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1. Introduction 
Computational tools have become routine means of support in the development of new, innovative and 
complex products in the last decades. The aim of approaches and tools in the area of computational 
design synthesis are to generate alternative solutions tailored to particular problems and to 
computationally describe solution spaces. As not only products are getting more and more complex, 
but also the environments in which they are developed and used, research in the field has proven it’s 
capability to support engineers when dealing with these challenges. However, design synthesis tools 
need to extend their scope of applications and become more efficient, more intelligent and more 
flexible in order to encourage industry up-take. 
A similar situation led in the sixties – after procedural programming has proven its great potential – to 
the development of the concepts of object-orientation and their implementation in the programming 
language Simula-67 [Meyer 1997]. This paper presents goals and concepts from object-oriented 
programming, points out their benefits and draws analogies to computational design synthesis in order 
to seize the same or similar benefits. More specifically, the realization of object-oriented techniques in 
design synthesis is presented in the context of graph-grammars. The aim of this paper is to present 
how the fundamentals of object-orientation are applicable in the computational design synthesis 
methodology and open the field for new promising applications. Hence, this paper concentrates on 
representation methods for synthesis. A major challenge is always efficient ways to encode and 
modify knowledge within computational design synthesis tools, e.g. through modifying grammar rule 
sets. This paper does not consider search or optimization. 
First, the paper reviews related work and background on computational design synthesis, especially 
approaches based on graph-grammars. Next, the goals of object-oriented programming and their 
significance in the field of computational design synthesis are presented. After a short presentation of 
the process through a computational design synthesis study, the realization of object-oriented 
principles in computational design synthesis is illustrated. Afterwards, the definition part of the 
approach is presented in which the formal grammar is defined followed by the execution of the 
grammar in the application part. In the discussion the benefits of this approach and future work are 
presented. 

2. Background 
Formal methods for computational design synthesis are aimed at aiding designers in developing better 
products faster through rapid generation of spaces of feasible, optimized, and when appropriate 
simulation-driven designs. Grammar-based methods capture the engineer’s knowledge or knowledge 
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stemming, e.g., from design catalogues in a formalized representation, an engineering design 
grammar, so that the knowledge can be used to generate solutions. 
Conceptually, graph-grammars are a generative method that consists of the vocabulary and a set of 
rules. Whereas the vocabulary contains all valid elements represented by nodes and edges, the set of 
rules defines transformations that model how these elements can be created, deleted or modified. In 
the same way as a natural language is based on words and grammatical rules, it is also possible to 
develop a language of designs via design (or more specifically graph-) grammars. Starting with a legal 
construct, repeated application of different grammar rules generates new designs. The combinatorial 
expansion of all valid rule sequences is termed the design language. The advantage in using graphs is 
the fact that they can be used as foundation for almost any kind of formal modeling language in 
conceptual design (e.g. SysML diagrams, function models, geometric models etc.). Further, they 
provide a strong basis for computational representation and transformation. 
Based on the implementation of graph grammars in mechanical engineering, Kurtoglu and Campbell 
[Kurtoglu 2006] transform a function structure into a configuration flow graph, Schmidt et al. 
[Schmidt 2000] synthesize mechanisms and epicyclic gear trains. Based on the combination of shape 
and graph grammars, automated simulation and multi-criteria search, Starling and Shea [Starling 
2005] automate the design of gear systems. 
Although these approaches are suitable means for exploring design spaces efficiently, their 
representations are not based on object-oriented techniques. For example, they do not have an 
explicitly upfront defined modeling space that classifies the design elements in an object-oriented way 
(the so-called meta-model) and serves as a foundation for the definition of a set of rules. However, this 
is often not necessary because of the fact that the modeling space is implicitly defined through the 
scope of application. For example, all nodes in the approach for the synthesis of gear systems by 
Starling and Shea [Starling 2005] define shafts and all of the edges correspond to gear pairs. Hence, no 
a priori and explicit definition of semantics through typing the elements is required. However, labels 
and attributes are applied to specify and detail the significance of the elements. When using purely 
labels and attributes, an implicit definition of the modeling space is achieved (probably in the head or 
on paper) but that approach does not take advantage of a strict separation between the definition of a 
modeling space and its execution the way it is realized in object-oriented programming. 
However, the synthesis approach by Kerzhner and Paredis [Kerzhner 2009] that has strong influences 
from the field of computer-aided software engineering and is based on the formal modeling languages 
SysML and MOF, adopts certain principles from object-oriented programming. For example, the 
design elements are defined in advance in a meta-model on which the definition of rules is based. 
Concerning rule application, this approach is based on probabilistic selection of rules. 
In prior work by one of the authors [Bolognini 2007] some object-oriented concepts, such as 
interpreting nodes in a graph as objects that define their own behavior, were realized in order to 
synthesize MEMS structures based on simulation and optimization. That approach allowed for a high 
degree of usability and modularity. However, a clear separation into a meta-model and its application -
was not realized. 
The authors previous work focused on synthesis methods for product development that are based on 
classic paper-based methodological foundations [Helms 2009]. As these approaches often involve 
several levels of abstractions or modularity and the re-use of knowledge from catalogues [Wölkl 
2009], a powerful structuring scheme on class-level is crucial. Not only the definition of the modeling 
space, but also on an object level, the instantiation of element classes and the application of rules and 
their combination to rule sequences is facilitated and provides space for sophisticated features when 
utilizing the object-oriented programming paradigm. 

3. Goals of object-oriented programming 
As object-oriented programming became the standard paradigm in software development, Meyer 
[Meyer 1997] identified the following quality factors to which the object-oriented method has made 
significant contributions: 

 Extendibility is the ease of adapting software products to changes of specification. 
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 Reusability is the ability of software elements to serve for the construction of many different 
applications. 

 Compatibility is the ease of combining software elements with others. 
 Efficiency is the ability of a software system to place as few demands as possible on hardware 

resources, such as processor time, space occupied in internal and external memories, 
bandwidth used in communication devices. 

 Portability is the ease of transferring software products to various hardware and software 
environments. 

 Ease of use is the ease with which people of various backgrounds and qualifications can learn 
to use software products and apply them to solve problems. It also covers the ease of 
installation, operation and monitoring. 

Any implementation of computational design synthesis methods is a piece of software, hence, these 
qualities are also desirable. In order to broaden the scope of application in computational design 
synthesis, these quality factors can be interpreted as: 

 Extendibility is the ease of adapting the method and the implementation to a wider range of 
applications or completely new applications that includes an extension of both vocabulary and 
rules. Since knowledge is always evolving, this point is of particular interest. 

 Re-usability is the ability to define a grammar for multiple applications and re-use the 
vocabulary and rules. 

 Compatibility is the ability to define different sets of vocabulary and rules, e.g. in different 
domains (design, manufacture), that can be interchanged for different applications or product 
generations. 

 Efficiency means that the formalization and the encapsulation of knowledge are supported in a 
way that the demand of resources is as low as possible. This involves computational resources, 
but more importantly is to efficiently support the time consuming human task of encoding 
knowledge. 

 As Portability relates solely to the implementation, it is not considered here. 
 Ease of use means that the structure of the grammar can be understood as intuitively as 

possible and provides the foundation for the factor of extendibility. 
Extending methods for design synthesis such that they include concepts from object-oriented 
programming provides a wide range of benefits. This is a promising approach to realize more efficient, 
flexible and extendable systems. 

4. Application of object-oriented concepts in computational design synthesis 

 
Figure 1. Definition of an object-oriented computational design synthesis study 

Following an object-oriented approach, the procedure of defining a computational design synthesis 
study is subdivided into a definition and an application part, fig. 1,: 

 In the first part, the definition of the grammar, consisting of vocabulary and rules, results – 
after compilation – in an executable grammar. In programming, this part is analogous to the 
implementation of classes (cf. vocabulary) and their functions (cf. rules) and remains static 
throughout the study. 

 The second part describes the application of the compiled grammar in order to perform 
problem-solving tasks. Through the definition of a rule sequence, the logic, or strategy, behind 
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the application of rules can be encoded. Based on an initial graph, the transformation is carried 
out by applying the defined rule sequence and returning the resulting graph. Afterwards, this 
graph can be evaluated, e.g. through simulation, be used as an initial graph for a subsequent 
transformation or be stored in a design archive. 

4.1 Definition 

In programming, the definition, or static part, captures the assumptions the software developer has 
taken in order solve a given task and results in the implementation of classes and functions. The 
counterpart in this synthesis approach is the definition of a vocabulary (in a meta-model) and rules (in 
a rule set), i.e. the definition of a formal grammar, that contains the formalized engineering 
knowledge. Both, the vocabulary and the rules remain static throughout the application and define the 
scope of a generative design study. 

4.1.1 Definition of a vocabulary 

Classes are used in programming as a static description of elements that can be instantiated at run-
time, i.e. when the program is executed. In formal modeling approaches, the definition of the modeling 
space is realized with a meta-model. The common understanding is that a meta-model is a model that 
defines a model, i.e. the modeling elements, valid combinations of them, etc. Hence, in order to avoid 
confusion, the terms class-model and meta-model are equivalent and should be used synonymously 
when adopting object-oriented techniques in computational design synthesis.  
The example in Figure 2 depicts a meta-model that evolved throughout three studies. In this example, 
only the definition of node types is represented, edge types are disregarded but follow the same 
principle. A meta-model does not contain the objects (represented as ellipses and named with lower 
case letters) that can be used in the graph. It rather defines types (represented as rectangles and named 
with a first upper case letter) from which objects can be instantiated and used for modeling. To 
summarize, the meta-model defines a schema of model elements that provides, on the one hand, the 
basis for formulating rules and, on the other hand, serves as a basis for instantiating objects. 

 
Figure 2. Example of an object-oriented meta-model for graph-grammars that evolves during 

three generative design studies 

The definition of a meta-model follows a hierarchical approach whereas the upmost class Component 
is an abstract class (represented through italic letters) which cannot be instantiated. This means that no 
objects of the type Component can appear in the model. The concept of inheritance provides that all 
attributes of an element are inherited by its descendants. That means, for example, that the node types 
Gear system and Belt system automatically possess the attribute i (containing the transmission ratio as 
a float) although it is defined by their parental node type Transmission system. The fact that only 
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additional features, e.g. the number of gears, had to be added and that subsequent changes are 
forwarded – via inheritance – to one’s class descendants, contributes strongly to the goal of efficiency 
and also in terms of ease of use: A logical, hierarchical structure is more intuitive and understandable 
than unstructured vocabulary 
Also in terms of extendibility, a hierarchy of inheritance provides huge advantages. For example, as 
the consideration of the design’s mass became necessary, the attribute mass has been added in the 
second study (Figure 2). As all descendants of the node type Component are considered as mass-
carrying elements, it is sufficient to only add the attribute once to this node type. All child elements 
are automatically equipped with the new property via inheritance. Further, inheritance supports 
extendibility by enabling the extension of the inheritance hierarchy without creating incompatibilities. 
For example, the two elements Big gearbox and Small gearbox are added in the third study as a further 
differentiation of gear systems became necessary. Those two elements became descendants of the 
class Gear system, which means that all attributes of the super ordinate elements (transmission ratio i, 
number of gears nb_gears) are inherited; only the further detailing by assigning concrete values to the 
new node type attributes was necessary. The application of object-oriented concepts provides a rich 
foundation for the formalization of engineering knowledge. In [Helms 2009] the realization of ports 
has been presented that capture the compatibility of design elements based on a taxonomy of flows 
(energy, material, signal). 

4.1.2 Definition of rules 

The definition of grammar rules has its counterpart in programming as the definition of functions. 
Both, functions and rules are means for encoding the manipulation of. Although rules codify 
operations that involve objects, their definition is based on the prior definition of a meta-model and 
remains unchanged during the program execution. For this reason, the definition of rules is 
independent from their application on specific graphs. Due to this separation of knowledge and 
application, the approach presented in this paper is in accordance with the same concept known from 
KBE systems. 
Rules in graph-grammars always follow the same principle: A left-hand side pattern is searched for 
and replaced with a right-hand side pattern. The mode of operation and the formalization of 
knowledge shall be illustrated by the problem-specific rule Insert clutch: In case a clutch has to be 
added in a powertrain configuration, usually, several positions are conceivable, e.g. before or after the 
transmission system. But, in order to minimize size and cost of the clutch, the position should be 
where the torque is minimal and this can be figured out through the transmission ratio i: If i is lower 
than one, the torque is lower before the Transmission system and vice versa. Thus, on the left-hand 
side a subgraph is searched for that contains the node a of type Motor and the node b of type 
Transmission system with a transmission ratio lower than 1. The nodes a and b are local variables that 
are only valid within the scope of the rule and can be any nodes of the corresponding types. These 
local variables are required in order to model the correspondence between elements on the left-hand 
side and their occurrence on the right-hand side to identify the position of insertion of the clutch with a 
mass of 21.4 (SI units are assumed). Another advantage of the object-oriented meta-model becomes 
apparent here: As the definition of this rule is based on the node types Motor and Transmission system, 
any of their descendants will also be found on the left-hand side. Hence, this rule remains valid and 
applicable even when new node types, e.g. in study 3, Figure 2, are added. 
Beyond the allocation of elements between the left-hand side and the right-hand side, local variables – 
same as in functions in programming – can be used to capture the logic and the processing of data 
within rules. In the case that a components’ mass needs to be adapted, e.g. more robust components 
are required due to an increase of power, a very flexible rule (Change mass, Figure 3) is required that 
applies either to one specific element or to a whole class of elements and should be able to handle 
different factors of mass change. The way to realize this flexibility is to equip the rule with the 
parameters e (defined as the node type Components or one of its descendants) and factor (defined as 
floating number). When the rule is called within a rule sequence at run-time these parameters have to 
be defined: The parameter e defines the left-hand side and may contain either a node type, so any 
element of that type, or one of its descendants, would be found, or one very specific instance of a node 
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to which the change of mass would be applied. The amount of mass change is captured by the 
parameter factor that is used on the right-hand side to recalculate the mass of the object e. Finally, the 
new mass value becomes an output of this rule and might be subject to further operations. The 
combination of operations within rules, based on local variables, and these kind of parametric rules 
allow a very generic rule definition that provides a huge potential for realizing logical rule 
concatenations for capturing complex knowledge. The application of parametric rules in rule 
sequences will be further detailed in section 4.2.1. 

 
Figure 3. Problem-specific rules 

Due to the meta-model, all modeling elements are known when the rules are formulated and the 
knowledge about these components can be used to create generic rules, Figure 4. Hence, all rules for 
simply adding nodes to the graph can be entirely derived out of the meta-model. For instance, the rule 
Add clutch has on its left-hand side the symbol of an empty set (∅) which signifies that nothing has to 
be matched. Consequently, an object of the type Clutch is directly inserted into the graph without 
edges to any other elements. In the other examples, Add motor and Add transmission system, the 
information from the meta-model about the node type’s attributes (mass, max_torque, i) is used in 
order to define the corresponding rule parameters. Same as in the rule Change mass, local variables 
(here: x, y) are used to transfer the information from the rule parameters to the assignment of the 
node’s attribute. Because of the return(a) statement, the created node becomes an output of the rule 
and can be used for further processing in the definition of the rule sequence (cf. section 4.2.1.). In the 
same manner, rules for adding a node and relating it directly to another node (e.g. Add transmission 
system and relate) or for converting between node types (Convert to motor (electric)) can be created 
automatically. 

 
Figure 4. Generic rules 

Based on a definition of compatibility, e.g. through ports in the meta-model, the automated generation 
can be even extended to rules that accomplish design-specific tasks, as for example a functional 
decomposition or the assignment of behaviors to functions [Helms 2009]. As graph transformation 
rules are able to model a plethora of possible operations on nodes and edges, they are used in the 
conceptual phase of Software Engineering [Göttler 1988] in order to model the functionality of a 
program and to eventually generate code automatically. 

4.2 Application 

While the definition contains the meta-model and the set of rules, those two components of a formal 
grammar come to life in the application, or dynamic part. The process of making the meta-model and 
the rule set executable is called compilation, Figure 1. At this point, the grammar operates with real 
data objects. 
The easiest way to imagine what the object level signifies in programming is to imagine a human user 
working with standard office software (Figure 5): Usually, such applications are subdivided in 
different windows that display information of specific objects. The instantiation and modification of 
these objects is achieved by calling functions, e.g. by clicking on the icons on the menu bar. If, for 
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example, the icon “Save as…” is clicked, a new window object is instantiated and pops up in which 
the user can specify the path and the file name. Many programs allow the user to automate tasks by 
programming macros that control the handling of the object flow. The definition of rule sequences can 
be seen in exactly the same fashion, as they allow automating the instantiation of nodes and edges and, 
moreover, to apply graph transformation rules on them. 

 
Figure 5. Interrelation between the definition and the application 

in object-oriented programming and grammars 

4.2.1 Definition of rule sequences 
1 xgrs motor_1 = add_motor(83.8, 48.2) 
2 xgrs add_trans-syst_relate(motor_1, 29.4, 0.9) && insert_clutch(21.4) 
3 xgrs change_mass(1.5) 
4 new battery_1:EnergyStorage 
 battery_1.mass = 12.9 
5 xgrs convert_motor_el(motor_1) | relate(battery_1, motor_1) 

Listing 1. Example rule sequence 

The capability of formulating rule sequences goes far beyond the simple sequencing of rules and 
rather compares to the programming of macros. For this purpose, an already existing rule sequence 
language has been used [Geiß 2006], which is illustrated by the example in Listing 1 based on the 
previous examples of a meta-model and a rule set: 

1. Firing rules is always initiated by the command xgrs (extended graph rewrite sequences). The 
rule add_motor is fired in order to create a new node of the type Motor. With the two rule 
parameters (that were defined as local variables x an y in the rule definition, fig. 2) the mass of 
the motor of 83.9 and its maximum torque of 48.2 (SI units are assumed) are defined. The 
return value of the rule, containing the new node, is stored in the variable motor_1. 

2. The operator && allows to execute several rules consecutively whereas the execution of the 
latter depends on the successful execution of the former. That means in this case that the 
clutch is only inserted (rule: Insert clutch) in case the rule for adding a transmission system 
and relating it was successfully executed. The rule Add transmission system and relate accepts 
the previously created node motor_1, the mass (29.5) and the transmission ratio (0.9) as 
parameters. 

3. Increasing the mass of all existing elements in the graph by a factor of 1.5 is achieved with the 
rule Change mass. Due to the * operator, this applies to all possible elements. 

4. This rule sequence language also allows executing simple tasks, like adding or setting 
attributes manually without having to formulate rules. In this example the node battery_1 is 
created and a mass of 12.9 is assigned. 

5. The simplest way of applying several rules consecutively is through the | operator that 
concatenates the rule application without considering whether the application was successful 
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or not. In this example, the node motor_1 is converted into the type Motor (electric) while 
preserving its attributes and afterwards related to the previously created node battery_1. 

Due to the expressiveness of the rule sequence language, the execution of rules becomes quite similar 
to procedural programming. As simple values, graph elements and even (sub-)graphs, can be stored in 
variables and be further processed either by rules or directly within the rule sequence, complex, 
knowledge-intensive processes can be realized. For example, the dimensioning of machine parts could 
be subdivided in several rules that carry out distinct modifications, whereas the interplay of all those 
rules is realized one rule sequence level. 
Because rule sequences are defined after the compilation, they contain the control directives for the 
graph transformation as plaintext. For this reason, they provide an ideal interface to automate the 
synthesis process as they could also be parsed by software. This provides a huge potential for realizing 
a global search process based on the application of a graph grammar. Current research by the authors 
focuses on how rule sequences can be created automatically and be embedded in a more global search 
process. 

 
Figure 6. Resulting graph after each step of the rule sequence shown in Listing 1 

4.2.2 Definition of an initial graph 

From a formal point of view, a grammar transforms an initial graph (or initial symbol) into a resulting 
graph. Concerning the graph transformation, it makes no difference 

1. if the initial graph is defined upfront in a different tool and imported before a transformation is 
applied 

2. if an initial graph is defined in the rule sequence itself 
3. if no initial graph is defined at all and the first rule has an empty left-hand side and starts 

creating a graph, like the rule Add motor. 
However, the possibility to define a graph upfront and to apply different rule sequences on it or, vice-
versa, to apply different rule sequences on one initial graph provides a strong foundation for carrying 
out what-if-studies or to synthesize design alternatives. 

4.2.3 Graph transformation 

This final step is carried out by an interpreter that interprets the directives in the rule sequence 
definition and executes – based on the meta-model and the rule set – the transformation. The graph 
transformation library that is used by the authors [Geiß 2006] provides additional features, such as a 
debug mode that highlights during the rule execution the sub-pattern in the actual graph that matches 
the left-hand side. 
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Figure 6 depicts the five states of the graph after each transformation. The nodes :Transmission system 
and :Clutch have been created by rules and not, like the other two elements, through the rule sequence. 
As the rules did not assign variable names to them the space before the colon is empty. 
In a synthesis process, the resulting graph provides the basis for evaluating the quality of the design. In 
the authors work, the evaluation is divided in two categories. While quantitative methods estimate 
whether functional requirements are met, quantitative methods evaluate how well they are met. 

5. Discussion 
Approaches for computational design synthesis that aim to supporting the product development 
process in a general and efficient way often involve multiple levels of abstraction (e.g. function, 
behavior and structure) or different levels of granularity (e.g. components and modules). Knowledge 
representations based on graph-grammars are, because of their universality, very well suited to serve 
as a base representation. The pure use of labels and attributes, as in previous approaches, is too 
restricted for graph-grammar based implementations of sophisticated product development methods. 
This paper contributes to the further development of methods for computational design synthesis by 
drawing an analogy to object-oriented programming and depicting means of integrating these concepts 
in graph-grammars. Quality factors for programming and their correspondence in design synthesis 
methods were introduced; references to these points were made throughout the paper. 
The implementation of the twofold rationale in object-oriented programming of separating 
representation and execution into a static definition and a dynamic application part has been presented. 
Whereas the former defines the graph-grammar, thus vocabulary and rules, the latter contains the rule 
sequence definition in which real data objects are instantiated and manipulated by the execution of 
graph transformation rules. 
The upfront definition of the modelling space by means of a hierarchical meta-model, contributes to 
the goal of extendibility by enabling the subsequent addition and detailing of elements in a structured 
way. Moreover, this kind of type hierarchy is intuitively understandable and increases the ease of use. 
Due to the concept of inheritance, the definition of overlapping or redundant attributes or elements is 
abolished. Furthermore, the class taxonomy of the meta-model supports the automated creation of 
generic rules but also the definition of knowledge intensive rules that apply not only to one type of 
element but also to all of it subtypes. These features facilitate the encapsulation of engineering 
knowledge and support hence the goal of efficiency. 
The separation of representation and program execution enhances the reusability of meta-models for 
multiple applications and domains. Furthermore, parts of the meta-model can be detached, further 
detailed and re-integrated. 
The compatibility of different meta-models and rule sets can be assured as long as naming 
conventions, e.g. for functional modeling, are maintained. This comprises in particular rules that 
reason on different levels of granularity. 
The rule sequence language provides the basis for controlling and manipulating the objects resulting in 
the synthesis of graph-based product models. Because of its expressiveness, the definition of rule 
sequences is very flexible and comparable to the automated control of software using macro 
programming. Due to the power of this language, an intuitive use is not possible because the user has 
to acquire a profound knowledge on the language constructs. For that reason, future work comprises 
the investigation of means to enable the user to interact with the graph transformation system in an 
intuitive manner based on a graphical user interface, i.e. an interpreter for engineering applications. 
Furthermore, no global search process is implemented that controls the synthesis process. In the 
authors’ opinion, the automated selection and execution of rule sequences, e.g. based on genetic 
algorithms, is a promising approach for future work that also requires coupling with quantitative 
evaluation methods. Therefore, the integration with simulation tools is in the scope of actual work. 
The implementation of this research will be made available to the public in an open-source software 
framework called booggie (brings object-oriented graph-grammars into engineering) at 
http://www.booggie.org. 
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6. Conclusion 
In this paper, an extension of methods for computational design synthesis is presented that is based on 
the application of graph grammars and the implementation of concepts from object-oriented 
programming. The benefits in the field of programming and their correspondence in design synthesis 
are presented and exemplified. The approach subdivides the computational design synthesis process in 
two parts: A static part that contains the definition of a grammar and a dynamic part that provides for 
the grammar application in order to solve design tasks. The main contributions of this separation are a 
higher flexibility in the definition of rules, an increased extendibility and comprehensibility of the set 
of building blocks and the ability to generate expressive rule sequences through scripting. Thereby, 
this research responds to the need for extension of the scope of application, increasing the efficiency 
and intelligence and providing more flexibility. Future work includes integrating intuitive user 
interfaces and extending the approach to incorporate qualitative and quantitative evaluation methods. 

Acknowledgement 
We thank the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) for funding this project 
as part of the collaborative research center ‘Sonderforschungsbereich 768 – Managing cycles in innovation 
processes – Integrated development of product-service-systems based on technical products’. 

Literature 
Bolognini, F., Seshia, A.A., Shea, K., "Exploring the Application of Multidomain Simulation-based 
Computational Synthesis Methods in MEMS Design", Proceedings of the International Conference on 
Engineering Design, ICED '07, Paris, 2007. 
Geiß, R., Batz, G., Grund, D., Hack, S., Szalkowski, A., " GrGen: A Fast SPO-Based Graph Rewriting Tool”, 
Graph Transformations, Springer, Berlin, 2006. 
Göttler, H., „Graphgrammatiken in der Softwaretechnik“, Springer, Berlin, 1988. 
Helms, B., Shea, K., Hoisl F., "A Framework for Computational Design Synthesis Based on Graph-Grammars 
and Function-Behavior-Structure", Proceedings of the ASME 2009 International Design Engineering Technical 
Conferences & Computers and Information in Engineering Conference, San Diego, 2009. 
Kerzhner, A.A., Paredis, C.J., “Using Domain Specific Languages to Capture Design Synthesis Knowledge for 
Model-Based Systems Engineering", Proceedings of the ASME 2009 International Design Engineering 
Technical Conferences & Computers and Information in Engineering Conference, San Diego, 2009. 
Kurtoglu, T., Campbell, M.I., "A Graph Grammar Based Framework for Automated Concept Generation", 
Proceedings of the International Design Conference – DESIGN 2006, Cavtat, Croatia, 2006. 
Meyer, B., “Object-oriented software construction”, Prentice Hall International, Englewood Cliffs, NJ, USA, 
1997. 
Schmidt, L.C., Shetty, H., Chase, S.C., "A Graph Grammar Approach for Structure Synthesis of Mechanisms," 
Journal of Mechanical Design, Vol. 122, 2000, pp. 371-376. 
Starling, A.C., Shea, K., "A parallel grammar for simulation-driven mechanical design synthesis", Proceedings 
of the ASME 2005 International Design Engineering Technical Conferences & Computers and Information in 
Engineering Conference, Long Beach, USA, 2005. 
Wölkl, S., Shea, K., "A Computational Product Model for Conceptual Design Using SysML", Proceedings of the 
ASME 2009 International Design Engineering Technical Conferences & Computers and Information in 
Engineering Conference, San Diego, 2009. 
 
Bergen Helms 
PhD student 
Institute of Product Development 
Technische Universität München 
Boltzmannstr. 15, 85748 Garching, Germany 
Telephone: +49-89-259 15136 
Telefax: +49-89-259 15144 
Email: helms@pe.mw.tum.de 
URL: http://www.pe.mw.tum.de 


