
6-427ICED'09
ICED’09/588

While Computer Aided Design (CAD) has made significant progress since its inception, CAD tools
are still used primarily for design documentation rather than as active partners in the design process.
Shape and spatial grammars provide methods for interactive, generative shape design but have yet to
find general application within CAD systems. This paper investigates the potential for integrating
spatial grammars and an opensource 3D modeling kernel and CAD system. The definition of a
vocabulary of shapes based on a library of solid primitives and use of standard functions like
geometric transformations and Boolean operations in rule applications are explored. Two examples
illustrate the approach: the Kindergarten grammar and vehicle wheel rim designs. Advantages include
(1) from an implementation viewpoint of spatial grammars, the coding effort decreases by making use
of standard 3D modeling functionality, (2) from a usability viewpoint of spatial grammars, the
combination improves the potential practical use of spatial grammars in CAD processes and (3) from a
CAD viewpoint, spatial grammars provide an integrated means for automated, flexible generation of
design alternatives.

ewors ompteraie esign, generatie esign, spatial grammar, shape grammar, software
implementation

Today, standard software systems used by mechanical engineers in design are 3D Computer Aided
Design (CAD) applications. The input and decisions needed to create a design are provided by the
human designer who often uses the tool mainly to document a single predefined solution or its
modifications. Traditional CAD systems on the market, therefore, can be considered passive [1].
Spatial and shape grammars are generative systems that generate shapes by starting from an initial
shape, which exists within a defined vocabulary of shapes, and applying defined shape rules iteratively
to an evolving shape. The language of shapes is defined by the set of rules and vocabulary. It can be
calculated by applying all possible sequences of shape rules to all possible initial shapes. The shape
rules, thus, provide a concise description of a design language of shape. The design language is often
constrained to model a particular design style. This language is finite, although can be vast, and can
represent a certain geometric style or a set of feasible shapes from an engineering viewpoint.
To extend on current CAD tools, shape grammars have potential to act as active partners in the design
process. They can provide support for routine design tasks and, even more interesting, for the creation
of spatially novel solutions beyond what a designer might think of. They can begin the generative
process from an initial shape of a known design or from scratch. However, their application and
mainstream uptake has been hindered because “grammar systems that are really useful are difficult to
implement” [2].
Deak et al. [3] state: “Traditional shape grammar systems are not able to deal with CAD primitives
directly. Using a design from a CAD application in a shape grammar system would require conversion
of the design’s representation to be compatible with the components of the specific system. It would
be desirable if the representation does not have to be altered from the one used in CAD software.”
Therefore, the useful and practical application of shape grammars in the mechanical engineering
design domain is tightly connected to making them available within CAD systems. These are the
computer systems mechanical engineering designers work with daily. Implantation of spatial
grammars in CAD systems has the potential to make the grammar approach to generative shape design

6-427

6-428 ICED'09
ICED’09/588

available more generally as well as providing improved CAD support for spatial design creation and
exploration.
The aim of this paper is to investigate two research questions: (1) can we use 3D modeling and CAD
kernels to ease the implementation of shape grammars while at the same time providing a generalized
implementation with wider applicability? and (2) how can we better integrate shape grammars with
CAD systems and achieve greater user interaction within the generative design process? To address
these questions, this paper starts with a brief background on shape and spatial grammars and the
implementation of spatial grammars to date. Next, it investigates the requirements for spatial
grammars with regard to their application in mechanical engineering design and discusses the potential
for implementation using an open source 3D modeling kernel and an opensource CAD system to
fulfill those requirements. To demonstrate the practical use of the approach, two examples are shown:
the Kindergarten grammar [4] and vehicle wheel rim designs. The paper concludes with a discussion
of the benefits and limitations of the approach.

Spatial synthesis is a fundamental task within mechanical design and can be thought of as creating
form, or product structure, to fulfill desired behavior and function [5]. The approach for computational
design synthesis used in this paper is based on shape grammars, which are a form of production
systems. A uniform characterization of production systems can be found in [6]. Using shape grammars
as a generative approach to shape design was first introduced by Stiny and Gips [7] and further
detailed in Stiny [8]. To date there has been significant research on shape grammars and they have
been successfully used in the domains of paintings, industrial design, decorative arts and, above all,
architecture [9]. However, the exploration into the application of shape grammars in engineering
design has been more limited [10]. Only during the last fifteen years an increasing interest in the
development of engineering shape grammars can be seen [9]. Formulation of shape grammars for
generation of diverse products from MEMS devices to household products to styling of cars has been
carried out [10]. The foundation of the Genesis system at Boeing is based on a grammar for 3D solids
originally developed to generate alternative Queen Anne style houses in architecture [11]. To capture
and understand brand image, McCormack et al. [12] have developed a shape grammar that captures
the style of the front view of Buick cars to both generate known and new designs that reflect the brand
image. Shape grammars can also be developed that describe both form and implicit function, for
example to describe a language of microresonators where formfunction coupling is inherently strong
[13]. Except for the case of the Genesis system that has been used in both aerospace and architecture,
most implementations in engineering tend to be specific to a certain class of products and cannot be
easily transferred between domains or used more generally for mechanical design, as for example, a
CAD system can.

A shape grammar is defined formally as G = (S, L, R, I) where:

S is a finite set of shapes
L is a finite set of labels
R is a finite set of rules, and
I is the initial shape where 0),(LSI ⊂ .

The set of labeled shapes including the empty labeled shape is (S,L)0 and is also called the vocabulary.
Shape rules are defined in the form A → B, where A and B are both shapes in the vocabulary. To apply
a shape rule to a given working shape C, first, the shape A in the lefthand side (LHS) of a rule has to
be detected in C. This shape matching process can make use of valid Euclidean transformations, t, e.g.
translation and rotation, that are applied to the shape A, to find more possible matches of A in the
working shape C. The transformed shape A then gets subtracted from C and the transformed shape B
of the righthand side (HS) of the rule is added, thus resulting in the new working shape C’ where
C’ = C – t(A) + t(B).
Parametric shape grammars extend on shape grammars by including parameters in the rules to create
shape rule schemas. Without the use of transformations, they can be matched to a wider range of
shapes when a valid parameterization can be found [8].
Strictly speaking a shape grammar involves the use of a maximal shape representation. In contrast to
CAD representations that represent shapes as a set of distinct elements, e.g., line, circle, block, a

6-428

6-429ICED'09
ICED’09/588

maximal shape representation can be broken down and rerepresented in a large number of ways. For
example, a line can be broken up into smaller line segments. This ability for rerepresentating shapes
in a number of ways enables for wider matching of the shape A in the LHS of a rule to embedded
subshapes in the working shape C. Spatial grammars, on the other hand, is the more general term and
includes all kinds of grammars that define languages of shape, e.g. string grammars, set grammars,
graph grammars and shape grammars [2].

In the research area of spatial grammars, of the many that exist on paper only a minority have been
computationally implemented. Both 2D and 3D software implementations exist. An overview of
software implementations until 2002 can be found in [9]. However, mostly the focus is on spatial
design generation only, e.g. for applications in art, industrial design and architecture, rather than for
mechanical engineering design purposes. Interesting previous work related to this paper includes the
following systems:
• “CAD grammars” by Deak et al. [3], who discuss the automation of spatial design in combination

with standard CAD systems, however, the implementation is restricted to 2D.
• A 3D shape grammar implementation by Chau et al. [9] that has a strong focus on style and

therefore deals with curvilinear wireframes and their related surfaces.
• The “3DShaper” by Wang and Duarte [14] that allows for the upfront definition of parameters to

define the dimensions of two blocks as well as their spatial relation parameters (translation,
rotation) for a maximum of two rules. According to the number of iterations, which also is
defined manually, the generation of the design is executed internally and the resulting 3D model
file can be opened in an external viewer.

• The “shape grammar interpreter” by Piazzalunga and Fitzhorn [15] that is built on the
commercial ACIS kernel1 and makes use of much of the kernel’s functionality. The examples
shown, however, focus on the usage of blocks as primitives and translational transformations
only.

Limited implementations in or related to 3D CAD systems can also be found including one based on
AutoCAD/AutoLisp by Celani for educational purposes [16]2. Interesting work concerning parametric
shape grammars was done by McCormack and Cagan [17]. In general, there has been limited success
in the development of useful and generic computerized grammarbased designtools [1].

Applying spatial grammars to mechanical engineering design places special requirements on each
component of the grammar formalism, as described in Section 2. Further, to enable spatial grammars
to become a partner for the engineering designer, they must allow for certain interactions between a
human designer and the generative system. Both aspects will be discussed in this section.

Stiny [18] defines a hierarchy of shape algebras, Uij, where 0 ≤ i ≤ j. The first index, i, corresponds to
the dimension of the basic shape elements, e.g. 0 corresponds to points, 1 corresponds to lines, 2
corresponds to planes and 3 corresponds to solids. The second index, j, corresponds to the dimension
of the space where the shapes are composed and transformed. A typical 2D shape grammar, for
example, is the product of the U02 and U12 algebras.
To create a general spatial grammar implementation for engineering purposes, a wide range of 2D and
3D shapes must be available within the vocabulary of shapes to represent standard and complex
mechanical parts. 3D surfaces and solids must be included so that properties such as volume and
weight can be calculated and to enable links to simulation, e.g., FEM, and fabrication, e.g., rapid
prototyping (P) and computeraided manufacturing (CAM). Thus, U33 algebras are required [10].
However, considering generality, 3D parts can also be created from 2D shapes and include points and
lines. Therefore, the full range of Ui3 grammars (0 ≤ i ≤ 3) must be provided to support general
mechanical design. If less is provided, acceptance may be lower as it also may seem that CAD is

1 http://www.spatial.com
2 See also: http://web.mit.edu/4.184/www/autogrammar.htm

6-429

6-430 ICED'09
ICED’09/588

moving back to its 2D origins where 3D objects were only represented through a set of 2D views.

In this section we return to the shape grammar formalism presented in Section 2. To more generally
detect the shape defined in the LHS of a rule in the working shape, geometric transformations are
required. They determine both where rules apply in the working shape as well as carrying out the
shape calculation, C’ = C – t(A) + t(B). The most commonly used Euclidean transformations, t, include
translation, rotation, and scaling. For example, to generalize the application of a rule, rather than
requiring only its application to a certain orientation of a cube, all possible cubes under rotations of
900 can be considered. Thus, transformations can also be constrained. Translation is almost always
required for positioning of the LHS shape in the working shape. Thus, the basic transformations of
translation, rotation, and scaling in 3D must be available.
If a shape grammar system works automatically (see discussion in Section 3.3), rather than by
requiring the user to determine where in a design a rule applies, the topic of subshape detection, or
how to generally find embedded shapes within the working shape becomes an important issue. To
achieve this in the most flexible way, the use of the maximal line representation [8] and the restriction
to rational shapes [19] are required for general shape grammar implementations. However, the general
subshape detection problem in three dimensions is still unresolved [9] and as a consequence, most of
the three dimensional shape grammar implementations do not make use of subshape detection [20].
It can be said that the true power of spatial and shape grammars will be only seen through the
availability of automatic subshape detection that in turn enables detection of emergent shapes that
leads to more creative shape generation. However, for mechanical engineering purposes there can still
be large potential for their generative power alone and generating designs beyond what designers can
think of. In this paper, we do not take subshape detection as an initial requirement for a general 3D
spatial grammar implementation since the ability to work in 3D is prioritized. However, we leave the
issue to future consideration.

According to the shape grammar formalism, Chase [1] defines the steps in the application of a
grammar as follows:
• the determination of a rule to apply,
• the determination of an object the rule is applied to, and
• the determination of a matching condition (cf. Section 3.2).
To create a spatial grammar implementation that can be integrated within typical CAD processes,
consideration of user involvement in the generative process is imperative. Considering the interaction
between designer/user and computer, the execution of the steps above can generally be done either (1)
fully manual, (2) semiautomatic, or (3) fully automatic. A general spatial grammar implementation
for mechanical engineering should incorporate all three modes.
For the semiautomatic mode there are several scenarios. The two most relevant ones are:
1. The user chooses a rule, the computer detects all locations where the rule applies in the current

design under allowable transformations and the user selects which location to apply the rule, or
2. the user selects an object, the computer provides all the existing rules that can be applied to the

object under allowable transformations and the user decides which rule to apply.
In an engineering context a spatial grammar system should allow for both scenarios. In the first
scenario, the user is assisted in exploring how a rule can be applied. In the second, the user is assisted
in exploring possible transformations to a chosen object.
Further, modes that use automatic ruledetermination need an additional control mechanism for rule
ordering, in the case that not only one but a series of rules gets applied. This comprises the sequence
of rules and the number of times rules repeat and can be triggered either ruleinternal, e.g. using labels,
or by an external control structure such as numbering or indexing rules [21].
In general, fully automatic systems, or systems with minimal user interaction, require optimization and
search techniques to direct the selection and application of rules to generate optimal or satisfying
designs [1]. This requires a different type of user interaction as the designers must encode their design
objectives and constraints within an optimization model that is used to guide the search. This mode is
also potentially useful, as has been shown in previous implementations, e.g. in [5], but will not be
considered in this paper and is left to future work.

6-430

6-431ICED'09
ICED’09/588

In the practical use of spatial grammars, engineers will likely want to manually adapt the solution(s)
the system has generated at some point. While a spatial grammar encodes a particular style or common
design guidelines, sometimes “breaking the rules” is necessary either to transform the style or meet
further constraints. Further, it can be the case that the system does not provide all rules to create
complete parts, but rather assists the designer only in certain stages of the design process and the
designer carries out the rest of the shape generation tasks manually.
For better integration within the design process and typical CAD processes, the system should not only
enable manual modification of designs after the generation process, but provide a possibility to stop
the automated generation so that the user can manually work on the geometry and restart the
automated generation that then also works from the new basis of manual changes. Adaptation of
designs is strongly interconnected with the different ways of controlling the generative process
presented in Section 3.3.

To meet the requirements discussed in Section 3, the approach taken here is to use an opensource 3D
solid modeling CAD kernel and an opensource CAD system as the basis for implementing integrated
3D spatial grammars. The approach aims at using as much functionality as possible commonly
provided by both. In general, the functionality of CAD systems is intertwined with the underlying
geometric modeling kernel, which provides the needed geometric modeling abilities and often some of
the modeling operations.

Initially we use a set grammar formulation of a spatial grammar where the vocabulary is based on
parameterized 2D and 3D CAD primitive objects. These solid primitives are, in the most basic form,
block, torus, wedge, cone, cylinder and sphere and can directly be used as the vocabulary for the
definition of shape rules. A different possibility for the definition of vocabulary is the use of sweeping
that creates 3D volumes from 2D sketches, a common way of working in CAD. Depending on the
kind of curve used as a sweeping path, prisms (linear curve), rotational solids (circular curve) or even
complex solids (curvilinear curve) can be created and used as vocabulary. Moreover, this approach
provides a link to 2D grammar implementations that are more mature than any 3D implementations to
date.
To add further complexity to the shapes defined in a vocabulary, Boolean operations can be used, that
provide the capability to combine solids using the three operations union, difference and intersection.
The use of Boolean operations to define more complex shapes and within shape rules significantly
reduces the coding effort for implementing the spatial grammar, because the functionality is included
in the solid modeling kernel. The type of spatial representation used for the vocabulary impacts the
way rules can be implemented as well as the expressive power of rules.

Using set grammars for spatial applications provides the advantage that the search for possible
locations for rule applications is reduced to searching a set of primitives. Within the current working
shape, or set of primitives, a primitive shape type under certain transformations and considering
additional parameters, e.g. related to the size of the primitive, is found. The required transformations
can be calculated as a series of standard transformations.
For the detection of the LHS of a rule, most of the implemented systems do not include an automatic
approach for searching even basic shapes. Piazzalunga and Fitzhorn [15], for example, only provide a
manual selection. A way to, at least, perform a very basic search is to make use of the standard, but
unique (internal) names many CAD systems create for designed shapes and the modifications. This
makes it easy to find for example, all blocks in a given design. The search can then be further
constrained by comparing parameters (see Section 4.4) of the found blocks against those specified in
the rule.

Among the three different modes to execute the steps of applying a rule (see Section 3.3) only the
fully automatic scenario does not require user interaction at all. For the other ones it is inevitable to

6-431

6-432 ICED'09
ICED’09/588

allow for user input to the system, but also give feedback to the user. For practical and userfriendly
use of a computer system this is normally done via a Graphical User Interface (GUI) in which
traditional CAD tools have their edge [1]. Besides visualization and rendering capabilities, they
provide a wide range of standard and expected functionality, e.g. very simple functionality like
“undo”, the selection of different views or dialogues and popup windows. Making use of as many of
these standard capabilities of a CAD system as possible decreases the coding effort for developing a
spatial grammar system that includes a GUI, e.g. existing toolbars only have to be adapted rather than
created from scratch, and this significantly increases the practical usability.
To allow for the application of different sets of rules to handle more than only one design task on one
and the same system, rules can be saved in data files, loaded whenever they are needed and finally
applied. The underlying functionality and needed graphical interface can also be directly taken from
the CAD system.

In modern mechanical engineering CAD, shapes are created in parameterized form, which allows for
further modifications of generated designs. This concept is being made use of in our approach so that
grammatically created shapes become adaptable instead of generating “static”, unchangeable geometry
only for visualization, e.g., the grammar systems by Wang and Duarte [14] or Starling and Shea [5].
Manual changes become possible using parametric primitives as a base vocabulary for the spatial
grammar. Once created, the parameters can be easily accessed and changed via the GUI. Moreover
geometrical transformations can be defined in a parameterized way, which allows for the modification
of a shape’s spatial orientation.
It is also possible to draw upon the parameterized form of shapes for the definition of parametric
grammars [8]. Furthermore, it can be useful to define rules that only change parameters of shapes.
This means that one does not have to delete the shape in the LHS of a rule and create the RHS from
scratch, but rather only change parameters. In computational exhaustive generations this can help to
save computational time.

A first prototype was developed to explore and demonstrate the approach discussed. It uses an open
source 3D mechanical engineering CAD system, FreeCAD3, that is built on top of the open source
geometric modeling kernel Open CASCADE4 and integrates several other powerful open source
libraries and applications, e.g. QT5 for the development of the GUI. Additionally, during runtime, it
internally uses the scripting language Python6 for the control of the system, most interestingly for the
definition of geometry.
An open source approach was taken for the general advantages of maximum freedom of adaptation
and use. Furthermore, since the chosen system provides separated processes for the computation of the
geometry and the displaying on the screen, the GUI can be deactivated in case of computationally
exhaustive automatic design generations. Further, open source software is most often easier to
integrate with other code and software, e.g. FEM for structural analysis. It is planned in the context of
the broader computational design synthesis approach to integrate this system with a graph grammar for
mechanical design synthesis at the product structure, behavioral and function levels [22] to provide
complete synthesis support for mechanical design.

Two examples are now given to illustrate the approach.

Stiny [4] exhaustively described rules using the Froebel building blocks from the Kindergarten method
as a constructive approach to the definition of design languages. The majority of the shape rules
defined use blocks as the vocabulary of shapes that are orthogonally combined in many different ways.

3 http://apps.sourceforge.net/mediawiki/freecad/
4 http://www.opencascade.org
5 http://www.qtsoftware.com
6 http://www.python.org/

6-432

6-433ICED'09
ICED’09/588

This is also the basis for the designs generated with the system described in [15] and similarly in [14]
to serve as comparison to other implementations.
The grammar shown in Figure 40 (d) in Stiny’s paper (Kindergarten grammar 40 (d)) is depicted here
in Figure 1 to illustrate implementation issues. The original definition of the rule is shown in the left of
Figure 1. To generate the related design, a fairly simple implementation could be used. The block
primitives all have a size of 20 x 10 x 5 mm. The dimension of block 1 (rule HS) along the xaxis is
set to 20 mm and along the yaxis is set to 10 mm. The second block (rule RHS top) is defined using
the measurements exactly the other way around, 10 mm along the xaxis and 20 mm along the yaxis.
Repeated application of this procedure to the subsequent blocks, while additionally translating the
origin of the blocks by the blockheight along the zaxis, leads to the design shown in the right of
Figure 1.

This process visually generates the design presented by Stiny, but internally it does not represent the
grammar rule as it was intended since the spatial relation between the blocks is rather embedded in the
setting of parameters defining the block dimensions. As a consequence the rule is virtually not applied
in relation to a previously inserted block and also cannot be applied to a (manually) modified block,
e.g., changing the angle of a block to a different value than 90°.
A more general implementation approach is now taken that uses transformations:
1. Manually or automatically select a block.
2. Insert a new block at the exact position, including all performed transformations, and with the

exact measurements as the selected one. (Comparable to a “copy” command.)
3. Translate the new block by the height of the previous one along the zaxis.
4. Rotate the new block by 90° degrees around a defined axis. (Here, an axis parallel to the zaxis

with its origin at x = 5mm and y = 5mm.)
To insert the second block in Kindergarten grammar 40 (d) the rule has to apply the rotation in step
four above counterclockwise. The original definition of the rule by Stiny makes use of a mirror
transformation; see the marker in the left of Figure 1. In a CAD system, however, every object is
defined unambiguously concerning its position and alignment. Therefore, one rule can be implemented
if a mirror transformation exists, or, a second rule has to be defined to handle the case of the mirrored
block shown on top in the rule RHS of Figure 1.
Figure 2 shows two modified designs generated using the rule in Figure 1. For the design on the left
the automatic generation was stopped after adding block five, the block was turned manually by 25°
counterclockwise and the automatic process was continued. For the right hand design the automatic
process completely ran once, afterwards block three was manually changed and, based on this
modification, the rule was applied several times again. The implementation chosen here adds some
additional coding effort for the rules, but it takes them to a more general level that is needed to apply
further modifications to designs and rules.

6-433

6-434 ICED'09
ICED’09/588

To demonstrate a mechanical engineering design example, the generation of wheel rims is chosen,
because single piece rims combine mechanical issues, e.g. strength, with the need to be aesthetically
pleasing. This grammar uses a variety of primitives as vocabulary:
• blocks, defined by three parameters to determine the position in x, y and direction according

to their local coordinate system and three parameters to set the length (along xaxis), width (along
yaxis) and height (along axis)

• cylinders, defined by three parameters to determine the position of the center in x, y and
direction according to their local coordinate system and two parameters to set the height (along
axis) and the radius (in xyplane)

• wedges, defined by three parameters to determine the position in x, y and direction according
to their local coordinate system, three parameters to set the length (along xaxis), width (along y
axis) and height (along axis) and one optional parameter to define the length of a flat section on
top of the wedge

For every rim generation in the following examples, the first four rules are the same (Figure 3).
Beginning with a starting symbol, Φ, a cylinder is inserted by rule (1). A second cylinder is positioned
in relation to the center – symbolically marked “” in the figure – of the first cylinder (2) and
subtracted using the Boolean difference operation in rule (3) to generate the felly, or part of the wheel
rim into which spokes are inserted. Using rule (4), another cylinder is added in the center of the felly
representing the hub of the rim.

(3)

(4)

φ(1)

(2)

To generate a first basic rim, two further rules need to be defined (Figure 4) in the xy plane. The first
one, rule (5), places the origin of a block in the center of a cylinder, which is the hub in this case. In
analogy to the process described in section 5.1, rule (6) inserts a block at the exact position and with
the exact measurements of a selected block and turns it counterclockwise by a defined angle, θ, around
the origin of the selected block (marked “”). Applying the latter rule a certain number of times,
manually or automatically defined, a full rim is generated; see the right hand side of Figure 4.

(5)

(6)
θ

To illustrate that the design is being generated in 3D and not only in plane, another rule, rule (7)
shown in Figure 5, is defined that inserts a wedge on top of a block in the direction. Therefore a
block is selected automatically, by searching the internal solid names. A new wedge is then inserted
and the same transformation that was applied to the block is applied to the wedge. The width
parameter of the wedge is set to the same value as the block. Finally, the value for the height of the
block is used to translate the wedge in the positive direction, so that it is placed on top of the block.
The rule and result of applying it to all existing blocks in the first example can be seen in Figure 5.

6-434

6-435ICED'09
ICED’09/588

(7)

To extend the basic rim presented above, a further rule is defined (see Figure 6) that directly modifies
the parameters of the solid primitive instead of deleting the LHS and adding a new solid in the RHS. It
decreases the width w of a given spoke by changing the parameter of the block primitive by a certain
percentage of the original value to w’ and translates it in negative zdirection at the same time.

(8) w w‘ -z

The design presented in Figure 7 (left side) is generated by applying each of the rules (1) to (5) once,
followed by a mixture of rules (6), (8) and manual modifications: First, rules (6) and (8) are applied
once, resulting in the addition of the second spoke and the adaptation of its width as well as translating
it in negative zdirection. ased on the second spoke, rule (6) is applied twice, inserting two more
spokes of the same size and in the same zdirection as the second spoke. The parameters of spoke four
are then manually modified to make them the same as spoke one. The described procedure restarts and
is performed another two times to complete the rim.
The rim on the right hand side in Figure 7 is one of the examples generated using a very simple
parameterized rule. Instead of setting the turning angle, θ, in rule (6) to a static value, as in the basic
rim, it gets randomly set to values between 5° and 60° every time before the rule is applied. This
demonstrates that a language of rim designs can be defined through a simple set of general rules that
can be combined in a multitude of sequences and parameterizations and applied through manual, semi
automatic and automatic generative processes.

1

23

4

The actual generative power of grammars becomes more obvious by extending the set of rules which
causes an extension of the design language so that it includes less predictable designs. To demonstrate
this, rules (5) and (6) are used as a basis to create new rules (9) and (10) in Figure 8. Additionally, two
further rules are defined: Rule (11) inserts a new block at the exact position and with the exact
measurements of a selected block and translates it by the distance d. Rule (12) inserts two new blocks
at the exact position and with the exact measurements of a selected block, rotates one of them by 45°,
the other one by 45° and finally deletes the selected block. ote that rules (10)(12) all have the same
LHS but different RHSs.

6-435

6-436 ICED'09
ICED’09/588

(9)

(11)

(10)

(12)

Figure 9 shows four examples that were generated by applying rules (9)(2) in different sequences.

There is much functionality in geometric modeling kernels and CAD systems that can be made use of
for implementing and applying spatial grammar systems in mechanical engineering design. The
advantages especially stem from the combination of a strong geometric kernel with many standard
functions required for implementing spatial grammars and a robust GUI that combined have the
potential for creating more general 3D spatial grammar systems than found in the literature to date.
The implementation shown in Section 5 is a first, proofofconcept prototype for this research, and
initial benefits can already be seen:
• the use of a set of basic, parameterized primitive solids (blocks, cylinders, wedges) in

combination,
• manual modification of generated designs,
• use of Boolean operations in rules to subtract and add shapes,
• use of transformation algorithms provided by the kernel, e.g. arbitrary rotations and translations,
• possibility for a basic shape detection to find the LHS of a rule in a design,
• approaches to save computational power by only adding the difference between LHS and RHS,

where possible, and modifying shapes directly for parametric rules, and finally
• reduced coding effort by using the already existing functionalities provided by the kernel.
Future work on basic capabilities includes the integration of 2D spatial grammar approaches via
sweeping operations, the usage of features in the CAD system to create more complex geometries and
the application of multiple transformations, e.g. several rotations around more than one axis, to solids
in three dimensions.
Compared to current CAD systems, integrated spatial grammars enable a more flexible and interactive
means for generative shape design compared to scripting or parametric modeling. Compared to
scripting, generating alternatives only requires applying a set of generic rules in a different sequence
rather than changing a predefined script. ith spatial grammars more interactivity is achieved
through the three modes discussed. Compared to parametric modeling, parameterized shapes can be
added and removed rather than only changing their dimensions.
Despite the advantages pointed out before, the approach of using a 3D modeling kernel and a CAD
system also comes along with some limitations. One is that, since the shape representation in a CAD
system is unambiguous in terms of positions and orientations of shapes, a robust way to find all
possible transformations for matching a shape in the LHS of a rule to the working shape is needed that

6-436

6-437ICED'09
ICED’09/588

includes at least general translation, rotation, mirror and scaling. Otherwise, more specific rules to
cover special transformation cases are needed. Further, due to the internal CAD representations used,
only set grammars can be defined and implemented. This type of representation conflicts with the
widely used approach of maximal representation for general, automatic subshape detection in shape
grammars and recognition of emergent shapes. However, without the ability for the detection of
subshapes, a generative shape system can still have great value for exploring a wide range of spatial
styles and alternatives. Recent research that could be helpful for dealing with the (sub)shape
recognition problem in two dimensions without using maximal representation is presented by Jowers
et al. [23] and uses a pixel based representation. A future research issue remains to investigate other
possible methods for achieving some level of reinterpretation of shapes through combinations of
standard geometric modeling representations used in CAD and other, more flexible representations.
A further important issue is the definition and implementation of shape rules. This is currently done by
hard coding in most approaches so far, including the implementation shown in this paper. While in the
implementation in this paper Python, an easy to learn scripting language is used, this is typically not
feasible for an engineering designer. For increased use and acceptance of spatial grammar systems in
mechanical engineering practice, it is crucial to develop a visual grammar interpreter in 3D to
conveniently define new shape rules, or a shape grammar interpreter. The opensource approach taken
in combination with a general interpreter also gives potential for the sharing and reuse of shape rules
between designers. This will be explored in future research.

The implementation and use of 3D spatial grammars in combination with an opensource solid
modeling and CAD system provides several advantages. From a software developer’s point of view,
the coding effort decreases by making use of standard geometric modeling functions provided by the
underlying kernel. From an engineering designer, or usability viewpoint, the combination improves
the potential practical use of spatial grammars for mechanical engineering by providing the possibility
for manual changes to a design at any point in the generative process and to use the common
advantages and commands of a CAD GUI. Finally, the combination brings more generative power to
CAD systems turning them away from only documenting data and at the same time, through the
encoding of shape rules, preserving design knowledge related to geometry and spatial relations in a
more general, flexible and reusable way than today’s CAD systems provide. In the future, further
advantages are expected through the development of new spatial grammar interpreters that will allow
designers to encode their own shape rules and are crucial to turn spatial grammars into interactive
generative systems that are designerfriendly.

[1] Chase, S.C. A model for user interaction in grammarbased design systems. Automation in

Construction, 2002, 11, 161172.
[2] Krishnamurti, R. and Stouffs, R. Spatial grammars: motivation, comparison, and new results. In

t International conference on computeraided arcitectural design futures, Pittsburgh, USA,
1993, pp. 5774 (NorthHolland Publishing Co., Amsterdam, The Netherlands).

[3] Deak, P., Rowe, G. and Reed, C. CAD grammars. In Design Computing and Cognition 06, Vol.
2, Eindhoven, Netherlands, 2006, pp. 503520 (Springer, Dordrecht).

[4] Stiny, G. Kindergarten grammars: designing with Froebel's building gifts. Environment and
Planning B: Planning and Design, 1980, 7(4), 409462.

[5] Starling, A. and Shea, K. A parallel grammar for simulationdriven mechanical design synthesis.
In ASME IDETC/CIE Conference, ong each, CA, USA, September 2428, 2005 (ASME).

[6] Gips, J. and Stiny, G. Production systems and grammars: a uniform characterization.
Environment and Planning B: Planning and Design, 1980, 7(4), 399408.

[7] Stiny, G. and Gips, J. Shape grammars and the generative specification of painting and sculpture.
In Information Processing 71, 1972, pp. 14601465 (NorthHolland Publishing Company).

[8] Stiny, G. Introduction to shape and shape grammars. Environment and Planning B: Planning and
Design, 1980, 7(3), 343351.

[9] Chau, H.H., Chen, X.J., McKay, A. and dePennington, A. Evaluation of a 3D Shape Grammar
Implementation. In Design Computing and Cognition, Cambridge, USA, 2004, pp. 357376
(Kluwer Academic Publishers, Dordrecht).

6-437

6-438 ICED'09
ICED’09/588

[10] Cagan, J. Engineering Shape Grammars: Where We Have Been and Where We Are Going. In
Antonsson, E.K. and Cagan, J., eds. Formal Engineering Design Synthesis, 2001, pp. 6591
(Cambridge University Press, Cambridge, England).

[11] Heisserman, J. Generative geometric design. Computer Graphics and Applications, IEEE, 1994,
14(2), 3745.

[12] McCormack, J.P., Cagan, J. and Vogel, C.M. Speaking the Buick language: capturing,
understanding, and exploring brand identity with shape grammars Design Studies, 2004, 25(1), 1
29.

[13] Agarwal, M., Cagan, J. and Stiny, G. A Micro Language: Generating MEMS Resonators using a
Coupled FormFunction Shape Grammar. Environment and Planning B: Planning and Design,
2000, 27(4), 615626.

[14] Wang, Y. and Duarte, J. Automatic generation and fabrication of designs. Automation in
Construction, 2002, 11(3), 291302.

[15] Piazzalunga, U. and Fitzhorn, P. Note on a threedimensional shape grammar interpreter.
Environment and Planning B: Planning and Design, 1998, 25, 1130.

[16] Celani, M.G.C. Beyond analysis and representation in CAD: a new computational approach to
design education. Department of Architecture, 2002 (Massachusetts Institute of Technology,
Cambridge, USA).

[17] McCormack, J.P. and Cagan, J. Curvebased shape matching: supporting designers' hierarchies
through parametric shape recognition of arbitrary geometry. Environment and Planning B:
Planning and Design, 2006, 33(4), 523540.

[18] Stiny, G. Weights. Environment and Planning B: Planning and Design, 1992, 19(4), 413–430.
[19] Krishnamurti, R. SGI: A Shape Grammar Interpreter. 1982 (Design Discipline, The Open

University, Walton Hall, Milton Keynes MK7 6AA).
[20] Gips, J. Computer implementation of shape grammars. In SF/MIT orshop on Shape

Computation, Cambridge, USA, 1999.
[21] Knight, T. Shape grammars: six types. Environment and Planning B: Planning and Design, 1999,

26, 1532.
[22] Helms, B., Shea, K. and Hoisl, F. A framework for computational design synthesis based on

graphgrammars and functionbehaviorstructure. In ASME IDETC/CIE Conference, San Diego,
CA, USA, August 30September 2, 2009 (ASME).

[23] Jowers, I., Prats, M., Lim, S., McKay, A., Garner, S. and Chase, S. Supporting Reinterpretation
in ComputerAided Conceptual Design. In EGAPICS orshop on SetchBased
Interfaces and Modeling, Annecy, France, 2008, pp. 151158.

6-438

