]: 

UBDBFF d)d 
~

(dd equ ∫=+
V

V
 (5) 

This equation can be written in a concise form as: 

UKFF ddd eequ =+
 (6) 

where eK  is the element stiffness matrix which is equal to: 

∫=
V

Vd 
~

e BDBK
 (7) 

Vector of the equivalent forces in the finite element is obtained by means of a principle of virtual 
displacements [Pustaic 1990], [Štok 1976] and it amounts to:  

VA
VA

dd
~

dd
~

d eeequ vNqNF ∫∫ +=
 (8) 

Similarly, the equilibrium equation for a whole structure can be written in the following form: 

Uddd que KRR =+
 (9) 

3. Elasto-plastic matrix epD  in the case of plane stress 

In the case of an elasto-plastic state in a structure the stress increment is connected with the strain 
increment by a matrix equation [Pustaic 1991], [Pustaic 1990] and [Štok 1976]:  
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( ) eDaaIDeDs d~-dd e
1

eep
−== B  (10) 

The expression for an elasto-plastic matrix epD  is obtained from the above equation: 

( )e
1

eep
~- DaaIDD −= B

 (11) 

In this expression I is a unit matrix of the same order as an elasticity matrix eD . The elasto-plastic 

matrix epD  can be easily computed if we know the elasticity matrix eD , the flow vector a which 

yields from the yield criterion and parameter A which yields from the work hardening hypothesis 
[Owen 1980]. The expression (11) can be represented in the following way: 

peep DDD −=
 (12) 

pD  marks the so-called plasticity matrix which is defined by the equation: 

ee
1

p
~ DaaDD −= B

 (13) 

The elasto-plastic matrix epD  is a symmetrical matrix. 

In the case of a plane stress, the stress and strain increment vectors, sd  and ed  respectively, are 
defined as follows: 

[ ]xyyx τσσ d,d,d~d =s
 

[ ]xyyx γεε d,d,d~d =e
 (14) 

A deviatoric stress vector is: 

[ ]xyzyx ssss ,,,~ =s
 (15) 

while his components amount: 

xyxyyxzxyyyxx ssss τσσσσσσ =+−=−=−= ),(
3
1

),2(
3
1

),2(
3
1

 (16) 

It is possible to write the Von Mises yield criterion in the following form: 

22222222
e 3)2(

2
3

xyyxyxxyzyx ssss τσσσσσ +−+=+++=
 (17) 

The elasticity matrix eD  in the case of plane stress amounts [Owen 1980], [Pustaic 1991], [Pustaic 
1990], [Štok 1976]: 
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The flow vector ssa 3/ =∂∂= F  in the case of plane stress assumes the form [Pustaic 1990]: 
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 (19) 

For defining the plasticity matrix pD , according to the expression (13) it is necessary to determine the 

scalar quantity B. The parameter A for the case of plane stress or general three dimensional state of 
stress is defined as [Owen 1980], [Pustaic 1991], [Pustaic 1990], [Štok 1976]: 

2
e'4 σHA =  (20) 

where 'H  is a so-called hardening function which is defined as ( ) ( )e e ep p
' d / dH sε ε= . This 

quantity can be determined experimentally from a simple uniaxial yield test. Let us now form the 
matrix product ea D a% . According to [Pustaic 1990] and [Štok 1976] we shall have: 

[ ]22
2e )1(18)1(2))(45(

1
~

xyyxyx
E

τνσσνσσν
ν

−+++−−
−

=aDa
 (21) 

If we introduce the substitution: 

[ ]22
2 )1(18)1(2))(45(

1
1

xyyxyx τνσσνσσν
ν

ω −+++−−
−

=
 (22) 

then the matrix product aDa e
~  assumes the form: 

ωE=aDa e
~

 (23) 

The scalar quantity B will be equal [Pustaic 1990] and [Štok 1976]: 

S
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EHB 2
2
e 1

'4
ν

ωσ
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=+=
 (24) 

where a mark S was introduced for a scalar quantity: 
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The corresponding matrix product ee
~ DaaD is determined in references [Pustaic 1990] and [Štok 

1976] and amounts: 
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The following marks were introduced: 
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On the basis of expressions (13), (24), (25), (22), (17) and (26) the final expression for the plasticity 
matrix pD  is obtained, in the case of plane stress: 
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If the elasticity matrix eD  and the plasticity matrix pD  are known, then they can be condensed in one 

matrix, the so-called elasto-plastic matrix epD . This condensation is performed on the basis of 

expression (12). When the elasto-plastic matrix epD  is known, then the elasto-plastic strain increment 

can be determined according to the formula (10), assuming that the stress increment vector d s  is 
known. On the basis of expressions (12), (18) and (28), the matrix equation (10), in the case of plane 
stress, can be written in the following form: 
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4. Discretization of the plate quarter with circular hole on the finite elements 
 

For an illustration of a numerical procedure, a thin rectangular plate with circular hole was modelled. 
The dimensions of the plate were 192 x 96 x 2 mm. The diameter of the circular hole was d = 2r = 32 
mm. The material model can be shown schematically as elastic-perfectly plastic. The yield stress for 
the above mentioned material amounts Y 310 MPaσ = . The load acts in-plane of the plate. All 
models were loaded on stretching.  
Figure 1 shows discretization of the plate quarter with circular hole on the triangular and isoparametric 
quadrilateral finite elements. The triangular finite element has three nodes in the triangle points. Each 
node has two degress of freedom. Therefore, each element has six degrees of freedom. Distribution of 
displacements by such elements follows the linear law. The stresses and strains will have the same 
value in all points of the finite element. The isoparametric quadrilateral finite elements have the nodes 
in the points of a quadrangle. Each node has two degrees of freedom. Therefore, each element has 
eight degrees of freedom. These elements are linear isoparametric finite elements. Discretization of the 
plate quarter on 286 finite elements with 171 nodes and 342 degrees of freedom is presented in figure 
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1a. In total, there are 28 nodes with boundary conditions. Figure 1b presents discretization of the plate 
quarter on the linear isoparametric quadrilateral finite elements. There are 105 finite elements 
altogether with 125 nodes, 252 degrees of freedom and 25 nodes with boundary conditions. 

 
Figure 1. Discretization of the plate quarter with circular hole on the finite elements:  

a) the triangular finite elements net, b) an isoparametric quadrilateral finite elements net. 

5. Presentation of the results obtained by the numerical modelling 
 

5.1 Stress fields xσ  and yσ  in the case of purely elastic and elasto-plastic state of the plate 

The stress fields xyyx τσσ ,,  and equσ , as well as the displacement fields u and v were determined by 

the numerical analysis in all finite elements. The solutions in the elastic and elasto-plastic range will 

be presented further in the text. The elastic solution was obtained by external load level Yo 4
3

σσ = . 

On the other hand, the elasto-plastic solutions were obtained for three different values of external load, 
i. e. o6.0 σ , o8.0 σ  and o0.1 σ . Figure 2a shows the stress distributions xσ  and yσ  in the 

characteristic sections of the plate in elastic and elasto-plastic range, obtained by the triangular finite 
elements with linear variation of displacements within the element. From figure 2a it is clear that the 
stress concentration occurs near to the boundary of discontinuity. This phenomenon is more stressed in 
the elastic range than in the elasto-plastic one. The stress yσ  is almost constant in the characteristic 

section of the plate, along axis x, in the plastic range. It is a consequence of elastic-perfectly plastic 
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material model.In figure 2b the stress field yσ , obtained by the linear isoparametric quadrilateral 

finite elements is shown, both in the elastic and plastic range. 
 

 
Figure 2. a) Normal stresses xσ  and yσ  distributions in some characteristic sections of the 

plate, b) stress field yσ  in elastic and plastic range; the result obtained with the linear 

isoparametric quadrilateral finite elements 
 

5.2 Presentation of the plastic zones spreading with increasing intensity of external loads 
 

By the numerical analysis of a structure in the non-linear range, the external loads are applied in 
increments. It gives a possibility of locating the occurrence of first plastic strains on the boundaries of 
circular discontinuity, or a possibility of keeping track of plastic regions spreading around geometrical 
discontinuity as external loads are increased. The figure 3.a) shows the shape and the magnitude of the 
plastic zones around the circular hole in the plate, and spreading of these zones with the increasing 
intensity of external loads. These solutions were obtained with the triangular constant strains finite 
elements, while those from figure 3.b) are the result of a problem analysis with the linear 
isoparametric quadrilateral finite elements. Comparing the shape and the magnitude of the plastic 
zones in figures 3.a and 3.b a good agreement of the obtained results for the same level of the external 
loads can be confirmed. 
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Figure 3.Plastic regions spreading around geometrical discontinuity with the increasing intensity 
of the external load, a) the solution obtained with the triangular constant strains finite elements, 

b) the result of a problem analysis with the linear isoparametric quadrilateral finite elements. 
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6. Conclusion 
 

A thin rectangular plate with the circular hole is modeled in order to illustrate a numerical procedure 
for determination of the stresses, strains and displacements. Using the finite elements nets from figure 
1, the stress fields xσ , yσ , xyτ  and equσ , as well as the displacement field u and v, were computed in 

the elastic and elastic-plastic range. Some of the solutions are presented in figure 2. In the plastic 
range the stress distribution yσ  in the section across x-axis is completely different from that in the 

elastic range. The stress yσ  is almost constant through the whole mentioned section. It is a 

consequence of an elastic-perfectly plastic material model of the plate. By numerical analysis of the 
structure in a non-linear range the external loads are applied in increments. It gives a possibility of 
keeping track of the plastic zones spreading around the geometrical discontinuity as external loads are 
increased. Figure 3.a shows the shape and the magnitude of the plastic zones around the circular hole 
in the plate which are obtained with the triangular finite elements. The solution from the figure 3.b is 
the result of a problem analysis with the linear isoparametric quadrilateral finite elements. Comparing 
the shape and the magnitude of the plastic zones in figure 3 a good agreement of the obtained results 
for the same level of external loads can be confirmed. It is true both for the case when the plate is 
modeled with the triangular finite elements as well as for the case with  isoparametric quadrilateral 
ones. 
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