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To minimize the coordination efforts among design teams and expedite the design process via parallel 
workflow, this paper proposes a framework of decentralized optimal design.  The framework consists 
of two major components.  The first component is the characterization of teambased interactions in 
engineering design via the notions of responsibility and controllability.  This characterization helps us 
to understand what kind of role a team can perform in a decentralized design environment.  The 
second component is the application of the Lagrangian relaxation approach to support concurrent 
decision making (i.e., parallel workflow) during the teambased design process.  The framework has 
been demonstrated through the welded beam design example, and the results are promising in view of 
future development in this research direction. 
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Due to the market’s needs and pressure, modern engineered products tend to be more complex than 
ever.  As such, multidisciplinary teams are required to handle different aspects of a product during the 
design process.  In an ideal situation, these multidisciplinary teams should work seamlessly and 
cooperatively as a unified team to achieve the common good of a product.  However, such kind of 
cooperation is often considered “too luxury” as it implies expensive organization and communication 
costs.  The complexity of organization may also hinder the efficiency of the design process.  In 
addition, these teams may have diverse domain backgrounds, and how to communicate their design 
decisions is always challenging.  Therefore, the autonomy of a team is usually encouraged during the 
design process in practice.  Then, an individual team can work on its own as much as it can, while 
their individual decisions can somehow collectively contribute to a better design overall. 
In this work, the term “optimal design” is applied since optimization formalism is applied to formulate 
a design problem as an optimization problem [1].  In this context, a design process is viewed as the 
process to determine the values of n design variables (xi), which can be expressed as a vector (i.e., x = 
[x1, x2, …, xi, …, xn]).  A general design problem is formulated as follows. 

General Optimal Design Formulation 
 ( )x

x
fmin  

 subject to 0)( ≤xg  
 where RRf n →:  and mn RR →:)(xg  (1) 
 
where f is the objective function and g is a vector of m constraints.  Given the Formulation (1), 
decentralized optimal design is referred to the design situation, in which design variables can be 
determined via a number of decision makers.  The term “decentralized” is applied to emphasize the 
autonomy of each decision maker during the design process.  In other words, we want to investigate 
the process, in which a centralized coordinator is absent or does not perform any optimization duty.  
Decision makers need to make design decisions subject to limited information as well as limited 
interactions with other decision makers.  This purpose of this research is to investigate a systematic 
approach to minimize the communication among teams while attempting the overall optimal design in 
practice. 
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Concerning the research efforts related to decentralized design problems, three different approaches 
have been identified: the hierarchical optimization approach, the gametheoretic approach, and the 
decomposition approach in optimization.  The first two approaches mainly stem from the engineering 
design community, and the third approach from applied mathematics. 
The hierarchical optimization approach invokes a hierarchical structure for solving largescale 
optimization problems, in which the top level usually handles the design objective and the bottom 
level are responsible for satisfying constraints.  One relevant research area is multidisciplinary design 
optimization (MDO), which utilizes a twolevel computing structure, namely, a system level and a 
disciplinary level.  Then, different MDO approaches have been proposed by specifying the roles of 
system and disciplinary levels in the optimization process [2].  Based on the MDO efforts, Braun [3] 
proposed the framework of collaborative optimization (CO), in which the disciplinary autonomy is 
emphasized to reduce the workload at the system level.  Since then, various CO formulations have 
been proposed [4], [5].  However, Alexandrov & Lewis [6] found that CO might return undesirable 
results since convergence of CO has not been proven.  In this context, the framework of target 
cascading [7] was proposed, which was supported by a convergence proof. 
In the gametheoretic approach, a decentralized design problem is characterized as a multiplayer 
game, in which each team is considered as a game player [8].  Then, the concepts from game theory 
are adapted to model and analyze teambased design [9].  Particularly, three game protocols are 
utilized (i.e., Pareto cooperation, ash noncooperation and Stackelberg leader/follower) to model and 
implement different coordination strategies in team design.  Chen & Li [10] proposed the concepts of 
responsibility (scope of concern) and controllability (scope of control) to unify different game
theoretic models in design.  Li et al. [11] have proposed three models to capture different cooperation 
modes in teambased design.  Recent research on the gametheoretic approach can be found in [12], 
[13]. 
The research of the decomposition approach for largescale optimization is based on some specific 
problem structures to expedite the optimization process [14].  A common problem structure is that an 
optimization problem contains a small set of socalled complicating variables or constraints.  If these 
complicating variables or constraints are once removed, the original problem can be decomposed into 
a set of independent subproblems, which can be solved independently [15].  The initial result in this 
research area can be found in the Dantzigolfe decomposition principle [16], which addressed 
complicating constraints in linear programming.  Then, the Benders algorithm [15], [17] was proposed 
to handle the complicating variables, and the Rosen algorithm [18] to handle both complicating 
constraints and variables.  These research efforts were then generalized via the Lagrangian relaxation 
techniue to address the travelingsalesman problem [19], integer programming [20] and nonlinear 
programming [21]. 
In contrast to the hierarchical optimization approach, this paper is intended to investigate the solution 
process that does not reuire a highlevel team to perform optimization.  Also, it is expected to 
propose a solution process that supports concurrent decision making or parallel workflow (i.e., teams 
can make design decisions at the same time without intensively communicating with other teams).  
This topic has not been thoroughly addressed in the gametheoretic approach.  e resort to the 
decomposition approach for largescale optimization, specifically, Lagrangian Relaxation (LR), to 
investigate the solution process for decentralized optimal design. 

 
The purpose of this paper is to propose a framework for decentralized optimal design, including 
formulation and execution.  The formulation of decentralized optimal design will be provided in 
Section 2.  Section 3 will discuss the Lagrangian relaxation approach for the execution of concurrent 
decision making among teams.  Section 4 will illustrate the solution procedure via the welded beam 
design.  Section 5 will provide closing remarks of this paper. 

 

 
Consider a general design problem formulated in (1).  This problem is partitioned into t subproblems, 
each of which is handled by an individual decisionmaking unit, namely, a team.  It is assumed that 
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each team is responsible for one objective, which depends on its own variables as well as variables of 
other teams.  Using the notation given in Table 1, a partitioned problem is formulated as follows. 

Formulation of a Partitioned Problem 
 ( ))(,),(),(min 21 xxx

x tfffF   

 subject to 0)( ≤xgc , 0)( 11 ≤xg , 0)( 22 ≤xg ,…, 0)( ≤tt xg  
 where RRF t →⋅ :)( , RRf n

k →:)(x , cmn
c RR →:)(xg , kk mn

kk RR →:)(xg  (2) 



fk Local objective function of the kth team 
F Overall objective function that aggregates the 

objectives of all teams 
gc Vector of common constraint functions 
gk Vector of local constraint functions of the kth team 
mc Number of common constraints 
mk Number of local constraints of the kth team 
nk Number of variables of the kth team 
x Vector of variables of all teams 
xk Vector of variables determined by the kth team 

 
For simplicity, we denote (xk, xk) as the vector in which variables pertaining to xk can be controlled by 
the kth team, while other variables (xk) are kept as constants.  Then, the formulation of the sub
problem that is handled by the kth team is given below. 

ubproblem Formulation (Individual Objective) 
 ),(min kkkf

k
−xx

x
 

 subject to 0),( ≤−kkc xxg , 0)( ≤kk xg  (3) 
 
Assuming that all teams take their efforts to minimize the aggregated objective, F, a subproblem is 
formulated below. 

ubproblem Formulation (Aggregated Objective) 
 ( )),(,),,(),,(min 21 kktkkkk fffF

k
−−− xxxxxx

x


 

 subject to 0),( ≤−kkc xxg , 0)( ≤kk xg  (4) 
 
Given the subproblem formulation in (4), collective team efforts are expected to determine the values 
of all variables to optimize the common objective and satisfy both common and local constraints. 

 
Given the partitioned problem formulated in (2), the next question is how to solve the subproblems 
(as formulated in (3) and (4)) in such a way that each decision maker can work on their subproblems 
autonomously without intensive interactions with other teams.  In this context, this section is intended 
to characterize the typical modes of teambased interactions.  These characterized teambased design 
interactions will be used to implement the solution process for decentralized optimal design. 
To describe different modes of interactions, each team is characterized via two notions: responsibility 
and controllability [10].  A team’s responsibility is referred to as the scope of design objective(s) that 
the team needs to consider or pursue.  For instance, suppose that a team design process consists of two 
teams: a design team whose objective is about a product’s functions and a manufacturing team whose 
objective is about the manufacturing cost.  If a design team is required to consider the manufacturing 
cost during its own decisionmaking process, the design team is considered as having a high (or 
global) responsibility since it needs to consider both the design and manufacturing objectives.  In 
contrast, if the manufacturing team only concerns about the manufacturing cost, it is considered as 
having a low (or local) responsibility. 
A team’s controllability is referred to as the range of design variables the team is entitled to determine 
or control.  Originally, each team has its own design variables, and the team’s variables are disjoint 
from one another.  However, for instance, if a design team, in addition to its own design variables, 

6-315



6-316 ICED'09
ICED’09/519  

directly influences or controls the decision about which manufacturing processes to be used (this 
decision is also considered by the manufacturing team), the design team is considered as having a high 
(or global) controllability.  In contrast, the design team just focuses on its own design variables 
exclusively, it is considered as having a low (or local) controllability. 
Having the notions of responsibility and controllability, we can characterize four different modes of 
team interactions for decentralized optimal design.  Notably, though our prior work has derived more 
modes of team interactions [10], [11], we only investigate the modes in this paper that can be 
meaningfully interpreted in the context of decentralized optimal design.  Suppose that we have two 
teams in the design process.  The four modes of interactions are listed in Table 2.  The first mode 
represents seamless cooperation, in which all teams are concerned with the same aggregated objective 
(i.e., high responsibility) with global control of all design variables (i.e., high controllability).  This 
situation is similar to having a unified team to resolve a single optimization problem (i.e., cooperation 
and intensive communication are allowed in the design process).  This ideal situation is not intended 
for decentralized optimal design but such situation can be used as a benchmark to evaluate different 
schemes for decentralized optimal design. 



Team 1 Team 2  
Mode of interactions Responsibility Controllability Responsibility Controllability 

High High High High Seamless 
cooperation 

High Low High Low Collaborative 
interaction 

Low Low Low Low Noncooperative 
interaction 

High Low Low Low Overseeing leader 
interaction (Team 1) 

 
The other three modes of interactions can be viewed as different situations in decentralized optimal 
design.  One common feature of these modes of interactions is that they all invoke low controllability 
to describe a team’s characteristics.  In this context, low controllability can be considered as the 
characterization of a team’s autonomy in a sense that teams only manipulate their own design 
variables without directly determining variables of other teams, thus reflecting the nature of 
decentralized optimal design. 
The second mode of interactions in Table 2 is termed collaborative interaction, in which all teams are 
separated to locally control their own design variables to optimize the common aggregated objective 
(i.e., high responsibility).  This situation captures that all teams are able to identify a clear, single 
objective, which can be optimized to benefit all teams.  However, seamless communication is not 
allowed so that they can only control their own variables to achieve the same objective. 
The third mode is termed noncooperative interaction.  In addition to the local control of variables, 
each team only concerns its own design objective.  Since all teams cannot come up with a common 
objective in this case, they tend to determine design variables for their own interest.  This situation is 
not unrealistic in practice.  For instance, if the design problem is large and complex, it will not be 
obvious to articulate a common objective that all teams can understand and work with.  Then, it is 
viable to have each team pursuing its own interest to achieve a good design overall.  The premise is 
that no team wants to do something bad for the design intentionally. 
The fourth mode belongs to the leader / follower interaction, in which the leader team has a higher 
responsibility (i.e., the overseeing leader).  The overseeing leader (which is Team 1 according to Table 
2) is limited to its own control of design variables to achieve the aggregated design objective.  In the 
meantime, the follower team can be viewed as an “innocent” team, which only controls its own design 
variables to achieve its own objective. 

 
As mentioned before, seamless cooperation should yield the best overall result compared with other 
modes of interactions but the drawback is the price of intensive communication.  In contrast, sub
optimal results should be expected from the noncooperative mode of interactions.  In the 
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collaborative mode of interactions, since all teams are willing to cooperate for the common objective, 
it should be easier to lead to a converged solution (compared to the noncooperative mode).  The 
major limitation in achieving optimal results is due to the lack of seamless communication. 
To analyze the leader / follower case, suppose that the noncooperative mode is employed, and a 
team’s subproblem (say, Team 1 according to Table 2) is solved according to Formulation (3).  The 
resulting objective value of Team 1 is f1

.  Then, suppose that the same optimization model is 
applied, and the overseeing leader model is invoked in this case.  It is expected that the resulting 
objective value (say, f1

OL) will be not higher the objective value from the noncooperative mode (i.e., 
f1

OL ≤ f1
) due to higher responsibility. 

Different modes of interactions have been studied in our prior research [10], [11].  Due to the existing 
of the common constraints (i.e.. gc in Formulation (2)), our prior execution models only allow teams to 
make design decisions in an alternative manner (i.e., one team after another) to ensure the feasibility 
of the final solution.  In this paper, the Lagrangian relaxation approach is applied so that concurrent 
decision making among teams is made possible. 

 
The basic notion of Lagrangian relaxation (LR) is to relax the original problem by removing the 
complicating constraints (or variables via the duality of the original problem [15]) and treating them as 
penalty terms (via Lagrangian multipliers) in the objective function.  Then, a twolevel computing 
structure is invoked master level and subproblem level.  The master level is responsible for 
regulating the values of Lagrangian multipliers for satisfying the complicating constraints.  In turn, 
each subproblem is formulated with a set of local constraints and an objective function that includes 
Lagrangian penalty terms.  In this way, the computational burden at the master level can be minimized 
since it does not need to deal with actual decision variables (which are handled at the subproblem 
level) or run optimization to set target values for subproblems.  In other words, the master level in the 
LR approach only performs the regulating duty, rather than the optimization duty as the case in MDO 
and CO discussed in Section 1.2. 
The intuition of the Lagrangian multipliers is similar to the penalty concept in optimization.  Each 
Lagrangian multiplier can be viewed as a price associated with a common constraint.  When the 
price’s value increases, the team will tend to select the solution point that is far from the boundary of 
the associated constraint.  Similarly, when the price’s value decreases, the team will attempt the 
solution point closer to the constraint boundary.  In this way, the price values can be regulated to 
coordinate the solution points of different teams to yield an overall optimal and feasible solution. 

 
Assume that there are t teams to minimize a common objective, f.  Then, the global view of the 
optimization problem can be expressed as follows. 
 ),,,(min 21 tf xxx

x
  

 subject to 0)( ≤xgc , 0)( 11 ≤xg , 0)( 22 ≤xg ,…, 0)( ≤tt xg  (5) 
 
The above optimization problem can be solved by individual teams if the common (or complicating) 
constraints (gc) are removed (or relaxed).  A Lagrangian function (symbolized as L) is then employed 
for relaxation purpose, and its formulation is given below [15]. 
 ( ) ( ) ( )xgλxλx c

TfL ⋅+=,  (6) 
 
where λλλλ is the Lagrangian multiplier vector.  Given a feasible solution and 0≥λ , the term ( )xgλ c

T ⋅  
is nonpositive.  In other words, if ( ) ( )λxx ,Lf < , the solution must be infeasible. 

Suppose that the values of the Lagrangian multipliers are given (symbolized as λ ).  The optimization 
subproblem of the kth team can be formulated as follows. 
 ( ) ),(,min kkc

T
kkf

k
−− ⋅+ xxgλxx

x
 

 subject to 0)( ≤kk xg  (7) 
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Although the LR approach has been applied for decentralized optimization problems, it may 
experience difficulty in convergence [21].  In this context, we have proposed an objective adjustment 
factor (symbolized as k) in the formulation [22].  As a result, the Lagrangian function of the kth team 
(symbolized as Lk) can be reformulated as follows. 
 ( ) ),(, kkc

T
kkkk fL −− ⋅+⋅= xxgλxx  (8) 

 
The intuition of the objective adjustment factor is as follows.  In the LR approach, although all the 
teams are responsible for optimizing the original objective, they essentially search for a solution point 
based on the Lagrangian function in Formulation (6).  If the Lagrangian terms (i.e., c

T gλ ⋅ ) are 
substantially larger than the objective term (i.e., f), teams may not be able to directly get a solution 
point that yields a better objective value.  Then, the objective adjustment factor is used to balance the 
effects from both the objective term (i.e., f) and the Lagrangian terms (i.e., c

T gλ ⋅ ).  In our previous 
research, we use the following formulations to quantify the objective adjustment factor. 

 
i

i
i xf

xLr
∂∂
∂∂

=   ( ) a
kakkk rrr /1

21 ⋅⋅⋅≈   (9) 

 
where ri is the ratio of the Lagrangian sensitivity to the objective sensitivity based on the variable xi.  
The value of the Lagrangian sensitivity is used to reflect how effective of the variable xi to modify the 
Lagrangian function.  On the other hand, the value of the objective sensitivity is used to reflect how 
effective of the variable xi to modify the objective function.  Then, this ratio ri provides the essential 
means to adjust the strength of the objective term (f) in the Lagrangian function. 

 
By referencing [15], the procedure of solving a decentralized teambased optimization problem is 
shown in Figure 1.  In Step 1 of the procedure, the original design problem is formulated according to 
Formulation (1) and partitioned according to Formulation (2).  In Step 2, the LR approach is invoked, 
and each team is required to solve a subproblem according to the following formulation. 
 ( ) ),(,min kkc

T
kkkk f

k
−− ⋅+⋅ xxgxx

x
λ  

 subject to 0)( ≤kk xg  (10) 
 
Then, we initialize design variables (xk), Lagrangian multipliers (λ), and the objective adjustment 
factor (k) for each team in Step 3.  In Step 4, each team solves their design subproblem based on the 
given information.  Then, we check whether all team’s results converge to a single solution or not.  If 
convergence has not been met yet, we update the Lagrangian multipliers according to the least design 
solution and solve the subproblems at the team level again in Step 4.  If convergence is met, we 
output the results. 
To update the Lagrangian multipliers, different schemes have been proposed, such as the cutting plane 
method [23] and the bundle method [24].  In this paper, we employ the subgradient method [15], [25] 
since most of other approaches require the master level to perform optimization, thus defeating the 
original purpose of decentralizing.  To update the Lagrangian multipliers at the ith iteration, the 
following formulation is used. 

 
)(
)(

)(

)(
)()1()(

i
c

i
ciii k

xg
xgλλ += −  (11) 

 
where λ(i) is the Lagrangian multipliers at the ith iteration; cg  is the norm (or magnitude) of the 
vector gc; k(i) is a step size (a preset constant) at the ith iteration, which can be determined by the 
following formulation. 

 
iba

k i

⋅+
=

1)(  (12) 
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where a and b are scalar constants, and they are set as a=1 and b=0.1 in this paper.  It has been proven 
that if the step size follows the conditions formulated in (13) below (along with the convexity 
condition), the procedure based on the subgradient method will converge to the optimal solution in 
finite steps [21].  However, it has been stated that the convergence rate can be very slow [15]. 

 0lim )( →
∞→

i

i
k  ∑

∞

=

∞→
1

)(

i

ik  (13) 

 


 
While the LR approach can be numerically executed as described above, it also implicates how a 
teambased design process can proceed in a decentralized environment.  Initially, it is supposed that 
design teams are set up, and each of them has their expertise and partial control on the final design, as 
well as a formulated objective that is suitable for the context of the team (e.g., high or low 
responsibility).  Upon the consensus of the teams (or the company’s policy), they periodically share 
their design decisions with each other so that they can update the current design progress at some 
specific points of the design process. 
In the meantime, there exist some common constraints that are collectively affected by a number of 
teams.  If these common constraints are violated, the involved teams will be penalized such that they 
will seek for the conservative solutions that will reduce the chance of violating the common 
constraints.  Teams can receive different degrees of penalty for regulating the team’s behavior towards 
the common constraints.  Then, this penalizing mechanism can indirectly coordinate different teams to 
satisfy the common constraints. 
In the algorithmic procedure, the penalizing mechanism is done through the Lagrangian terms in the 
objective function (i.e., c

T gλ ⋅ ).  By analogy, similar penalizing mechanism can be arranged according 
to the actual team design context (such as setting up the prices of violating common constraints and 
the corresponding priceupdate mechanism).  In such a way, each team can still maintain its autonomy 
to complete its partial design, while it is motivated to avoid violation of common constraints. 

 
The welded beam design example is adapted from [26], and it is illustrated in Figure 2.  In this 
example, two teams are set up: a beam team that determines the beam’s geometry (i.e., t and b) and a 
weld team that determines the weld’s geometry (i.e., h and l).  Five design constraints are considered, 
and they are the beam deflection (δ), the bending stress in the beam (σ), the buckling load (F), weld 

Step 1: formulate and partition the original design 
problem 

Step 2: formulate the design subproblem for each team 

Step 3: initialize the values of design variables, 
Lagrangian multipliers, and objective adjustment factor 

Step : solve the optimization subproblems at the team 
level 

Step 6: update the 
Lagrangian multipliers Step 5: converged? 

Step 7: output the results 

Yes 

No 
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geometry compatibility, and the shear stress in the weld (τ).  The parametric constants of this welded 
beam design are listed in Table 3. 

 


 


Parameter Symbol Value 
Welding cost c1 ($/mm3) 6.741e5 
Beam material cost c2 ($/mm3) 2.936e6 
Beam’s length L (mm) 355 
Applied force Fo (kN) 27 
Young’s modulus E (GPa) 206.84 
Shear modulus G (GPa) 82.737 
Max. deflection δmax (mm) 6 
Max. beam bending stress σmax (MPa) 200 
Max. weld shear stress τmax (MPa) 90 

 
After problem formulation and partitioning, the objective of the beam team is to minimize the beam 
material cost (f1).  Also, it is responsible for three local design constraints, which are related to the 
beam deflection (g1), the bending stress in the beam (g2), and the buckling load (g3).  The objective 
and constraints of the beam team are formulated as follows. 
 ( )lLtbcf += 21  (14) 

 04
max3

3
0

1 ≤−= δ
bEt
LFg  (15) 

 0
6

max2
0

2 ≤−= σ
bt

LFg  (16) 

 0
42

1
)36/(013.4

2

62

03 ≤







−−=

G
E

L
t

L
btEG

Fg  (17) 

On the other hand, the objective of the weld team is to minimize the welding cost (f2) subject to two 
constraints which are common for both teams, i.e., weld geometry compatibility (g4) and the weld 
shear stress (g5).  The objective of the weld team and the common constraints are formulated below. 
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 lhcf 2

12 =  (18) 
 04 ≤−= bhg  (19) 

 0)(
2

2)( max
2""'2'

5 ≤−++= τττττ
R
lg  (20) 

 where 
hl

F
2

0' =τ , 
22

230
"

24)(232
6

2






 +

+








++






 +=

thl
thhlhl

lLFτ  

 
Given the above formulations, several parameters are further set in order to execute the solution 
procedure, and they are listed as follows: 
• Initial solution: x(0) = [t(0), b(0), h(0), l(0)] = [220,10,8,150] 
• Initial Lagrangian multipliers: [λ1

(0), λ2
(0)] = [1,1] 

• Variable bounds: 0.6x(0) ≤ [t, b, h, l] ≤ 1.4x(0) 
• [µ1, µ2] = [200,600] 
 

Collaborative Model 
Beam Team 

52412211,
min ggff

bt
λλ +++  

Subject to 01 ≤g , 02 ≤g , 03 ≤g  
308132 ≤≤ t , 146 ≤≤ b  

Weld Team 
52412211,

min ggff
lh

λλ +++  

Subject to 2.118.4 ≤≤ h , 21090 ≤≤ l  

oooerative Model 
Beam Team 

524111,
min ggf

bt
λλ ++  

Subject to 01 ≤g , 02 ≤g , 03 ≤g  
308132 ≤≤ t , 146 ≤≤ b  

Weld Team 
524122,

min ggf
lh

λλ ++  

Subject to 2.118.4 ≤≤ h , 21090 ≤≤ l  

Beam Leader Model 
Beam Team 

52412211,
min ggff

bt
λλ +++  

Subject to 01 ≤g , 02 ≤g , 03 ≤g  
308132 ≤≤ t , 146 ≤≤ b  

Weld Team 
524122,

min ggf
lh

λλ ++  

Subject to 2.118.4 ≤≤ h , 21090 ≤≤ l  

Weld Leader Model 
Beam Team 

524111,
min ggf

bt
λλ ++  

Subject to 01 ≤g , 02 ≤g , 03 ≤g  
308132 ≤≤ t , 146 ≤≤ b  

Weld Team 
52412211,

min ggff
lh

λλ +++  

Subject to 2.118.4 ≤≤ h , 21090 ≤≤ l  



Then, four models of decentralized optimal design are set, and the formulations are shown in Figure 3.  
Note that the main difference of these models lies in the formulations of the team’s objectives.  These 
models are run for 100 iterations according to the solution procedure in Figure 1.  Figure 4 shows the 
plots of the overall cost (i.e., f1 + f2) at each iteration.  The solution results after 100 iterations are 
listed in Table 4, which also shows the solution of seamless cooperation for comparison. 
Figure 4 shows that all models exhibit an oscillation nature in the solution process.  Since two teams 
are arranged to make design decisions in a decentralized manner, they need more iterations to 
exchange their design solutions before converging to a stable solution.  Though all models show a 
converging behavior during the solution process, it is clear that the collaborative model has a narrower 
range of oscillation compared with the noncooperative model.  As mentioned in Section 2.3, since the 
collaborative model formulates the teams to share the common objective, it will be easier for these 
teams to converge to a stable solution. 
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Model t (mm) b (mm) h (mm) l (mm) f1 ($) f2 ($) f1 + f2 ($) 
Collaborative 215.49 6.19 5.71 90.00 1.7427 0.1978 1.9405 
Noncooperative 215.49 6.19 4.80 112.49 1.8308 0.1747 2.0055 
Beam leader 215.49 6.19 4.80 112.49 1.8308 0.1747 2.0055 
Weld leader 215.49 6.19 5.71 90.00 1.7427 0.1978 1.9405 
Seamless cooperation 215.49 6.19 5.67 90.00 1.7427 0.1950 1.9377 
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In view of the optimality of the solution, Table 4 shows that both the collaborative and weld leader 
models yield the solutions that are close to the optimal solution (which is also shown in the last row of 
Table 4 in view of minimizing f1+f2 for comparison).  It supports that the teambased design models 
are capable to approach to the optimal design in spite of the limited communication during the design 
process.  Comparatively, the noncooperative and beam leader models converge to a suboptimal 
solution, which suggests the weld geometry with a smaller cross section and a longer length. 
Notably, both collaborative and weld leader models yield the same intermediate solutions throughout 
iterations (not just the final solution), as well as the noncooperative and beam leader models yield the 
same results.  This observation can be explained by the fact that the weld team’s objective (i.e., f2 in 
Equation (18)) does not contain the variables of the beam team (i.e., t and b).  Therefore, the term 
“2f2” in the beam’s objective function can be simply viewed as a constant term during the 
optimization of the beam’s subproblem.  As a result, in view of optimization, the collaborative model 
and the weld leader model are essentially equivalent, as well as the noncooperative model and the 
beam leader model. 
In addition, we have reexecuted the noncooperative model, and the model is able to yield solutions 
converging to the range of the optimal solution after about 160 iterations.  The results are plotted in 
Figure 5.  Even though it is not shown in the plot, the actual values of Lagrangian multipliers are in 
fact changing slightly after each iteration.  Thus, after a certain number of iterations, the values of 
Lagrangian multipliers can alter the final solution from the suboptimal range to the range of the 
optimal solution, as indicated in Figure 5.  This observation implies that the noncooperative model, in 
spite of its disadvantaged setup, can still lead to an optimal solution if sufficient numbers of iterations 
are allowed.  Also, it implies that setting the stopping criteria can be challenging as the improper 
criteria can lead to premature or suboptimal solutions. 
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In team design, common constraints are often the bottleneck for decentralized decision making.  
Particularly, a team may need to wait for another team’s decision to avoid constraint violation.  In this 
context, this paper contributes to investigating different characteristics of teams in interactions (via 
responsibility and controllability) and the possible scheme for concurrent decision making (via the 
Lagrangian relaxation (LR) approach).  The intuition of the LR approach is to apply penalty terms to 
regulate teams’ decisions to avoid violation of common constraints.  The welded beam design example 
illustrates the feasibility of this concept. 
The longterm goal of this research is to provide a systematic approach to construct an appropriate 
computing structure for coordinating teams and their design subproblems to achieve the overall 
design.  This paper has focused on parallel processes.  However, both parallel and sequential processes 
should be coordinated for effective team design.  The next step of this research is to investigate, given 
a largescale complex design problem, how to practically propose an appropriate teambased 
computing structure that will lead to robust design results with minimum communication expenses.  
One direction of future work is to focus on utilizing the abundant results of the LR approach from 
applied mathematics to develop a robust framework for solving decentralized design problems. 
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