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1. Introduction 
Global markets and distributed engineering networks require cost-efficient and effective methods to 
provide product data for multiple divisions and stakeholders. Today, processes often rely on native 
Computer Aided Design (CAD) files. Recently, however, a change in paradigm towards integrating 
lightweight data formats can be monitored. In particular JT (Jupiter Tessellation) is a highly accepted 
format within various industries. The successful triggering of the JT ISO (International Organization 
for Standardization) standardization is now further driving JT establishment within software products 
related to Product Lifecycle Management (PLM). Additionally, two internationally renowned 
associations (ProSTEP iViP association and Verband der Automobilindustrie) have been engaged in 
defining requirements towards industrial JT application in the form of Use Cases. In the scope of 
underlying project activities, we have been responsible for major contributions to this work. 
Based on documents created within these activities and previous investigations (see [Gerhardt 2009] 
[Gerhardt Eigner, 2009]), conclusions can be drawn regarding the support of downstream processes, 
such as Digital Mock-Up (DMU) and Simulation. Even though kinematical information plays a key 
role within product validation, we know of no lightweight (CAD-derived) format that can store such 
data. Accordingly, support for respective Use Cases is not directly given. As of today, formats like JT 
do not provide containers to store joints, fixes and links with relevant attributes, all of which are used 
e.g. in multibody-simulation (MBS) and installation feasibility analysis. 
Today, kinematical simulations are primarily run within systems specifically developed for this 
purpose, relying on respectively native data formats. CAD is then linked to such Computer Aided 
Engineering (CAE) systems via often expensive tool-specific interfaces. Our goal is to serve processes 
with kinematical data via lightweight formats. We propose a guideline that maps such information in 
the product structure. In addition to storing kinematical connections within such data formats, we have 
mapped those contents to a well established MBS-format called Physical Modelling XML as an 
intermediate solution, again bridging the gap between CAD and CAE.  
The remainder of this paper is structured as follows: Section 2 gives an overview on state of the art 
regarding kinematical representations in different data models. Section 3 then provides insight into 
similar publications, before Section 4 presents the mentioned approach and proposal for a guideline. 
Results of our work in terms of a prototypical implementation are illustrated in Section 4.2, before 
Section 5 wraps up with an outlook on work and trends to come from our point of view. 

2. State of the art 
A rigid Multibody-system is primarily described by two aspects: kinematics and the forces that 
actually cause motion in the system. We restrict our approach to kinematics only, meaning the 
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interconnection of bodies. Before addressing a guideline to map kinematics within lightweight data 
formats, two topics were considered: 

1.  How kinematical data is typically prepared in the context of CAD 
2.  Data formats and kinematical descriptions existent today 

Regarding the first issue, two approaches can be distinguished: 

Approach Description 
Geometrical 
constraints: 

For a Multibody-system consisting of n bodies, 6n degrees of freedom (DoF) are 
assumed, a body having six DoF: 3 translational and 3 rotational. Adding constraints 
that relate to geometrical elements in the CAD-system, e.g. “point moves on curve”, 
reduces the number of DoF. 

CAD-based 
joints: 

Some CAD-systems, specifically more comprehensive ones (e.g. CATIA and NX), 
provide modules to specify joints, representing an interconnection between two 
bodies. As above, these constrain the number of DoF in the system, which is why 
some of the descriptions dealing with kinematics consider joints to be a subset of 
constraints in general. 

 
Since our main focus lies on CAD-based joint definitions, we consider respective CAD functionality a 
prerequisite. Regarding the second issue, we have studied four different data formats, in part much 
rather description languages, prior to considering the guideline-approach presented in Section 4. From 
here on we shall call them “descriptions”, each positioning itsef in a slightly different key influential 
area. In the following, each is elaborated in more detail.  

2.1 PLM XML 

PLM XML is a comprehensive data format based on XML and is considered an industrial standard. It 
has historically evolved from facilitating product lifecycle interoperability [Siemens 2009] in the 
context of applying several Mechanical CAD-(MCAD) systems in cross-enterprise engineering. 
Support for managed, revision- and view-based product data as used in common PDM-systems, is 
included. 
PLM XML stores product data in a compact instance graph, allowing concretion via product views 
based on occurrences that represent a more natural tree-like hierarchy. The same approach is followed 
for the definition of a kinematical system (mechanism), with the exception that occurrences which can 
be linked to occurrences in a product view are placed directly into so called MechanismRevisionView 
(MRV) graph elements that represent either links or sub-mechanisms, and that there exist no views on 
a mechanism. For details, we advise studying the PLM XML schema that can be found online. 
PDM is a key topic influencing PLM XML contents, including kinematical definitions. On one hand, 
this provides flexibility, while on the other we consider it to be little intuitive. Regarding the key 
elements of a kinematical definition, namely joints, PLM XML understands these as a certain form of 
constraint. Constraints are at first placed independent of the mechanism, but any MRV can then 
reference instances of a constraint via a respective attribute. Constraint instances in turn typically 
reference so called Marker elements, each representing a point (with orientation) contained in the 
MRV definitions.  
Joints are classified into primitive and other joints, both restricting motion between two markers (each 
on a different link) to one or more DoF. A primitive joint is characterized by restricting either 
translational or rotational degrees, but never both. Neither does a primitive joint “mechanically 
couple” the links, making this type of joint uninteresting for our multibody considerations. Other joints 
can restrict alike or more complex, but there exists no direct correlation between primitive and other 
joints. This is different in other descriptions, such as Physical Modelling XML for example.  

  



DESIGN INFORMATION AND KNOWLEDGE 1483

2.2 Physical Modelling XML 

Physical Modelling XML (PhysMod) is based on SimMechanicsTM, a single-domain extension of the 
Simulink environment developed by The Mathworks, Inc, which can be used for modeling and 
simulation of mechanical systems. As PLM XML, it is based on standard XML. 
Being a CAE-oriented data format, only information relevant for this purpose is provided. PhysMod 
files consist primarily of bodies, grounds and joints. Compared to PLM XML, neither product 
structure nor further PDM data is included. External geometry (e.g. for simulation visualization) can 
be referenced per body.  
A body represents a component that is linked to another one. Each is accompanied by sub-elements 
representing the properties required for simulation, in particular mass, inertia and respective units. In 
analogy to PLM XML, bodies are given here called frames that have a unique reference identifier. 
Essentially, a frame is a coordinate system of interest (markers are the PLM XML pendant). Each 
body must hold at least a CG (center of gravity) and a CS1 (origin of the body) frame. 
A joint links two bodies via their frames by a base-follower mechanism, removing DoFs from the 
system as a whole. PhysMod distinguishes between primitive (revolute, prismatic and spherical) and 
complex joints, which are a combination of the primitive ones. This is different from e.g. PLM XML. 
An axis element is associated with each primitive, interpreted according to the primitive’s type (axis to 
translate on, rotate around or representing a pivot point). In the XML file, each joint is represented by 
a sequential list of “Primitive” elements, motions to then be interpreted in order of appearance.  
A ground can be interpreted as a body with infinite mass that can be used as a fixed reference point for 
other elements of the XML file (e.g. frames positioned relative). Each kinematical model must at least 
store one ground that is joined to a body via a joint. Good practice is to create a body called RootPart 
and a ground called RootGround.  

2.3 COLLADA 

COLLADA is short for COLLAborative Design Activity and defines an XML-schema to enable 3D 
authoring applications to freely exchange digital assets, including graphics, animation, kinematics, 
physics and shader effects without loss of information [Barnes, Levy, 2008].  
While COLLADA has grown, today serving as the base technology e.g. within the AutomationML 
group [Drath, Lüder, Peschke, 2008], it primarily stores data of a visual scene in a scene graph, 
pointing out its key origin: the gaming industry and computer animation. There can be multiple 
physical (COLLADA 1.4 Physics) or kinematical scenes (COLLADA 1.5 Kinematics), describing 
with rigid constraints, how one body can move in relation to another. We consider the second. 
Just like (in game engines) 3D-objects are commonly stored within model definitions and instanced in 
a visual scene, COLLADA can store kinematical models that are later instanced and linked to 
geometry representations in the scenegraph. A kinematic model, in turn instancing separately defined 
joints, is defined by kinematic chains that consist of links and joints. Links represent rigid kinematical 
objects without mass and inertia, whose motion is constrained by one or more joints using a so called 
“attachment” mechanism. An important issue is the fact that COLLADA provides only the primitive 
“prismatic” and “revolute” joints, both consisting of a single axis (and limits); all other joints are 
considered a combination of the above. This is similar to Physical Modelling XML, with the exception 
that a spherical joint is no primitive. These axes are linked to axes defined in the visual scene. 

2.4 Modelica 

Modelica is more an object-oriented language than a format. Supporting declarative multi-domain 
modeling, our focus lies on modeling kinematics. For this purpose, a standardized and free MultiBody 
Library is provided, holding 3D mechanical components to model mechanical systems conveniently.  
Every model utilizing the MultiBody library must have an instance of World, defining a gravitational 
field and global coordinate system fixed in 3D space. Specializing Part (containing mass, inertia, 
position and at least one so called frame, which is basically a coordinate system), rigid bodies within 
the kinematical definition are represented by Body, the most interesting being the general BodyShape. 
Such bodies possess two frames, frame_a and frame_b, which are used for interconnection e.g. by a 
joint. A joint too possesses two frames, allowing parts to be connected on both “ends”. Fixed is 
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another “part” of interest, representing a fixed position in the world [Fritzson, 2004], in analogy to the 
Ground container in Physical Modelling XML.  

3. Related work 
A first step towards modeling kinematics within lightweight data formats was to develop an 
application that lets the user view product structure, geometry and further contents, such as node 
properties. This was done in previous work. The architecture and functionality of that application was 
first presented and elaborated in [Gerhardt, Eigner, 2009], working specifically on the JT data format.  
Against the background of working with kinematics, there have been rather recent works dealing with 
CAD to CAE connections. Juhász et al. have presented partially automated workflows to translate 
from specifically Pro/Engineer CAD models to Modelica, by using Physical Modelling XML as an in-
between format [Juhász, Schmucker, 2009]. Also working with the Modelica language, Engelson et al. 
have implemented a translator to create a Modelica model from an existing AutoDesk’s Mechanical 
Desktop CAD model [Engelson, et al., 2003]. Welakwe et al. on the other hand have developed an 
interface that integrates Modelica into CATIA, enabling automatic extraction of pertinent information 
from the CAD representation of physical components to Modelica models for multibody simulation 
[Bhattacharya, et al., 2006]. 
All of the above references relate to integrating a well-known description language, namely Modelica, 
with a given CAD-system. While these works provide very promising results, none address the 
importance of going from CAD to a lightweight data format, and then to CAE. We consider this 
essential, aiming for the integration of such formats into the supply chain. We are not aware of any 
other works dealing with this matter in the scope of kinematical representations. 

4. Approach “abusing” the product structure for kinematics 
Without loss of generality, the approach is presented based on the JT data format. Since basically all 
of the lightweight formats we have come across (JT, 3D XML, PRC and ProductView) provide means 
to store product structure, the concept remains transferable. Section 4.1 presents the approach in 
general; Section 4.2 illustrates an implementation thereof using our developed application (cp. Section 
3). 

4.1 The approach to enhance the product structure 

For all of the above descriptions, some pre-definition or classification of joints is provided. A 
classification into primitive and complex (or compound) joints that consist of primitives was 
considered straight forward and adapted within the persented approach.  

Table 1. Joint types 

Joint name PhysMod 
pendant 

PLM XML 
pendant 

Modelica  
pendant 

COLLADA 
pendant 

Primitive      

Revolute  (R) Revolute Revolute Revolute Revolute 
Translational  (T) Prismatic Translational Prismatic Prismatic 

Complex     

Spherical  (RRR) Spherical Spherical Spherical Compound 
PlanarNoRevolute  (TT) Planar N/A N/A Compound 

PlanarRevolute  (TTR) In Plane Planar Planar Compound 
Cylindrical  (TR) Cylindrical Cylindrical Cylindrical Compound 
Universal  (RR) Revolute-

Revolute 
Universal Universal Compound 

 
Joints were identified as depicted in Table 1 relating to COLLADA for the primitives (providing a 
single DoF for one body in relation to another) and also already defining a set of complex ones, 
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primarily similar to Physical Modelling XML. The key joints illustrated in Table 1 were integrated 
into the approach. The specification of a set of complex joints provides means to coarsely model early 
kinematics. A universal joint, for example, can be modeled precisely via primitive joints by providing 
a body that represents the cross-shaped linkage of the two connected shafts. Defining a revolute joint 
between the first shaft and linkage, and one between the linkage and the second shaft, leads to the 
intended behavior of the model. In case of missing linkage geometry (e.g. in early phases of product 
development) or a less exact definition of the behavior, the availability of a universal joint allows the 
definition of two rotational axes within one joint, requiring only shaft bodies. This is illustrated in 
Figure 1. 

 
Figure 1. Primitive vs. complex joints 

Because we neglect forces that produce the motion, actuated joints that are an inherent part of e.g. 
Modelica are not regarded. We consider such information to be subject to downstream detailing and 
instancing of a simulation. For each primitive, the following joint attribute is essential: 

Revolute:  axis of rotation (a vector with orientation) 
Translational: axis of translation (a vector with orientation) 

A product structure, consisting of assembly and part nodes, could at any time be enhanced by what we 
call ‘dummy nodes’. These don’t represent actual components of a product, but much rather virtual 
nodes that further describe the product. We propose enhancing the product structure via a kinematical 
dummy that indicates that all attached sub-nodes now contain kinematical content. Figure 2 depicts the 
general approach based on a simplified model, here displaying a single primitive revolute joint.  

 
Figure 2. Sketch of the approach in general 

On a general note, we propose a common understanding regarding terminology that identifies a node 
as virtual, no matter the type of dummy. This way, any processor or application can filter such nodes 
with respect to arbitrary purposes, such as hiding them from display in a product structure tree. 
Consistent with its meaning, we suggest virtual nodes to be prefixed ‘virt:’. Hence, the kinematical 
dummy node is called virt:kin, which is short for virtual:kinematics. This node is attached a child 
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assembly called virt:kin:constraints, in turn attaching a virt:kin:joints and a virt:kin:fixes child 
assembly. Now, a joint is defined by attaching a child assembly called virt:kin:joint:T_N, where 

 T is a placeholder for the type of joint (name as specified in Table 1) 
 N is an arbitrary name for the joint 

The remainder of the joint is specified via key (string of characters) and value paired properties, as 
shown in Table 2, and a list of child parts virt:kin:joint:prim:P representing its primitives, where  

 P is a placeholder for the type of primitive (name as specified in Table 1) 
In case the joint is not complex, only one primitive child is provided. 

Table 2. Joint properties 

Property key Property value (description) 

JOINT_TYPE String of characters defining the type of joint conform to Table 1  
JOINT_LINK_1 String of characters representing a reference to a frame within the product node that 

defines the base (recall directionality of a joint): I_F, where I represents the node’s ID 
chain and F the frame (CG or a number) 

JOINT_LINK_2 String of characters representing a reference to a frame within the product node that 
defines the follower (recall directionality of a joint): I_F, where I represents the node’s 

ID chain and F the frame (CG or a number) 
Table 2 mentions the storage of a node’s identifier (ID)-chain within the link definition. Further 
detailed in Definition 1, this specific form of notation represents a mechanism to uniquely reference 
nodes. I1 within an ID chain is most commonly the root node of the considered data set. The node 
reference via an ID chain also applies to links in a fix, as specified in Table 3. 
Definition 1: The ID chain of a node n within a product structure is a sequence of node identifiers 
“I1>I2>...>In”, for which the following conditions hold: 

 In is the identifier of the node n itself. 
 Ii is the identifier of the i-th node in that path of the product structure, which by traversal, 

beginning at the node with identifier I1, leads to n. 
The “META CARPLES” node in Figure 2 would hence be referred to using the substring of characters 
0>3>6. The reason for this form of notation is that a data format may provide means to store instances 
of parts and assemblies. While an instance node itself has an individual ID in the product structure, the 
sub-tree it references doesn’t. This leads to different parts or assemblies sharing the same ID, as 
exemplary illustrated in Figure 3. 

 
Figure 3. Instances leading to non-unique part identifiers 

Primitive nodes are again defined via a single key and value paired property as shown in Table 3.  

Table 3. Primitive properties (top) and Fix properties (bottom) 

Property key Property value (description) 

JOINT_AXIS  
 

String of characters “X1 X2 X3”, defining either the rotational or translational axis, 
depending on the type of primitive (as described above). Xi represent the coordinates. 

Property key Property value (description) 

FIX_LINK_1 String of characters representing a reference to a frame within the product node that 
defines the base: I_F, where I represents the node’ss ID chain and F the frame (CG or a 
number). This string can be empty, representing that the second link is fixed to the 
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“ground” (virtual body of infinite mass) of the kinematic system. 
FIX_LINK_2 String of characters representing a reference to a frame within the product node that 

defines the follower: I_F, where I represents the node’s ID chain and F the frame (CG 
or a number). 

Fixes are specified analog to joints, except that there is no need to hold child nodes that represent 
primitives. There must also be a common sense regarding body properties that are relevant for a 
kinematical model. This includes frames that are referenced by the joints, as well as the mass and 
inertia of a body. These properties are shown in Table 4. While “MASS”, 
“MOMENT_OF_INERTIA”, “FRAME_CG” and “FRAME_1” are considered obligatory, the other 
m-2 frames (“FRAME_2” to “FRAME_m”) represent optional properties.  

Table 4. Body properties 

Property key Property value (description) 

MASS A floating point value 
UNITS String of characters “SI[P]”, where [P] is optional, representing one of the following 

prefixes: “milli”, “centi” or “deci”. This property refers to the units that underly the 
subsequent properties. 

MOMENT_OF_ 
INERTIA 

String of characters “Ixx Ixy Ixz Iyx Iyy Iyz Izx Izy Izz”. Hereby, Ixy (= Iyx), Ixz (= Izy) and Iyz 
(= Izy) represent the centroidal products and Ixx, Iyy and Izz the centroidal moments. 

FRAME_CG 
(I1>I2>...In)[D] 

String of characters “X0 ... X15” holding the node’s row-major center of gravity 
coordinate system transformation, in relation to the world coordinate system. [D] is 

optional, D being a string of characters describing the frame. 
FRAME_1 

(I1>I2>...In)[D] 
String of characters “X0 ... X15” holding the node’s row-major origin coordinate system 

transformation, in relation to the world coordinate system. [D] is optional, D being a 
string of characters describing the frame. 

FRAME_2 
(I1>I2>...In)[D] 

String of characters “X0 ... X15” holding an arbitrary row-major coordinate system 
transformation, in relation to the world coordinate system. [D] is optional, D being a 

string of characters describing the frame. 
… … 

FRAME_m 
(I1>I2>...In)[D] 

String of characters “X0 ... X15” holding an arbitrary row-major coordinate system 
transformation, in relation to the world coordinate system. [D] is optional, D being a 

string of characters describing the frame. 
As can be seen, the notation for the frame keys again makes use of ID chains (compare fix and joint 
links). The path-based form of notation allows the definition and later retrieval of frames for selective 
instances of the node. A node can store an arbitrary number of all frames, given different ID chains. 
Summarizing, the approach relies on “abusing” the product structure by adding virtual nodes in 
combination with respective properties. We manage to integrate kinematics within data formats whose 
key competence lies in efficient visualization. Using the guideline proposed above, we have enhanced 
the application developed in [Gerhardt Eigner 2009] to prepare a JT file by adding kinematical 
content. A JT can then be exported into a PhysMod file to generate SimMechanicsTM building-blocks 
for simulation. Tasks associated with preparing the bridge from JT to CAE are elaborated in the 
following. 

4.2 Prototypical implementation 

For the prototypical definition of kinematical content within a JT-dataset, a minimal workflow-based 
technology relying on CAD-reference geometry was chosen. While some of the content required for 
kinematical models is not provided by default exports from CAD to JT, the implementation of new 
and specific CAD to JT interfaces was neglected. An alternative solution to supply the required 
information was provided, sufficing the prototype’s main purpose to serve as proof of concept. Based 
on the design decisions made, prototypical preparation and validation of kinematical contents in a JT 
file has involved four steps, as elaborated subsequently. 

4.2.1 Export from CAD to JT 
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As of today, there exists no solution to exporting kinematics from CAD to JT. Such data must be 
specified in our neutral application. In analogy to defining kinematics inside a CAD-system, we have 
chosen to use auxiliary geometry to do so (reference planes, axes and points). For the JT to carry 
reference geometry into our application, it is to be assured that the option to include such information 
is set in the JT translator export settings, or by manually manipulating the JT configuration file that 
most translators rely on. By the example of the Siemens PLM NX6 JT translator, the configuration file 
requires the entry activateCsysPMI = true.  

4.2.2 Enriching JT with further CAD-derived properties 

Bodies within the created JT need to be enriched with the properties required for the model to be used 
for simulation. In particular, this includes mass, inertia and center of gravity as described previously. 
While such properties can be calculated in all major CAD-systems on the market, there exists no 
option in the JT-configuration-file to include these. Until this is solved, means to load such data into 
the application retroactively as a temporary solution were provided. Most CAD-systems provide ways 
to store ASCII-based descriptions of the required properties calculated per part, amongst others using 
the material information included in the part’s definition. A class called CCADReader was developed 
and implemented. Given the path to an ASCII-file and a string of characters describing the CAD-
system it was created from, the reader parses the file and stores the relevant information for later 
retrieval. So once a part is selected and the user triggers an enrichment through navigation in the 
application’s main window, he is asked to specify file name and CAD-system via a respective dialog, 
which is then passed to the main controller of the prototype. The parsing procedure is started. Once 
finished, the controller dynamically updates the selected part’s properties. In addition to the center of 
gravity frame, the prototype creates the FRAME_1(...) property upon enriching a part. For this 
purpose, OpenSceneGraph provides internal functionality to extract the world matrix of a specific 
node. In future, the mentioned properties should be auto-generated by the export tool creating the JT 
(there should at least be an option to do so). Once parts are adequately prepared, further frames, joints 
and fixes can be defined. Adding frames is not further elaborated in this paper. 

4.2.3 Defining joints and fixes 

A minimal workflow technology to guide the user through the definition of frames as described in 
Table 4, kinematic joints and fixes was implemented. A workflow is triggered via push-buttons inside 
a “Multibody Modeller” dock widget. Each workflow consists of workflow items, allowing part 
geometry or a frame to be associated. The way kinematic data preparation is met is best explained by 
an example. Considering the user wants to add a primitive revolute joint, the underlying workflow’s 
items are traversed sequentially: the user first selects a body (geometry that belongs to a specific JT 
node). A pointer to the body is stored in the workflow item. The second workflow item launches a 
dialog, allowing the user to select and “store” a frame that is associated with the node selected in the 
previous workflow item, using a combo box. The same sequence is followed a second time, letting the 
user select body and frame to be linked in relation to one selected first. The last workflow item asks 
the user to select a reference axis, representing the axis of rotation.  

 
Figure 4. Control flow for adding a joint 
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Once the workflow-instance is successfully traversed, the controller first checks if the virtual node that 
was described in Subsection 4.1 is existent. If not, the structure is enhanced, adding that dummy and 
respective sub-assemblies for fixes and joints. For this purpose, JT Open Toolkit functionality is 
utilized. Finalizing the example, virt:kin:joint:revolute_... and a virt:kin:prim:revolute nodes are 
created. By extracting the selected frame names, the JOINT_LINK properties are created and added to 
the newly created joint node. The selected axis is used to create the JOINT_AXIS property which is 
added to the newly created primitive node. Generalizing independent of the joint’s type, Figure 4 
illustrates the control flow. Adding of a fixings is handled analogeously. 

4.2.4 Physical Modelling XML export 

Avoiding the development of a direct JT input interface for an MBS-tool, an objectoriented data model 
containing the key contents of Physical Modelling XML was created. Today, there exists no publicly 
available Physical Modelling XML data format reference, which is why XML-file instances in version 
1.0.4 have been used to derive the data model. Utilizing a kinematics-enriched JT-file, an instance of 
this data model can be created. The setting up of a Document Object Model (DOM)-tree allows a 
simple autogeneration of a physical XML file using the XERCES C++ libraries. The DOM is created 
piece by piece. The resulting files can be imported into the calculation environment provided by The 
Mathworks Inc., using the SimMechanicsTM toolbox. Upon triggering an import call, the toolbox 
automatically creates a block diagram, whose contents can be altered if desired and launched for 
simulation. So called scope blocks can be added to bodies or joints for analysis of attribute courses. 
SimMechanicsTM doesn’t directly support JT for visualization. For this reason, an STL-writer has been 
implemented, creating an ASCII ”.stl” file for each body included in the Physical Modelling XML. 

5. Conclusion and outlook 
Figure 5 shows a proof of concept based on our approach, illustrating a block-diagram generated from 
a JT-dataset, and the result of a simulation that was run for 8 seconds, without any added actuators. 
The displayed diagram shows the course of a forearm’s frame position in terms of x, y and z 
coordinate translation.  

 
Figure 5. Matlab simulation model created from a JT-dataset 

The concept and prototypical solution that has proven the possibility to integrate kinematical 
connections into JT (in a manner that is adaptive to other lightweight formats), has improvement-
potentials:  

 Even though the definition of forces and drivers that cause the motion in a kinematical system 
are considered part of actually defining simulation-instances, e.g. in an MBS-tool, such 
information is also conceivable in JT if previously defined. As a sibling to the constraints, the 
concept could be enhanced by a further virtual assembly called virt:kin:forces. Terminology 
would need to be restricted and specified in a manner similar to that already contained in the 
concept. 

 Some lighweight data formats, including JT, already suggest the storage and labelling of 
specific properties that relate to the creating CAD-model. In fact, The JT File Format 
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Reference proposes, amongst others, properties called CAD_CENTER_OF_GRAVITY, 
CAD_MASS_UNITS and CAD_MASS. These do not coincide with the properties described 
in this paper’s approach, for example suggesting the terminology MASS and FRAME_CG 
(I1>I2>...In)[D] for mass and center of gravity. This can lead to multiple occurrences of certain 
properties, which is unpretty but not critical. A common sense on such CAD-derived 
properties would be considered a major achievement, to be realized on the level of the CAD-
systems themselves though, in a vendor-comprehensive effort. In this case, it would be 
advisable to adopt the terminology in the here presented approach. 

 At this point, only SI-units are supported for the property called UNITS. Integration of further 
systems may be an option, e.g. the imperial system including amongst others inches for 
length-units. 

 Less a potential, but much rather a point worthy of mention, is the fact that kinematical sub-
systems are simply realized by adding a kinematical definitions on the level of the respective 
sub-assembly. Accordingly, a dataset that consists of multiple assemblies and sub-assemblies 
might include multiple kinematical nodes (Figure 6-2). Inversely, should two assemblies with 
existing kinematical definitions be summarized into a super-assembly (Figure 6-1), it is to be 
made sure that identifiers and links within the existing joint definitions are updated. 

 
Figure 6. Kinematical sub-systems 

The presentation of the guideline-proposal in more detail would have gone beyond the scope of this 
scientific paper. However, we believe to have illustrated the core of our work. We consider our 
approach to be very flexible, because it does not rely on mechanisms and containers that are specific 
for a data format. From our point of view, it would be most interesting to see a CAD to JT translator 
adapt the guideline in order to provide a more significant proof of concept. This is something we will 
try to go after. From a process-oriented perspective, we continue along our road to establish 
lightweight, neutral data formats within the product development process chain. 
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