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1. Introduction 
One of the major challenges in developing mechatronic products is the increasing complexity of the 
products themselves. The defining feature of mechatronic products, also known as systems-of-
systems, integrated systems, or mixed systems (e.g., [De Silva 2005]), is that they merge solutions 
from disparate engineering disciplines. As a consequence a mechatronic design process must integrate 
multiple engineering disciplines. Traditional design processes do not do this, because they consider 
each engineering discipline more or less consecutively and focus on one dominant discipline (e.g. 
mechanical engineering). Although the conceptual design process is well understood in the individual 
engineering disciplines, and some process models even provide valuable advice for the design of 
mechatronic systems (e.g., [De Silva 2005], [VDI 2206]), well-established integrated approaches for 
mechatronic design processes are still missing in practice. The situation is similar for the various kinds 
of computer-aided systems (CAx-systems) used by highly skilled engineers of different disciplines 
[Vajna 2009]. There is a critical lack of tools supporting the interdisciplinary aspects of the 
development process of mechatronic products, especially in the conceptual design phase. These 
deficiencies make it difficult to overview the interdependencies of the involved engineering disciplines 
[Aberdeen 2008]. System-level models can remedy this unsatisfactory situation and allow for a 
holistic view on complex mechatronic systems. The graphical modelling language SysML (System 
Modelling Language) offers the possibility of developing useful system-level models [OMG 2008]. 
SysML allows engineers to express the requirements, structure, and behaviour of systems using 
standardized images which, however, are not executable without additional software-tools and 
corresponding interfaces. 
This article discusses how SysML may advance system-level models necessary for modelling complex 
mechatronic systems, and is structured as follows: The subsequent section is dedicated to system-level 
models and their significance in modelling complex technical systems. Next, an introduction into 
SysML and an overview of related work are given. An illustrative example of a SysML model of a 
washing machine is presented in the forth section. A conclusion summarizes the main aspects of this 
article and addresses future activities. 

2. System-level models 

2.1 Rationale for system-level models 

Several collaborative projects with industrial partners reveal a lack of models that describe features as 
the structure and behaviour of complex technical products in a clear and consistent way. The goal of 
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system-level modelling is to represent the overall system in a more comprehensible way in order to 
remedy this unsatisfactory situation. A number of reasons for developing system-level models are 
listed in [Aberdeen 2008], among them the following three: (i) to notify changes to other disciplines, 
(ii) to allocate design requirements to specific systems, sub-systems, and components, and (iii) to 
validate the system behaviour digitally by simulating integrated mechanical, electrical, and software 
components. 
Furthermore, [Aberdeen 2008] mentions the lack of “design tools that integrate the design data of all 
the elements that make up the product” and the “inability to understand the impact of design changes 
across the disciplines”. System-level models are used to extract the main characteristics and 
relationships of a system with the aim of showing its requirements, structure, and behaviour and to 
allow a holistic view of the (overall) system under consideration. 

2.2 Requirements of system-level models 

Due to the increasing complexity of modern technical systems, it becomes more and more difficult 
even for trained engineers to master the inherent relationships and dependencies of and between 
complex systems. System-level models allow the description of the most important sub-systems and 
their relationships to and dependencies on the overall system. Systems often consist of a base-system 
which can be extended by optional sub-systems. System-level models should support engineers in 
considering both (a) base system variants and (b) sub-system options. 
The basic principle of system-level modelling is to model only those data which are essential for the 
overall system or which are important across engineering disciplines. However, it is necessary to 
specify principles to decide which relationships and dependencies are to be modelled on the system 
level or on the level of the disciplines involved. Hence, it is important to ensure consistency in both 
directions - from system-level models to discipline specific models and vice versa. 

2.3 Importance of system-level models to complex mechatronic systems 

2.3.1 System-level models are neutral 

Mechatronic systems combine elements from mechanical engineering, electronic engineering, 
computer engineering and control engineering into one integrated system. Each engineering discipline 
uses special design tools which are normally not fully integrated. System-level models are a feasible 
method of supporting and facilitating an interdisciplinary engineering approach. Mechatronic systems 
are often dominated by one engineering discipline (e.g. mechanical engineering in machine tools). 
System-level models promote equal treatment of all engineering disciplines involved during product 
development and project execution. Especially for the “non-material” components of mechatronic 
systems (e.g., software components) this is an important improvement. 

2.3.2 Mechatronic systems are systems-of-systems 

To understand complex mechatronic systems, it is convenient or even necessary to decompose them 
into separate sub-systems. Hence, mechatronic systems may be understood as systems-of-systems. The 
boundaries of these sub-systems have to be chosen such that the interfaces become clear to all 
engineering disciplines involved. 
System-level models therefore illustrate the dependencies between the sub-systems which themselves 
may consist of solutions from different engineering disciplines, and provide a multi-level view of the 
overall system under consideration. To model these dependencies, the definition of stable interfaces 
between the individual systems is very important. Interfaces must support the tracking and 
communication not only of single values but also of more complex data types such as characteristic 
curves and key figures. SysML offers various ports for modelling interfaces between blocks. 
Each engineering discipline involved in a mechatronic system has its own knowledge base. However, 
for the understanding of the overall system only the intersection (overlap) of these knowledge bases is 
important. System-level models offer the possibility of generating a knowledge base across disciplines 
and therefore support collaboration and communication between engineering disciplines on a reduced 
level of detail and hence on a higher level of abstraction. A further step in this direction is to consider 
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the design rationale, i.e., to list the main decisions made during the design process and the reasons for 
them. Again, it is important to identify and model those data which are necessary to understand the 
overall system. 

2.4 How can system-level models support engineering processes? 

Especially in the early phases of product development, system-level models are very helpful to show 
and document the main dependencies between the requirements, structure, and behaviour of the 
overall system. When development starts, the main requirements of the system are usually known. 
Depending on the maturity of the product, the abstraction level of the system-level model can 
decrease. Collaboration and communication during project execution can certainly be simplified by 
the application of already existing system-level models. Thus, engineers obtain a complete overview 
of the most relevant system data from the very beginning. 
The system-level model should also support calculations and simulations especially in the later phases 
of product development such as detail design. The system-level model approach is based on 
integrating the existing discipline-specific development and simulation tools. This offers the advantage 
for the design-engineers to use familiar tools on the one hand, but implies the need for interfaces 
between various software tools on the other hand. 
System-level models for products with high lot sizes and few variants can be developed in more detail 
than system-level models for products with many options for customization. For products with a very 
small lot size, system-level models with a higher level of abstraction can be used to support 
collaboration and communication. 
Since approaches employing system-level models are not restricted to individual engineering 
disciplines, different business areas (product management, mechanical, electrical, and software 
engineering, sales and distribution management, etc.) may also be supported in their work. System-
level models can be used to help to evaluate the properties of the system under consideration in order 
to ensure that the final system meets the design requirements. 
The present paper is intended to examine the ability of SysML to describe system level models. 

3. SysML 

3.1 Introduction to SysML 

SysML is a graphical modelling language based on UML (Unified Modelling Language) and was 
adopted by the OMG (Object Management Group) in 2006. Since November 2008, version 1.1 has 
been available [OMG 2008]. The SysML taxonomy is presented in Figure 1. 
The word system is used in a general meaning and may represent a consumer product or an industrial 
product. As a rule, such systems consist of further systems called sub-systems or elements. By means 
of the various diagram types shown above, SysML allows modelling the requirements, structure, and 
behaviour of a system. SysML provides allocations to generate relationships between the different 
model elements (e.g. diagrams, blocks, parts, activities). Thus, the relationships and dependencies 
between the requirements, structure and behaviour of a technical system can also be modelled. SysML 
includes the following types of standardized diagrams (Figure 1). Additional software tools and 
corresponding interfaces are required to render them executable. 

 Requirement diagrams are used to model the requirements and their relationships, i.e. the 
requirement structure. 

 Activity diagrams allow modelling the chronological order of activities. Additionally, the 
input and output data of activities are visualized. 

 Sequence diagrams are used to model the flow of control between actors and systems (blocks) 
or between parts of a system. 

 State machine diagrams describe the states of a system and their changes in response to 
events. 

 Use case diagrams describe the usage of a system by its actors (environment), irrespectively 
of any technical realization (solution) of the system’s functions. 
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 Block definition diagrams represent the structure of the system and provide an option for 
modelling the system hierarchy. The system consists of various blocks (modular units of the 
system), which are interconnected by connectors, which specify relationships between model 
elements, both within and across the boundary of the system. 

 Internal block diagrams describe the internal structure of one block in terms of its parts, ports 
(input and output interfaces), and connectors.  

 Parametric diagrams represent physical aspects of the system, using constraint blocks in a 
specialized variant of an internal block diagram. Constraint blocks include a constraint 
(mathematical equation) and the parameters the constraint requires. 

 Package diagrams are used to organize the model (e.g. for visualisation and evaluation 
purposes). 

 
Figure 1. Diagram of the SysML taxonomy [OMG 2008] 

For more information about SysML see for example [OMG 2008] and [Weilkiens 2006]. 

3.2 Related Works 

A UML profile (based on SysML) for Modelica, named ModelicaML, was presented in [Pop 2007-1] 
and [Pop 2007-2]. It extends the diagram types (requirement, structure, behaviour) of SysML by two 
new ones: The authors added the simulation diagram type and extended the group of behaviour 
diagrams by an equation diagram. Simulation diagrams model and document simulation parameters 
and results, and equation diagrams allow the modelling of more complex equations and logical 
operations (e.g., if, for, and when). In [Pop 2007-2], the implementation of the ModelicaML UML 
profile for Modelica in Eclipse was presented. The Eclipse open source framework is used for creating 
extensible integrated development environments. 
In [Peak 2007], a means of executing SysML parametric models with the help of Composable Objects 
(COBs) was shown. The COB representation is based on object and constraint graph concepts to 
support modularity of COBs and multi-directional capabilities. COBs consist of both lexical and 
graphical formulations, and can also be represented using SysML constraint blocks and parametric 
diagrams. The models become executable with the XaiTools toolkit which enables links, for example 
to Mathematica, Abaqus and Ansys. 
In [Johnson 2008], the use of triple graph grammars (TGGs) was introduced in order to specify 
transformations between Modelica and SysML models. SysML was used to model the structure and 
requirements of a system, whereas Modelica was employed to handle differential algebraic equations 
(DAE-systems). The authors established a bidirectional mapping between SysML and Modelica. 
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4. SysML model of a washing machine 
The following SysML model of a washing machine (WM) is used to explain the meaning and use of 
the various diagram types. From this example, general observations are derived that are also valid for 
the modelling of other systems. 

4.1 Requirement Diagram 

The “price range” is the main requirement appearing in the requirement diagram of the “washing 
machine”, as shown in Figure 2. Other requirements, such as “specifications” are derived from the 
requirement “price range” via a deriveReqt relationship. According to [OMG 2008] a deriveReqt 
relationship is a dependency between two requirements in which a “client requirement” can be derived 
from the “supplier requirement”. The requirement “specifications” is connected to the block 
“controller” via a satisfy relationship, thus representing a dependency between a requirement and a 
model element that is to fulfil the requirement. The relationship trace between requirements provides a 
general-purpose relationship between a requirement and any other model element. For example, in 
Figure 2 a dependency between the requirements “type of constructions” and “specification” is 
modelled by a trace relationship. To illustrate the hierarchy of requirements, namespace containment 
mechanisms are used (indicated by crosslines in Figure 2). This relationship enables a complex 
requirement to be decomposed into its constituent child requirements, [OMG 2008]. Figure 2 shows 
the hierarchical structure of the requirement “type of construction” and the related child requirements 
“door alignment”, “dimensions” and “dryer”. 

 
Figure 2. Requirement Diagram of the washing machine 

4.2 Block Definition Diagram 

The block definition diagram is used to model the system structure of the “washing machine” and 
shows the definition of and relationships between different blocks (see Figure 3). The washing 
machine comprises five main blocks: “frame”, “controller”, “drivetrain”, “washing parts” and “water 
circulation and heating”. 

req [Package] Requirement

«block»
controller

«requirement»

id#
1

txt
range: 350-400€

price range

«requirement»

id#
4

txt
(build-in) dimensions

type of construction

«requirement»

id#
4.3

txt
with/without dryer

dryer

«requirement»

id#
4.2

txt
capacity of the drum

dimensions

«requirement»

id#
4.1

txt
front- or toploader

door alignment

«requirement»

id#
2

txt
temperature, rotational speed, ...

specifications

«requirement»

id#
5

txt
noise, safety

environmental aspects

«requirement»

id#
6

txt
level of cleanness

washing quality

«requirement»

id#
3

txt
water and power consumption

efficiency

«deriveReqt»

«deriveReqt» «deriveReqt»

«deriveReqt»

«deriveReqt»

«trace»«satisfy»
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Figure 3. Block Definition Diagram of the washing machine 

These blocks can also be understood as sub-systems of a super-ordinate system. The parts of the 
blocks are described in more detail in the following section. 

4.3 Internal Block Diagram 

The internal block diagram in Figure 4 shows the internals of the block “washing machine”. This 
diagram describes the flow of e.g. “Information”, as well as the relations between the different parts. 

 
Figure 4. Internal Block Diagram of the block “washing machine” 

4.4 Parametric Diagram 

The block definition diagram in Figure 5 shows the relationships between various constraint blocks 
and the block “washing machine”. A constraint block represents mathematical expressions (so called 
constraints), such as {E=P*t}, and the parameters used, such as E, P, and t. 
 

bdd [Package] Structure
«block»

washing machine

«block»

parts
do : door
fp : frame parts

frame

«block»

parts
bc : base controller
cp : control panel

controller

«block»

parts
bd : belt drive
em : electrical motor

drivetrain
«block»

parts
he : heater
in : water valve
out : water valve
pu : pump

water circulation and heating

«block»

parts
dr : drum
tu : tub

washing parts

1

1

d

1
1

fr

1
1

wp

1

1

co

1

1

wh

ibd [block] washing machine

«block»

washing machine

«part»

d : drivetrain

co_d

«part»

fr : frame

«part»
wp : washing parts

«part»

wh : water circulation and heating

co_ew

«part»

co : controller

co_d co_ew

 : Torque

 : Information

 : Information

 : Water : Water
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Figure 5. Block Definition Diagram with constraint blocks 

The parametric diagram in Figure 6, derived from the block definition diagram in Figure 5, shows the 
relations for the evaluation of the motor torque. The parameters in the diagram are non-directional and 
can also be connected, for example with blocks (parts) and notes. 
The diagrams shown in Figures 5 and 6 are merely representations of mathematical relations according 
to SysML, which are per se not executable. 

 
Figure 6. Parametric diagram for the evaluation of the motor torque (Mt) 

The following four behaviour diagrams provide a detailed technical description of the system. Such 
specifications are currently not standard in the engineering disciplines considered. Table 1 summarizes 
the different aspects that the four diagrams describe by listing the main questions they address. 

Table 1. Behaviour diagrams in SysML 

Diagram type Main questions 

Use Case Diagram Which use cases must be covered? 

Activity Diagram 
What has to happen in which order? 

Which data are input, which data are output? 

Sequence Diagram Which entity will call another entity when and how?  

State Machine Diagram How must objects react to events? 

bdd [Package] Structure [equation]

«constraint»

constraints
{E=P*t}

parameters
E : Real
P : Real
t : Real

energy

«constraint»

constraints
{Mm=Mt/i}

parameters
i : Real
Mm : Real
Mt : Real

gear ratio
«constraint»

constraints
{P=Mt*w}

parameters
Mt : Real
P : Real
w : Real

performance

«constraint»

constraints
{Mt=I*w/t}

parameters
I : Real
Mt : Real
t : Real
w : Real

torque_motor

«block»
washing machine

1

1

1

1

1

1
1

1

par [block] washing machine [equation]

: energy

E

P

t

: gear ratio
i

Mm

Mt

: performance

Mt

P

w

: torque_motor
I

Mt

tw

«part»

: belt drive

gear ratio : Real

«part»

: drum

moment of inertia : Real

«part»

: base controller

t : Real

w : Real

see requirement 
"efficiency"
(id# 3, water and 
power 
consumption)

is unknown
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4.5 Use Case Diagram 

Figure 7 illustrates the use of the “washing machine” by its actor (user) and some possible use cases, 
but without any technical details. For a correct understanding it is important to read the diagram in the 
direction of the arrows. This means, for example that “Washing laundry” is a kind of “Using WM”. 
(WM stands for washing machine) 

 
Figure 7. Use Case Diagram of “Using WM” 

Use case diagrams offer a new approach to developing modern technical systems. They are common 
in software engineering but rarely used in other engineering disciplines.  

4.6 Activity Diagram 

The activity diagram in Figure 8 shows the chronological order of the activities necessary for “Doing 
laundry”. 

 
Figure 8. Activity Diagram of “Doing laundry” 

4.7 Sequence Diagram 

The sequence diagram in Figure 9 shows a more detailed description of the use case “Washing 
laundry”. It includes the interactions between parts (form left to right) and the chronological order 
(top-down) of messages (communication between the interacting entities). 

 
Figure 9. Sequence Diagram of “Washing laundry” 

User

Using WM

Washing
laundry

Drying laundry

uc Operational Use Cases
washing machine

doing laundry

preparing WM operating WM emptying WM

Washing laundry

Description :base controller :electrical motor :heater in
:water valve

out
:water valve

:pumpUser

user starts machine
choose program

wash liquor (water in)
prepare wash liquor

wash liquor (motor)
rotate drum

wash liquor (heater)
heat wash liquor

draining (wash liquor)
drain wash liquor

draining (motor)
rotate drum (draining wash liquor)

draining (pump wash liquor)
pump out (wash liquor)

rinsing (water in)
rinsing

rinsing (motor)
rotate drum (rinsing)

rinsing (heater)
heat water

draining (water)
drain water

draining (motor)
rotate drum (draining water)

draining (pump water)
pump out (water)

ready
end of program
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4.8 State Machine Diagram 

The possible states of the “pump” are shown in Figure 10. The state machine diagram describes the 
relations between events such as “rotational speed” and “emergency stops” and the behaviour of the 
part (“pump”). 

 
Figure 10. State Machine Diagram of the “pump” 

4.9 Potential of SysML 

The approach presented in this article shows that SysML provides a possibility to create discipline-
neutral system-level models. The standardized diagram types of SysML allow engineers to model not 
only the requirements, structure, and behaviour of a system, but also the relationships and 
dependencies between them, as illustrated in Table 2. Depending on the views of the system under 
consideration, the relevance of the different SysML-diagrams may vary. In total, SysML seems to be a 
proper means of modelling complex mechatronic systems and supports an interdisciplinary 
engineering approach. Although SysML diagrams cannot directly be used as executable simulation 
tools, this becomes possible with additional software. 

5. Conclusion and further activities 
We have outlined the significance of system-level modelling especially in the design of multi-
disciplinary and multi-level systems. Furthermore, we have shown how SysML can advance the 
modelling of complex (mechatronic) systems. The potential of SysML has been demonstrated by 
means of a simple example of a washing machine. Our next step is to apply this approach to a product 
development project in cooperation with an industrial partner. This will provide the opportunity to 
gather practical experience, particularly in the early phases of product development.  

Table 2. Diagram types in SysML 

 Modelling of  

Diagram type requirements behaviour structure 

Requirement Diagram X   

Activity Diagram  X  

Sequence Diagram  X  

State Machine Diagram  X  

Use Case Diagram  X  

Block Definition Diagram   X 

Internal Block Diagram   X 

Parametric Diagram   X 

Package Diagram   X 

n = n2

n = n1

On

defect

emergency shutdown

unscheduled

scheduled

Off

on/

off/

pump out (wash liquor)/n1

pump out (water)/n2

[checks ok]/

[checks fail]/

stm Washing laundry
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