
DESIGN INFORMATION AND KNOWLEDGE 1513

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2010
Dubrovnik - Croatia, May 17 - 20, 2010.

USING SYSML IN THE PRODUCT DEVELOPMENT
PROCESS OF MECHATRONIC SYSTEMS

M. Follmer, P. Hehenberger, S. Punz and K. Zeman

Keywords: SysML, product development process, system-level
modelling, system-level models, system models, mechatronics,
systems-of-systems

1. Introduction
One of the major challenges in developing mechatronic products is the increasing complexity of the
products themselves. The defining feature of mechatronic products, also known as systems-of-
systems, integrated systems, or mixed systems (e.g., [De Silva 2005]), is that they merge solutions
from disparate engineering disciplines. As a consequence a mechatronic design process must integrate
multiple engineering disciplines. Traditional design processes do not do this, because they consider
each engineering discipline more or less consecutively and focus on one dominant discipline (e.g.
mechanical engineering). Although the conceptual design process is well understood in the individual
engineering disciplines, and some process models even provide valuable advice for the design of
mechatronic systems (e.g., [De Silva 2005], [VDI 2206]), well-established integrated approaches for
mechatronic design processes are still missing in practice. The situation is similar for the various kinds
of computer-aided systems (CAx-systems) used by highly skilled engineers of different disciplines
[Vajna 2009]. There is a critical lack of tools supporting the interdisciplinary aspects of the
development process of mechatronic products, especially in the conceptual design phase. These
deficiencies make it difficult to overview the interdependencies of the involved engineering disciplines
[Aberdeen 2008]. System-level models can remedy this unsatisfactory situation and allow for a
holistic view on complex mechatronic systems. The graphical modelling language SysML (System
Modelling Language) offers the possibility of developing useful system-level models [OMG 2008].
SysML allows engineers to express the requirements, structure, and behaviour of systems using
standardized images which, however, are not executable without additional software-tools and
corresponding interfaces.
This article discusses how SysML may advance system-level models necessary for modelling complex
mechatronic systems, and is structured as follows: The subsequent section is dedicated to system-level
models and their significance in modelling complex technical systems. Next, an introduction into
SysML and an overview of related work are given. An illustrative example of a SysML model of a
washing machine is presented in the forth section. A conclusion summarizes the main aspects of this
article and addresses future activities.

2. System-level models

2.1 Rationale for system-level models

Several collaborative projects with industrial partners reveal a lack of models that describe features as
the structure and behaviour of complex technical products in a clear and consistent way. The goal of

1514 DESIGN INFORMATION AND KNOWLEDGE

system-level modelling is to represent the overall system in a more comprehensible way in order to
remedy this unsatisfactory situation. A number of reasons for developing system-level models are
listed in [Aberdeen 2008], among them the following three: (i) to notify changes to other disciplines,
(ii) to allocate design requirements to specific systems, sub-systems, and components, and (iii) to
validate the system behaviour digitally by simulating integrated mechanical, electrical, and software
components.
Furthermore, [Aberdeen 2008] mentions the lack of “design tools that integrate the design data of all
the elements that make up the product” and the “inability to understand the impact of design changes
across the disciplines”. System-level models are used to extract the main characteristics and
relationships of a system with the aim of showing its requirements, structure, and behaviour and to
allow a holistic view of the (overall) system under consideration.

2.2 Requirements of system-level models

Due to the increasing complexity of modern technical systems, it becomes more and more difficult
even for trained engineers to master the inherent relationships and dependencies of and between
complex systems. System-level models allow the description of the most important sub-systems and
their relationships to and dependencies on the overall system. Systems often consist of a base-system
which can be extended by optional sub-systems. System-level models should support engineers in
considering both (a) base system variants and (b) sub-system options.
The basic principle of system-level modelling is to model only those data which are essential for the
overall system or which are important across engineering disciplines. However, it is necessary to
specify principles to decide which relationships and dependencies are to be modelled on the system
level or on the level of the disciplines involved. Hence, it is important to ensure consistency in both
directions - from system-level models to discipline specific models and vice versa.

2.3 Importance of system-level models to complex mechatronic systems

2.3.1 System-level models are neutral

Mechatronic systems combine elements from mechanical engineering, electronic engineering,
computer engineering and control engineering into one integrated system. Each engineering discipline
uses special design tools which are normally not fully integrated. System-level models are a feasible
method of supporting and facilitating an interdisciplinary engineering approach. Mechatronic systems
are often dominated by one engineering discipline (e.g. mechanical engineering in machine tools).
System-level models promote equal treatment of all engineering disciplines involved during product
development and project execution. Especially for the “non-material” components of mechatronic
systems (e.g., software components) this is an important improvement.

2.3.2 Mechatronic systems are systems-of-systems

To understand complex mechatronic systems, it is convenient or even necessary to decompose them
into separate sub-systems. Hence, mechatronic systems may be understood as systems-of-systems. The
boundaries of these sub-systems have to be chosen such that the interfaces become clear to all
engineering disciplines involved.
System-level models therefore illustrate the dependencies between the sub-systems which themselves
may consist of solutions from different engineering disciplines, and provide a multi-level view of the
overall system under consideration. To model these dependencies, the definition of stable interfaces
between the individual systems is very important. Interfaces must support the tracking and
communication not only of single values but also of more complex data types such as characteristic
curves and key figures. SysML offers various ports for modelling interfaces between blocks.
Each engineering discipline involved in a mechatronic system has its own knowledge base. However,
for the understanding of the overall system only the intersection (overlap) of these knowledge bases is
important. System-level models offer the possibility of generating a knowledge base across disciplines
and therefore support collaboration and communication between engineering disciplines on a reduced
level of detail and hence on a higher level of abstraction. A further step in this direction is to consider

DESIGN INFORMATION AND KNOWLEDGE 1515

the design rationale, i.e., to list the main decisions made during the design process and the reasons for
them. Again, it is important to identify and model those data which are necessary to understand the
overall system.

2.4 How can system-level models support engineering processes?

Especially in the early phases of product development, system-level models are very helpful to show
and document the main dependencies between the requirements, structure, and behaviour of the
overall system. When development starts, the main requirements of the system are usually known.
Depending on the maturity of the product, the abstraction level of the system-level model can
decrease. Collaboration and communication during project execution can certainly be simplified by
the application of already existing system-level models. Thus, engineers obtain a complete overview
of the most relevant system data from the very beginning.
The system-level model should also support calculations and simulations especially in the later phases
of product development such as detail design. The system-level model approach is based on
integrating the existing discipline-specific development and simulation tools. This offers the advantage
for the design-engineers to use familiar tools on the one hand, but implies the need for interfaces
between various software tools on the other hand.
System-level models for products with high lot sizes and few variants can be developed in more detail
than system-level models for products with many options for customization. For products with a very
small lot size, system-level models with a higher level of abstraction can be used to support
collaboration and communication.
Since approaches employing system-level models are not restricted to individual engineering
disciplines, different business areas (product management, mechanical, electrical, and software
engineering, sales and distribution management, etc.) may also be supported in their work. System-
level models can be used to help to evaluate the properties of the system under consideration in order
to ensure that the final system meets the design requirements.
The present paper is intended to examine the ability of SysML to describe system level models.

3. SysML

3.1 Introduction to SysML

SysML is a graphical modelling language based on UML (Unified Modelling Language) and was
adopted by the OMG (Object Management Group) in 2006. Since November 2008, version 1.1 has
been available [OMG 2008]. The SysML taxonomy is presented in Figure 1.
The word system is used in a general meaning and may represent a consumer product or an industrial
product. As a rule, such systems consist of further systems called sub-systems or elements. By means
of the various diagram types shown above, SysML allows modelling the requirements, structure, and
behaviour of a system. SysML provides allocations to generate relationships between the different
model elements (e.g. diagrams, blocks, parts, activities). Thus, the relationships and dependencies
between the requirements, structure and behaviour of a technical system can also be modelled. SysML
includes the following types of standardized diagrams (Figure 1). Additional software tools and
corresponding interfaces are required to render them executable.

 Requirement diagrams are used to model the requirements and their relationships, i.e. the
requirement structure.

 Activity diagrams allow modelling the chronological order of activities. Additionally, the
input and output data of activities are visualized.

 Sequence diagrams are used to model the flow of control between actors and systems (blocks)
or between parts of a system.

 State machine diagrams describe the states of a system and their changes in response to
events.

 Use case diagrams describe the usage of a system by its actors (environment), irrespectively
of any technical realization (solution) of the system’s functions.

1516 DESIGN INFORMATION AND KNOWLEDGE

 Block definition diagrams represent the structure of the system and provide an option for
modelling the system hierarchy. The system consists of various blocks (modular units of the
system), which are interconnected by connectors, which specify relationships between model
elements, both within and across the boundary of the system.

 Internal block diagrams describe the internal structure of one block in terms of its parts, ports
(input and output interfaces), and connectors.

 Parametric diagrams represent physical aspects of the system, using constraint blocks in a
specialized variant of an internal block diagram. Constraint blocks include a constraint
(mathematical equation) and the parameters the constraint requires.

 Package diagrams are used to organize the model (e.g. for visualisation and evaluation
purposes).

Figure 1. Diagram of the SysML taxonomy [OMG 2008]

For more information about SysML see for example [OMG 2008] and [Weilkiens 2006].

3.2 Related Works

A UML profile (based on SysML) for Modelica, named ModelicaML, was presented in [Pop 2007-1]
and [Pop 2007-2]. It extends the diagram types (requirement, structure, behaviour) of SysML by two
new ones: The authors added the simulation diagram type and extended the group of behaviour
diagrams by an equation diagram. Simulation diagrams model and document simulation parameters
and results, and equation diagrams allow the modelling of more complex equations and logical
operations (e.g., if, for, and when). In [Pop 2007-2], the implementation of the ModelicaML UML
profile for Modelica in Eclipse was presented. The Eclipse open source framework is used for creating
extensible integrated development environments.
In [Peak 2007], a means of executing SysML parametric models with the help of Composable Objects
(COBs) was shown. The COB representation is based on object and constraint graph concepts to
support modularity of COBs and multi-directional capabilities. COBs consist of both lexical and
graphical formulations, and can also be represented using SysML constraint blocks and parametric
diagrams. The models become executable with the XaiTools toolkit which enables links, for example
to Mathematica, Abaqus and Ansys.
In [Johnson 2008], the use of triple graph grammars (TGGs) was introduced in order to specify
transformations between Modelica and SysML models. SysML was used to model the structure and
requirements of a system, whereas Modelica was employed to handle differential algebraic equations
(DAE-systems). The authors established a bidirectional mapping between SysML and Modelica.

DESIGN INFORMATION AND KNOWLEDGE 1517

4. SysML model of a washing machine
The following SysML model of a washing machine (WM) is used to explain the meaning and use of
the various diagram types. From this example, general observations are derived that are also valid for
the modelling of other systems.

4.1 Requirement Diagram

The “price range” is the main requirement appearing in the requirement diagram of the “washing
machine”, as shown in Figure 2. Other requirements, such as “specifications” are derived from the
requirement “price range” via a deriveReqt relationship. According to [OMG 2008] a deriveReqt
relationship is a dependency between two requirements in which a “client requirement” can be derived
from the “supplier requirement”. The requirement “specifications” is connected to the block
“controller” via a satisfy relationship, thus representing a dependency between a requirement and a
model element that is to fulfil the requirement. The relationship trace between requirements provides a
general-purpose relationship between a requirement and any other model element. For example, in
Figure 2 a dependency between the requirements “type of constructions” and “specification” is
modelled by a trace relationship. To illustrate the hierarchy of requirements, namespace containment
mechanisms are used (indicated by crosslines in Figure 2). This relationship enables a complex
requirement to be decomposed into its constituent child requirements, [OMG 2008]. Figure 2 shows
the hierarchical structure of the requirement “type of construction” and the related child requirements
“door alignment”, “dimensions” and “dryer”.

Figure 2. Requirement Diagram of the washing machine

4.2 Block Definition Diagram

The block definition diagram is used to model the system structure of the “washing machine” and
shows the definition of and relationships between different blocks (see Figure 3). The washing
machine comprises five main blocks: “frame”, “controller”, “drivetrain”, “washing parts” and “water
circulation and heating”.

req [Package] Requirement

«block»
controller

«requirement»

id#
1

txt
range: 350-400€

price range

«requirement»

id#
4

txt
(build-in) dimensions

type of construction

«requirement»

id#
4.3

txt
with/without dryer

dryer

«requirement»

id#
4.2

txt
capacity of the drum

dimensions

«requirement»

id#
4.1

txt
front- or toploader

door alignment

«requirement»

id#
2

txt
temperature, rotational speed, ...

specifications

«requirement»

id#
5

txt
noise, safety

environmental aspects

«requirement»

id#
6

txt
level of cleanness

washing quality

«requirement»

id#
3

txt
water and power consumption

efficiency

«deriveReqt»

«deriveReqt» «deriveReqt»

«deriveReqt»

«deriveReqt»

«trace»«satisfy»

1518 DESIGN INFORMATION AND KNOWLEDGE

Figure 3. Block Definition Diagram of the washing machine

These blocks can also be understood as sub-systems of a super-ordinate system. The parts of the
blocks are described in more detail in the following section.

4.3 Internal Block Diagram

The internal block diagram in Figure 4 shows the internals of the block “washing machine”. This
diagram describes the flow of e.g. “Information”, as well as the relations between the different parts.

Figure 4. Internal Block Diagram of the block “washing machine”

4.4 Parametric Diagram

The block definition diagram in Figure 5 shows the relationships between various constraint blocks
and the block “washing machine”. A constraint block represents mathematical expressions (so called
constraints), such as {E=P*t}, and the parameters used, such as E, P, and t.

bdd [Package] Structure
«block»

washing machine

«block»

parts
do : door
fp : frame parts

frame

«block»

parts
bc : base controller
cp : control panel

controller

«block»

parts
bd : belt drive
em : electrical motor

drivetrain
«block»

parts
he : heater
in : water valve
out : water valve
pu : pump

water circulation and heating

«block»

parts
dr : drum
tu : tub

washing parts

1

1

d

1
1

fr

1
1

wp

1

1

co

1

1

wh

ibd [block] washing machine

«block»

washing machine

«part»

d : drivetrain

co_d

«part»

fr : frame

«part»
wp : washing parts

«part»

wh : water circulation and heating

co_ew

«part»

co : controller

co_d co_ew

 : Torque

 : Information

 : Information

 : Water : Water

DESIGN INFORMATION AND KNOWLEDGE 1519

Figure 5. Block Definition Diagram with constraint blocks

The parametric diagram in Figure 6, derived from the block definition diagram in Figure 5, shows the
relations for the evaluation of the motor torque. The parameters in the diagram are non-directional and
can also be connected, for example with blocks (parts) and notes.
The diagrams shown in Figures 5 and 6 are merely representations of mathematical relations according
to SysML, which are per se not executable.

Figure 6. Parametric diagram for the evaluation of the motor torque (Mt)

The following four behaviour diagrams provide a detailed technical description of the system. Such
specifications are currently not standard in the engineering disciplines considered. Table 1 summarizes
the different aspects that the four diagrams describe by listing the main questions they address.

Table 1. Behaviour diagrams in SysML

Diagram type Main questions

Use Case Diagram Which use cases must be covered?

Activity Diagram
What has to happen in which order?

Which data are input, which data are output?

Sequence Diagram Which entity will call another entity when and how?

State Machine Diagram How must objects react to events?

bdd [Package] Structure [equation]

«constraint»

constraints
{E=P*t}

parameters
E : Real
P : Real
t : Real

energy

«constraint»

constraints
{Mm=Mt/i}

parameters
i : Real
Mm : Real
Mt : Real

gear ratio
«constraint»

constraints
{P=Mt*w}

parameters
Mt : Real
P : Real
w : Real

performance

«constraint»

constraints
{Mt=I*w/t}

parameters
I : Real
Mt : Real
t : Real
w : Real

torque_motor

«block»
washing machine

1

1

1

1

1

1
1

1

par [block] washing machine [equation]

: energy

E

P

t

: gear ratio
i

Mm

Mt

: performance

Mt

P

w

: torque_motor
I

Mt

tw

«part»

: belt drive

gear ratio : Real

«part»

: drum

moment of inertia : Real

«part»

: base controller

t : Real

w : Real

see requirement
"efficiency"
(id# 3, water and
power
consumption)

is unknown

1520 DESIGN INFORMATION AND KNOWLEDGE

4.5 Use Case Diagram

Figure 7 illustrates the use of the “washing machine” by its actor (user) and some possible use cases,
but without any technical details. For a correct understanding it is important to read the diagram in the
direction of the arrows. This means, for example that “Washing laundry” is a kind of “Using WM”.
(WM stands for washing machine)

Figure 7. Use Case Diagram of “Using WM”

Use case diagrams offer a new approach to developing modern technical systems. They are common
in software engineering but rarely used in other engineering disciplines.

4.6 Activity Diagram

The activity diagram in Figure 8 shows the chronological order of the activities necessary for “Doing
laundry”.

Figure 8. Activity Diagram of “Doing laundry”

4.7 Sequence Diagram

The sequence diagram in Figure 9 shows a more detailed description of the use case “Washing
laundry”. It includes the interactions between parts (form left to right) and the chronological order
(top-down) of messages (communication between the interacting entities).

Figure 9. Sequence Diagram of “Washing laundry”

User

Using WM

Washing
laundry

Drying laundry

uc Operational Use Cases
washing machine

doing laundry

preparing WM operating WM emptying WM

Washing laundry

Description :base controller :electrical motor :heater in
:water valve

out
:water valve

:pumpUser

user starts machine
choose program

wash liquor (water in)
prepare wash liquor

wash liquor (motor)
rotate drum

wash liquor (heater)
heat wash liquor

draining (wash liquor)
drain wash liquor

draining (motor)
rotate drum (draining wash liquor)

draining (pump wash liquor)
pump out (wash liquor)

rinsing (water in)
rinsing

rinsing (motor)
rotate drum (rinsing)

rinsing (heater)
heat water

draining (water)
drain water

draining (motor)
rotate drum (draining water)

draining (pump water)
pump out (water)

ready
end of program

DESIGN INFORMATION AND KNOWLEDGE 1521

4.8 State Machine Diagram

The possible states of the “pump” are shown in Figure 10. The state machine diagram describes the
relations between events such as “rotational speed” and “emergency stops” and the behaviour of the
part (“pump”).

Figure 10. State Machine Diagram of the “pump”

4.9 Potential of SysML

The approach presented in this article shows that SysML provides a possibility to create discipline-
neutral system-level models. The standardized diagram types of SysML allow engineers to model not
only the requirements, structure, and behaviour of a system, but also the relationships and
dependencies between them, as illustrated in Table 2. Depending on the views of the system under
consideration, the relevance of the different SysML-diagrams may vary. In total, SysML seems to be a
proper means of modelling complex mechatronic systems and supports an interdisciplinary
engineering approach. Although SysML diagrams cannot directly be used as executable simulation
tools, this becomes possible with additional software.

5. Conclusion and further activities
We have outlined the significance of system-level modelling especially in the design of multi-
disciplinary and multi-level systems. Furthermore, we have shown how SysML can advance the
modelling of complex (mechatronic) systems. The potential of SysML has been demonstrated by
means of a simple example of a washing machine. Our next step is to apply this approach to a product
development project in cooperation with an industrial partner. This will provide the opportunity to
gather practical experience, particularly in the early phases of product development.

Table 2. Diagram types in SysML

 Modelling of

Diagram type requirements behaviour structure

Requirement Diagram X

Activity Diagram X

Sequence Diagram X

State Machine Diagram X

Use Case Diagram X

Block Definition Diagram X

Internal Block Diagram X

Parametric Diagram X

Package Diagram X

n = n2

n = n1

On

defect

emergency shutdown

unscheduled

scheduled

Off

on/

off/

pump out (wash liquor)/n1

pump out (water)/n2

[checks ok]/

[checks fail]/

stm Washing laundry

1522 DESIGN INFORMATION AND KNOWLEDGE

Acknowledgments
This work was kindly supported by the Austrian Center of Competence in Mechatronics (ACCM), a K2-Center
of the COMET/K2 program, which is aided by funds of the Austrian Republic and the Provincial Government of
Upper Austria. The authors thank all involved partners for their support.

References
Aberdeen Group, “System Design: New Product Development for Mechatronics”, 2008.
De Silva, C. W., ”Mechatronics – an integrated approach”, CRC Press Boca Raton, London, New York,
Washington DC, 2005.
OMG, “Systems Modeling Language V1.1”, OMG Available Specification, 2008
Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., Kim, I., “Simulation-Based Design
Using SysML” Part 1 and Part 2, INCOSE Intl. Symposium, San Diego, USA, 2007.
Pop, A., Akhvlediani, D., Fritzson, P., “Towards Unified System Modeling with the ModelicaML UML Profile”,
1st International Workshop on Equation-Based Object-Oriented Languages and Tools, Berlin, Germany, 2007.
Pop A., Băluţă V., Fritzson, P., “Eclipse Support for Design and Requirements Engineering Based on
ModelicaML”, 48th Scandinavian Conference on Simulation and Modeling, Göteborg, Sweden, 2007.
Johnson, T., Paredis, C. J. J., Burkhart, R., “Integrating Models and Simulations of Continuous Dynamics into
SysML”, 6th International Modelica Conference, Bielefeld, Germany, 2008.
Vajna, S., Weber, C., Bley, H., Zeman, K., Hehenberger, P., “CAx für Ingenieure: Eine praxisbezogene
Einführung“, Springer Verlag Berlin Heidelberg Germany, 2009.
VDI-Richtlinie, VDI 2206, “Entwicklungsmethodik für mechatronische Systeme“, Beuth Verlag Germany, 2003.
Weilkiens, T., “Systems Engineering mit SysML / UML: Modellierung, Analyse, Design“, Dpunkt Verlag
Heidelberg Germany, 2006.

Martin Follmer
University Assistant
Johannes Kepler University, Institute of Computer-Aided Methods in Mechanical Engineering
Altenberger Straße 69, 4040 Linz, Austria
Telephone: ++43/732 2468 6555
Telefax: ++43/732 2468 6542
Email: martin.follmer@jku.at
URL: http://came.mechatronik.uni-linz.ac.at

