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1. Introduction 
We are developing analytical methods that will enable designers to create models with different levels 
of detail and accuracy depending on the current state of the design.   During preliminary design, many 
parameters are not known with great precision.  Additionally, the design requirements are often vague 
and change frequently, so single point solutions are not the best approach.  Instead, we propose to 
create models that allow for the incorporation of new information as the design progresses [Osio and 
Amon 1996]. A major advantage of these models is that they can be continuously refined.  Thus, an 
approximate model developed for preliminary design can evolve throughout the design process.  By 
the time the final design stage is reached, the model can be highly accurate in the reduced region of the 
design space close to the optima. We believe that having a methodology that allows designers to create 
models at any desired level of accuracy will improve the selection of initial ideas at the conceptual 
design stage, decrease design cycle time, and reduce costs in optimisation.  
Our methodology creates surrogate models using a Bayesian framework.  The surrogate is an 
analytical model of the expected response for a set of design parameters.  This methodology does not 
require the assumption of any specific form of the response; instead, models are defined in terms of 
the correlation between sampling sites, assuming the response is a realization of a stochastic process.  
We do assume that the designer is able to evaluate the system response for a set of design parameters 
using analysis, computation models, or physical experiments. 
 

1.1 Bayesian Framework 
In the Bayesian framework, the initial knowledge of the response is represented by an a priori 
distribution.  A priori information refers to information obtained before data collection begins.  A 
priori information can come from first principles, application of physical laws to simplified systems, 
or empirical correlations obtained from experiments.  The prior distribution is updated as data is 
collected at sampling points. This new data can come from numerical simulations, physical 
experiments, or other sources.  The updated prior mean, called the posterior mean, forms the surrogate 
model. Bayesian analysis offers a mathematically rigorous framework in which information is updated 
based on the outcomes from previous stages. 
Our approach of collecting data in stages was developed by Osio and Amon [1996].  This approach 
has several advantages because it allows for the integration of new information as the model is refined, 
reduces the optimisation burden, and allows changes in the design region as well as changes in the 
parameters as the model is updated. 
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1.2 Previous Work 
Sacks et al. [1989] identified requirements for models of computer experiments.  They proposed a 
statistical approach to create a response that interpolates the observations at the sampling points.  
These models are based on an approximation scheme called kriging [Cressie 1991].  This scheme is 
based on the existence of a covariance structure that models a response as the addition of a prior 
expected value plus a deviation term that updates this prior expectation.  Yesilyurt et al. [1996] and 
Otto et al. [1995] developed Bayesian validated computer simulation surrogates, which use a first 
stage of sampling points to generate the surrogate and a second stage to generate uncertainty measures 
for the surrogate prediction. Osio and Amon [1996] started the development of the multistage 
Bayesian surrogate methodology (MBSM).  Leoni [1999] developed the covariance-based framework 
to incorporate a priori information into the surrogates.  This method of using physical bounds showed 
improvements on the accuracy of the models created with a given number of sampling points and 
stages.  Other approaches, such as neural networks and response surface methodologies, can also be 
used to build surrogate models; however, neural networks generally require a large number of 
experiments to calibrate the response [Hertz et al. 1991].  In contrast, our methodology is designed for 
use in preliminary design, when the number of experiments must be small.  Response surface 
methodologies require a priori assumption on the form of the response.  Bayesian surrogates are based 
only on the correlation between sampling points; it requires no assumptions about the form of the 
response. 
 

2. Surrogate Framework 
The response variable of interest y(x) in a multi-stage Bayesian surrogate model is expressed as a 
realization of a Gaussian stochastic process Y(x) where x is a K-dimensional vector representing a 
design point in the K -fold space of control parameters. 

Y(x) = µ0 + Z(x) (1) 

In Equation 1, µ0 is a constant representing an initial guess of the response. Z(x) is itself a stochastic 
process with mean zero and covariance matrix V that depends on the distance between two design 
points x1 and x2 and, as suggested in Sacks et al. [1989], it can be modelled as: 

 (2) 

The correlation matrix R(x1, x2) is the product of one-dimensional correlations expressed through a 
correlation constant θ and the squared distance between the values of control parameters at any two 
design sites. This form of correlation matrix is computationally convenient and allows the response to 
be a smooth surface. The stochastic process Z(x) can be regarded as a Bayesian prior distribution on 
the response function while µ0 is the prior mean for Y(x). 
 
At each stage p, the response variable y(x) is evaluated at mp design sites. For the first stage, either 
maximin orthogonal array of strength one or two [Osio and Amon 1996; Morris and Mitchell 1995] or 
Latin Hypercubes [Park 1994] can be used. For the following stages, an estimate of the correlation 
parameter θ can be computed, together with posterior mean and covariance matrix of the process. New 
design points will be found that minimize either the trace or the determinant of the posterior 
covariance matrix. This last criterion has been shown to be equivalent to maximize the information to 
be gained from the next stage of the process. 



 

DESIGN 2002 CONFERENCE 63

          
Figure 1. Sample Points a) standard factorial design, b) Latin hypercube 

To illustrate the Bayesian methodology, we carry out a set of hypothetical experiments on a system 
with two variables.  To simulate the results of each experiment, we have constructed an analytical 
function that returns the system response given the values of the two variables. The function used is 
f(a,b)= 2.4 –0.8ab2  + cos(1.22a) –0.5 sin(5.5b + 2.2). 
Using Bayesian methods, we show how the results of experiments can be used to construct a surrogate 
of the system response. We sample 5 different combinations of the two variables a and b.  We use a 
Latin hypercube to select 5 experimental points that are distributed evenly through the sample space 
(Figure 1b). This design is more parsimonious than a standard factorial design (Figure 1a), that would 
have selected low, medium and high values for each variable and then performed experiments for each 
combination. 
To construct the surrogate, we evaluate the function at the 5 sample points in Figure 2a. These values 
are used to compute the correlation parameter θ from Equation 2 using maximum likelihood 
estimation. The correlation matrix, R, between points can also be estimated and the first stage 
surrogate can be constructed as shown in Figure 2b.  This approximates the response function 
evaluated at the design points of Figure 2a. The surface shows approximate values of outcomes for 
each combination of a and b. 
 

First Stage Experimental Outcomes 

 a b f 

1 0.00 0.50 2.85036 

2 0.25 1.00 2.68591 

3 0.55 0.00 2.69501 

4 0.75 0.75 3.92131 

5 1.00 0.25 2.93767 
 

 
 

Figure 2. a) Experimental outcomes b) First stage surrogate 

Based on the outcomes of the first set of experiments, we select a second set of sample points using an 
optimal sampling strategy that maximizes the amount of information obtained from the next set of 
experiments.  The points sampled are given in Figure 3a.  To simulate running the experiments, we 
again evaluate the function at each sample point.  A new maximum likelihood estimate of the 
correlation parameter θ is found with maximum likelihood. Using the first stage surrogate as our prior 
estimate, we construct the second stage surrogate. From the ten sample points shown in the tables in 
Figures 2 and 3, we construct a surrogate function that approximates the analytical function (Figure 
3a) used to simulate the experiments. The surrogate is shown in Figure 3b. The expected outcome for 
any combination of a and b can be found from this surrogate model.  
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From ten sample points, we have constructed a surrogate function that approximates the analytical 
function (shown in Figure 3c) that was used to simulate the experiments.  For a discussion of the 
errors in the approximation, see [Osio 1996]. The surrogate is illustrated in Figure 3b.  The expected 
outcome for any combination of a and b can be found from this surrogate model. 
 

Second Stage Experimental Outcomes 

 a b f 

6 0.99928 0.99961 1.48577 

7 0.000203 0.13394 3.33363 

8 0.000937 0.76794 3.36488 

9 0.472746 0.34241 3.63317 

10 .9983035 0.52097 3.03204 

 

          
 

Figure 3. a) Experimental outcomes b) Second stage surrogate c) Analytic function 

3. Design problem 
A designer may know that a small change in a parameter may make large changes in the overall 
behaviour of the system, yet be at a stage in the design where it is not yet possible to specify those 
parameters. For example, we have studied the problem of cooling electronic components in wearable 
computers.  We are experimenting with a cooling strategy that involves pumping dielectric fluids to 
decrease the temperature of electronic components by direct contact.  In some applications, the pipes 
must run through internal structural supports within the wearable computers.  Because the pipes that 
transport the dielectric fluid are small, the designer must consider the counter-intuitive phenomenon in 
which surrounding material may enhance rather than inhibit heat transfer.  While it is possible to 
perform detailed numerical simulations for particular choices of design parameters or to run 
experiments to determine critical values, these tend to be expensive and time-consuming.  In addition, 
during the preliminary stages, the designer often only needs to know which factors dominate in the 
region of interest and how these factors interact. 
In the design of a wearable computer, a pipe, which contains a dielectric fluid, passes through a plastic 
structure that is used to increase the rigidity and provide mechanical support of the computer 
assembly. The design requirement is to maximize the heat transferred from the pipe, since the 
dielectric fluid is circulating in a closed-loop for cooling other components.  The design variables 
include the length and height of the plastic support structure, shown in Figure 4.   
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Figure 4. Thermal design problem for a support structure that maximizes heat transfer 
The radius of circular pipe, ri, has been set at 0.005 m and the pipe must be in the centre of the support 
structure.  Both the height and the width are in the range of 0.015 to 0.05 m.  Two of the walls are 
modelled as thermally insulated due to contact with the computer structure, which has a much lower 
thermal conductivity. The remaining two walls are subject to a convective airflow, at temperature T∞ = 
303.15 K and with a convective heat transfer coefficient h = 10 W/m2K.  The average temperature of 
the fluid entering the pipe is Ti = 423.15 K.  This problem can be solved through numerical 
simulations of the governing energy equations using commercially available codes [Jaluria 1987].  To 
construct the surrogate model, five simulations using a spectral element code are run for the first stage 
and five more are added in a second stage.  Table 1 presents the values of both parameters in each 
simulation.   

Table 1. Design parameters for each numerical simulation 

1st stage Length (m) Height (m) 
 

2nd stage Length (m) Height (m) 
1 0.048 0.030  1 0.032 0.02 
2 0.02 0.022  2 0.024 0.015 
3 0.03 0.015  3 0.015 0.03 
4 0.015 0.04  4 0.04 0.04 
5 0.04 0.05  5 0.05 0.05 

 
The first and second stage surrogates, shown in Figure 5, is a function of non-dimensional length and 
height.  While it would be possible for the designer to perform multiple numerical simulations to 
determine the optimum, during the preliminary design stage, when the design is in flux, this effort is 
not warranted.  Moreover, even though the surrogate requires effort to construct, once it has been 
constructed, it can continue to evolve with the design. 
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a) First stage surrogate                b) Second stage surrogate 

Figure 5. Heat transfer, q, versus non-dimensional length and height of the plastic support  
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4. Conclusions 
Using surrogate models enables designers to develop models of the interactions among design 
parameters even when they have little a priori knowledge about the response of the system. This 
multi-stage Bayesian approach results in surrogates that accurately model the system response.  The 
ability to refine models and increase their accuracy in stages is valuable in the design process since it 
allows the models to evolve with the design.  Thus, in the early design stages, approximate models that 
cover a large design space can be developed.  As the design is refined, and new points in the design 
space are sampled, the scope of the model can be reduced and its accuracy increased without 
discarding the earlier information.  We are currently implementing the framework with an interface 
that will make it easy for designers to step through constructing and using a surrogate. 
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