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1. Introduction 
Due to their high strength-to-weight ratio and the possibility of tailoring their stiffness by selecting 
fibre orientations, fibre-reinforced composites are often more profitable than conventional materials. 
As a result their use in mechanical, aerospace, automobile, shipbuilding, and other branches of 
engineering, is on the increase [1] and because of the strong development of affordable fabrication 
technologies and commercialisation, the demand for these materials is expected to rise considerably in 
the near future.  
In this context, new effective methods in the optimum design of composite structures are increasingly 
required. Many researchers have developed techniques based on strength, stiffness and 
manufacturability optimization for determining the lay up of composite laminates [2].  
For the practical problems in which the ply thickness is fixed, the design of composite structures 
becomes a discrete optimisation problem (with ply orientation angles as design variables), which is 
suitable for genetic algorithms. Genetic algorithms (GAs) have recently attracted attention for solving 
optimization problems [3], and there have been several papers on optimization of composite structures 
by the use of this method [4-6]. GAs are based on the mechanics of natural selection and genetics and 
seek the optimal solution through random probability methods without auxiliary conditions such as 
continuity of the variables, and intelligently chosen starting points. These conditions are typical of 
traditional searching techniques such as gradient-based techniques. 
In the present paper a genetic algorithm was applied to find the optimal stacking sequence of laminates 
constituting a Formula One lower-rear wing. The genetic algorithm, developed on a personal computer 
by using the analysis program Mathematica [7], applies the general-purpose finite element code 
NASTRAN to carry out the stress analysis. 

2. Basic of rear wing 
There are many factors influencing the performance of a Formula One car, and current changes 
concentrate on the mechanical grip of the car. However, it is an acknowledged fact that aerodynamics 
plays a big part in the problems of overtaking, and since the introduction of aerodynamic principles 
into Formula One, they have become of ever increasing importance to the car's performance.  
The aerodynamic requirements of the F1 car are high downforce at minimum drag. The wings on an 
F1 car produce this downforce. They use the same principle as those found on a common aircraft, but 
while the aircraft wings are designed to produce lift, wings on an F1 car are placed 'upside down', to 
produce downforce and push the car onto the track.  
About a third of the car's total downforce can come from the rear wing assembly. This device (Figure 
1) is the one that is varied the most from track to track. As the rear wings of the car create the most  
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drag, the teams tailor the rear aerodynamic load to suit a particular track configuration. Monza in Italy 
is a very fast track with long straights and few corners, with full throttle being achieved for around 
70% of the lap. As more wing angle creates more downforce, more drag is produced, reducing the top 
speed of the car. At Monza therefore, top speed is vital, so teams run very little rear wing angle to 
reduce drag (Figure 2- right). At Monaco, where the car is constantly turning in and out of corners, 
downforce is vital, so maximum downforce is needed from the wings (Figure 2- left). 
The rear wing is made up of two sets of aerofoils connected to each other by the wing endplates. The 
top aerofoil (number 1 in figure 1) provides most of the downforce and is the one that is varied the 
most from track to track. It is now made up of a maximum of three elements due to the new 2001 
regulations. The lower aerofoil (2) is smaller and is made up of just one element. As well as creating 
downforce itself, the low-pressure region immediately below the wing helps suck air through the 
diffuser, gaining more downforce under the car. The endplates (3) connect the two wings and prevent 
air from spilling over the sides of the wings, maximising the high-pressure zone above the wing, 
creating maximum downforce.  

3. Lower wing structural design 
The lower wing is certainly the rear wing element subjected to the worst loading conditions during the 
competition. In addition to the aerodynamic pressure, the lower wing supports the loads operating on 
the upper wings to which it is strictly connected. These actions result in twisting and bending effects, 
whose intensities must be limited to 
avoid the loss of the aerodynamic 
performance required by the team.  
The structural design of the lower 
wing in a shape which satisfies 
aerodynamic requirements, then 
becomes a stiffness optimisation 
problem. The aim of this 
optimization is to find the best 
laminate stacking sequences, in a 
trade-off between stiffness 
requirements and weight reduction, 
without laminate failure due to 
excessive stress. For a fixed value of 
ply thickness and a small set of fibre 
orientations, the problem of 
laminate stacking sequence design is 

Table 1. Material properties   
 T800 M46J 

longitudinal modulus of elasticity 70 GPa 245 GPa 
lateral modulus of elasticity  70 GPa 5 GPa 

transverse shear modulus 5 GPa 5 GPa 

in-plane shear modulus 7 GPa 5 GPa 
major Poisson’s ratio 0.45 0.35 

long. allowable stress in tension 1300 MPa 2180 MPa 

long. allowable stress in comp. 1300 MPa 50 MPa 

lateral allowable stress in tension 840 MPa 1200 MPa 

lateral allowable stress in comp. 840 MPa 170 MPa 

allowable stress in-plane shear 138 MPa 64 MPa 

allowable interlaminar shear stress 85 MPa 64 Mpa 
mass density 1.59 g/cm3 1.61 g/cm3 

ply thickness 0.18 mm 0.12 mm 

Figure 2. Difference in the rear wing during 
different GP 

1 
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Figure 1. A rear wing assembly 
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discrete in nature. Therefore, the design 
of the stacking sequence is a 
combinatorial optimisation problem that 
is suitable for genetic algorithms. 
To investigate this possibility, in the 
present paper, a composite lower wing 
100 cm long with a wingspread chord of 
15 cm was optimised. Deflection and 
twist angle to the wingtip were assumed 
as stiffness parameters.  
M46J Graphite/Epoxy unidirectional 
plies and T800 Graphite/Epoxy woven 
fabric plies were considered to make 
each individual part of the wing. 
Material properties and ply thickness are 
given in Tables 1. The determination of 
stiffness parameters for each possible 
solution was carried out by a numerical 

analysis using the general-purpose finite element code NASTRAN, with MSC.Patran 2000 as the pre- 
and post-processor. The finite element model of the rear wing was constructed using 6000 elements 
(CQUAD4 and CTRIA3). Because of geometrical and loading symmetries only one half of the 
structure was considered, introducing suitable continuity constraints on the cut plane.  
The aerodynamic loads at the maximum speed were simulated by an equivalent load of about 3550 N 
oriented at an angle of 30 degrees with respect to the y-axis. The equivalent load was evaluated by 
measuring in the wind tunnel. The connection hinges were simulated using three rigid bars.  
In figure 3 there is a schematic representation of the rear wing before and after the load application.  

4. Algorithm of Optimisation 
GAs are probabilistic search techniques based on the mechanics of natural selection and natural 
genetics. They solve optimisation problems, imitating nature in the way it has been working for 
millions of years in the evolution of life. The stronger individuals in a population are more likely to 
survive than the weaker; they can generate offspring and transmit their heredity to new generations. 
Nature tends to preserve the chromosomes that cause beneficial adaptations to a given environment, 
and introduces variation in a species when reproduction occurs. 
Genetic algorithms have received considerable attention in recent years in an effort to better 
understand their search characteristics, capabilities and computational efficiency. They appear well 
suited to solve problems involving large and discrete search spaces, where the gradient-based 
techniques are not very effective; but their application usually involves very large computational costs. 
A simple genetic algorithm involves a set of individuals (population), and a set of genetic operators. 
Each individual in the population represents a design, i.e. a stacking sequence in the code of a string. 
The genetic operators allow the genetic manipulation process (reproduction) be carried out.  
A GA begins with the random generation of a population (initial population) of potential solutions. By 
means of a randomized process of selection based on the objective function values, individuals for the 
reproduction are chosen. The fitness of each design in the population is evaluated by computing the 
value of the objective function, and the selection process permits those individuals of superior fitness 
to reproduce more than others. Selected designs are, successively, processed by means of the genetic 
operators to create a new population, which combines the desirable characteristics of the old 
population. Then the new population replaces the old one and the process restarts.  
The reproduction is generally based on two operators; crossover and mutation. The crossover 
operation exchanges a partial set of attributes between selected design pairs, based on a crossover 
probability, pc, to generate new offspring. 

spars Outer shell 

F 

x 

z 

y 

Plane of symmetry Inner shell 

Figure 3. Schematic representation of the lower wing 
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The mutation operation permits exploration of other areas in the design search space by 
probabilistically altering the genes on a chromosome in the current population. The probability of 
mutation, pm, is used to determine the number of mutants that are to be introduced into the current 
population. New generations of designs are created through the genetic manipulation, and this iterative 
process is repeated for a fixed number of generations or for a fixed number of analyses without 
improvement in the best design.  
A finite length string must represent each individual (chromosome) of the population. Usually, binary 
strings have been used for this purpose. Dealing with composite structures, a laminate can be directly 
coded using the standard stacking sequence notation, i.e. a string of ply orientation angles such as [0°, 
45°, -45°, 90°]. This choice allows the simplification of the algorithm implementation and, moreover, 
make it possible to investigate the optimisation problem, with great straightforwardness, choosing the 
design variables among different sets of permissible ply orientations.  
Figure 4 presents the application of the simple genetic algorithm to an illustrative case, with a 
population of four designs. Each design is constructed by assembling all the laminate stacking 
sequences (in the case of the lower wing examined, iij, oij, and sij can represent, for example, the plies 
of the inner-shell, the outer-shell and the spars respectively).  
Consider the case where the four designs have their objective function (f) ordered as f4 > f3 > f2 > f1, 
by virtue of which, designs 4 and 3 are the fittest design in the population. 
Selection is accomplished using the steady state strategy which to obtain the new population 
substitutes only a certain number of individuals of the old population with their descendants, for 
example the worst half of the population. Note how  the selected population in figure 4 contains, 
designs 4 and 3, which have the larger f values. Furthermore, note that design 1 and design 2 which 
have the least values of the objective function are not propagated to the succeeding generations. 
The selected population undergoes the three-point crossover operation between probabilistically 
selected design pairs, as exemplified by the design pairs 3-4 in figure 4. In this step, selected portions 
of the stacking sequences representing the selected designs are swapped as shown in the crossover 
inset in the figure. Afterwards, a mutation operation is performed on the post-crossover population; 
where the designs selected based on the mutation probability undergo a complete regeneration. This 
operation is shown schematically in the mutation inset in figure 4. The resulting population constitutes 
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 Figure 4. Schematic of a genetic algorithm 
technique 
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the next generation. One generation after another is created until the convergence criteria discussed 
above are met. 
As is evident from the foregoing discussion, the parameters involved in the genetic algorithm are the 
population size, the number of generations, the probability of crossover, and the probability of 
mutation. The values of these parameters are problem-specific, and are selected on the basis of 
systematic trials aimed at the efficient performance from the algorithm. 

5. Results 
A genetic algorithm used for the rear wing 
optimisation was developed on a personal 
computer by using the analysis program 
Mathematica. The implementation of the 
algorithm is shown in figure 5, and GA parameters 
are given in Tables 2. 
The process starts with the generation of a random 
initial population of laminate stacking sequences. 
Each design is randomly formed by choosing the 
ply orientation angles inside a set of values given 
by the user. Within this set the user can introduce 
the acronym np (no ply) for including the 
possibility of ply suppression.  
For each design of the population, in the 
NASTRAN pre-processor stage, the 
MSC/NASTRAN input file created by the 
MSC/PATRAN translator is adjusted, by 
modifying PCOMP bulk data entries, to take the 
proper layout of composite laminates into account. 
Then the FEM analysis is carried out.  
In the NASTRAN post-processing stage, the 
stiffness parameters are evaluated and saved. After 
that, all the FEM output files are removed to 
release the computer memory and, the cycle 
restarts. The fitness processor begins to operate at 
the end of the population processing, evaluating 
the objective function for each design. The most 
situable solutions are selected and then processed 
by means of the genetic operators to create the new 
population. The process is repeated until 
convergence. 
The goal of the optimisation is to find the thinnest (minimum weight) stacking sequence to which 
corresponds the smallest vertical deflection to the tip-wing without any laminate failure due to 
excessive stress. The stacking sequence is also constrained to have no more than three contiguous plies 
with the same orientation to avoid problems with matrix cracking.  

The objective function identified for this optimization problem is:
χ++

=
Wbya

f
1

 where y 

represents deflection to the wing-tip, W is the weight of the entire composite structure, a and b are two 
weighting factors with values chosen in agreement with search requirements. The symbol χ  is a 
penalty function, whose values range between 0 and 1, that is applied for failure or for more than three 
contiguous plies presence, 0=χ  when no failures and no contiguous plies are present. Ply failures are 
detected by the monitoring failure index based on the Hill criterion. 
 The variation in fitness value with the number of generations during the optimization process is 
plotted during the run on graphs similar to that shown in figure 6. The maximum fitness value is the 

Figure 5. GA implementation 

Table 2. GA-parameters 
Population size 40 

Length of chromosome 48 
Selection strategy Steady state 
Crossover strategy pc =0.7 
Mutation strategy pm=0.05 
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best parameter among the population in each population (continuous line). On the same graph the 
average fitness value (dotted line) is also reported. The average fitness value is the average of all the 
fitness values of the population. In earlier generations, the value of average fitness will be less since 
the population consists of the worst individuals. Over the generations, the population becomes 
composed of fitter individuals, with only slight deviations from the fitness of the best individual so far 
found. Hence, the average fitness comes very close to the minimum fitness value. 
To verify its effectiveness, the algorithm was carried out using 21, 16 and 8 unidirectional plies for 
inner shell, outer shell, and spars respectively. Skins in woven fabric coated the multidirectional 
laminates externally. Although woven fabric has lower structural capabilities than unidirectional 
composite, (as the lower value of the Young modulus 
reported in Tab. 2 confirms), it has two important 
characteristics that justify its use: to reduce matrix 
rupture risk and, therefore the delamination of the 
inner plies; and to form a compact casing with an 
efficient impact protection.  
In the first test using the following set of ply 
orientations [ ± 45°, 90°], the starting stacking 
sequences (initial population) were chosen. The GA 
solution was compared with the solution obtained by 
expert technicians on racing cars design working by 
intuition and background. Retaining the same 
stiffness, GA has contributed to a reduction of about 
2% of the composite wing weight. With a little loss in 
stiffness, instead, the reduction increased by about 8%. Additional sets of orientation angles were 
tested. More significant reductions in weight and stiffness were achieved using the set [ ± 30°, 90°]. 

6. Conclusion 
In the present paper, the possibility of optimizing the stacking sequence of a composite wing by 
making use of a GA was investigated. It was shown that this powerful non-traditional optimization 
method could contribute to a considerable reduction of the composite wing weight. The results 
obtained are encouraging and suggest that further improvements could be obtained investigating 
different orientation sets. It is also evident that this first implementation requires additional refinement 
to increase the efficiency and reduce computational time. With minor adjustments the GA presented 
could be applied successfully to optimize other components of competition cars. 
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Figure 6 Variation of fitness value 
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