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


    


 
 

 
The use of constraintbased and optimization techniques have proven valuable throughout the design 
process. Environments for such techniques are becoming available as stand alone and addon packages 
for CAE environments. Most preliminary design layouts are performed on CAD environments; such 
environments also provide the designer with the mechanism to enrich such models with additional 
information, namely, annotation. This paper presents an approach that allows the designer to annotate 
the model with the design constraints, including its goals, relationships and bounds. These can then be 
used as the design evolves. To model solutions, that firstly, monitor and satisfy the constraints, and 
then present the opportunity to find an optimal solution. The context of this research is mechanism 
synthesis and machine system improvement. Therefore the constraints mainly dictate the geometric, 
topological and kinematics properties of a given design. The approach is demonstrated with the 
synthesis of a transfer mechanism in a production line. 




The design process can be considered to be constraint oriented [1]. It involves the identification, 
negotiation and resolution of an evolving set of constraints. The nature of engineering design is such 
that a problem can be rarely considered as meeting only a single objective. In reality, the designer is 
trying to meet a whole range of goals, extending from basic functional requirements through to more 
vaguely defined parameters of style and form. In contemporary machine system design and 
development constraints not only come from the correct configuration of the system to produce the 
required function and satisfy company specifications, design rules and international standards, but 
there has to be a consideration of the interactions of a mechatronic environment: wiring, electronic 
circuitry and performance bounds induced by control software. It is not surprising, as the design 
evolves, that the designer misses or overlooks some of these constraints [2]. Missed constraints at the 
design stage can be expensive and time consuming to put right in the down stream activities. 
Nowadays most of the design activities are conducted in CAD environments, constraintbased 
modelling is also employed to aid a variety of the activities throughout this process (cf. figure 1). So, 
with the above point in mind, it would be advantageous to: 
 Attach constraints at a ‘high level’ to the machine design representation as it is being produced. 
 Retain the ability to automate the constraint monitoring process, so that all applicable constraints 

in a machine’s design are checked, without the designer having manually to initiate a search for 
constraint violations. 

 Investigate the effects of design changes to configuration and assembly of mechanism designs 
and find failure modes states. 

 Retain design constraint knowledge for collaborating or followon users. 
 
The work presented in this paper is directed at the types of machine system design that takes place in 
small to medium sized enterprises. Very often such companies have a base range of products, which 
they offer. However the resources are such that there is not the expertise or time available to perform 
any indepth analysis [], or SMEs the modelling environment discussed in this paper has proved 
effective as a stand alone tool for such companies [4]. 
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
This section gives an overview of two aspects of design, related to the work presented in this paper. 
These aspects are: constraints in the design process and, the application of annotation to aid designer 
through the design process. 
 

 
 


 


The importance of constraints has previously been discussed in design activities discussed in Suh [5], 
Ullman [6] and Pahl and Beitz [7], and is the basis of the approach presented by Gross [1]. Such 
research has shown that the central element of the design process is the recognition, formulation, and 
satisfaction of constraints which are constantly added, removed and modified in an iterative fashion. 
Constraints can represent design rules, relations, conventions, and natural laws to be maintained and 
adhered to throughout the design activity [1, 2, 5]. Some constraints and objectives are given at the 
outset of a design but many more are adopted along the way partly as a result of a greater 
understanding of the design task being obtained. Varying the constraints and the objectives is part of 
the design process. The knowledge of the constraints that bound the limits of performance allows the 
designer to develop strategies to look firstly to define what the current performance of the design is. It 
gives the ability to search for potential optimal solutions to the design performance [3]. As the design 
progresses the understanding of the design space improves and further constraints become apparent. If 
some or all of the constraints are in conflict there is no feasible solution that simultaneously satisfies 
all the constraints. Figure 2 depicts regions of individual constraint satisfaction as circles. In Figure 
2(a) these sets overlap and a fully feasible solution exists. However, in Figure 2(b), the constraints are 
in conflict and the intersection of the sets is empty. In this case, the experience of the designer is 
required to correctly identify the constraints that can be relaxed or removed in order to obtain a set of 
feasible solutions without jeopardising the quality of the final product. 
 

 



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Constraint based approaches has shown merit throughout the design activity. A designer most 
commonly encounters constraint in the construction of design representations and models. These are 
generally geometric constraints, of two forms: numerical constraints, such as distance and angle, 
which gives numerical information and symbolic constraints, such as coincidence and parallelism. 
Discussion on their application and effectiveness can be found in the works of Hoffmann [8], 
Mullineux [9] and Anderl and Mendgen [10]. Work by Thornton [11], Johnston[12], Matthews 
[3] has provided engineers with problem solving and analysis tools at the embodiment stage and the 
early detailed stages of  the design process. In general at these stages, the constraints are isolated from 
the designer within the CAD/CAE software. Such software systems offer the designer the efficient 
ability to construct 2D and 3D models and respective assemblies, but they do not always allow all the 
information a designer might require to be extracted or processed. Previous similar research to that 
presented in this paper has been undertaken by Bowen et al [13] who developed a constraintbased 
language capable of representing a design as a collection of variables. Constraints are then specified 
between these variables. Constraint monitoring is then employed to evaluate the design. The approach 
was limited due to the fact that all variables must be defined at the outset. An alternative approach has 
been proposed by the AKN group, who produced a standalone software package, CoEditor [2]. This 
ontologybased environment allowed the designer to produce a design then edit and check constraints 
on configurations. Although limited in functionality, the approach shows merit for design tasks and for 
wider application within a commercial environment. 
 
Current applications of constraintsbased modelling aim to resolve conflicts in a proposed or existing 
design. It is common to apply such constraints at various levels: hard and soft constraints [3, 14]. The 
hard constraints relate to the function of the part or system, whereas the soft constraints relate to the 
performance of the system. It is generally the soft constraints that the designer has to resolve once the 
CAD model has been produced. When such constraints are employed there is a need to process/ 
handle the information they contain. To this end there are three types of handling approaches based on 
numerical techniques used for design and modelling:   used to check if the 
proposed design solutions provided do not violate any specified constraints;  
finds feasible solutions to constraints (without considering an optimal solution); and, 
 aims to find the best solutions from alternatives in order to achieve the objectives, 
subject to constraints; this requires some measure of performance of a solution. 

 

Core to this approach is the ability to ‘attach’ the constraints to elements/ features of the designed 
mechanism. One well established method of attaching additional information to a CAD representation 
is annotation. Annotation can be simply understood as an act of adding extra information. Forms of 
annotation have long been a part of engineering practice [e.g. 15, 16]. Annotation is used to aid 
communication both: 
 
 , such as engineers annotating a depiction of a design during a facetoface discussion of 

the product 
 , such as an engineer sending an annotated depiction of the product to a colleague. 
 
With the rapid development of digital techniques, many CAD systems have already introduced 
‘annotation’ support. For examples, AutoCAD 2008 offers automatically scaled annotation 
capability;[17]; SolidEdges V19 supports the ASME Y14.41 standards for 3D annotation [18]; 
Pro/ENGINEER provides annotations of dimensions, tolerances, surface finish, etc.[19]; NX5 allows 
users to create annotation manufacturing information [20]; and CATIA V5R13 supports creation 
annotation like tolerance information [21]. However, such ‘annotation’ functions provided are 
normally limited to a single type (e.g. freetext, URI or numerical format), they cannot satisfy the 
requirements of annotation schemes supporting contextspecific information and multiple viewpoints. 
Furthermore, the annotation strategy normally adopted is the ‘inline’ annotation’ method, in which 
the content of the annotation is actually associated with product models, and therefore it is only 
reusable for invariant topologies. More importantly, it is difficult to place multiple independent sets 
of annotation in the same document as the syntax of the tokens used may easily interfere with one 
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another [22]. Thus, an extension to existing ‘annotation’ functions is really needed. Ding  [23] 
have explored the possibility of using ‘’ annotation methods on the CAD models, which the 
means that the annotation is stored in a separate external document utilizing a system of references or 
pointers to indicate the element (such as a face, or a feature within a CAD model) to which the 
annotation refers. The ‘standoff’ annotation has many advantages. It is a good mechanism to support 
multiple viewpoints. The information pertaining to one viewpoint can be put in a separate annotation 
file; and multiple independent annotation files can be safely applied to the same CAD model. Thus, it 
allows contextspecific information to be manipulated into different viewpoints, freely tailored to a 
reduced version for reasons of security/IP and the requirements of different target users, and re
organized for various purposes and applications. It allows support of knowledge sharing throughout a 
products lifecycle [24, 25, 26]. The same annotation file can be applied to any copy of the model in 
any format, so that the annotation information can be independent from the model format and shared 
by various users. It is important that all users can contribute their experiences and knowledge by 
separate annotation rather than by editing the CAD models directly.  

 

Prior research has shown that modelling a design problem using constraints is useful, but: 
 

 During the initial construction of representations, the designers often miss important 
constraints [2] 

 Generally the user is isolated from the respective constraints, limited ability to employ the 
constraint handling techniques [3]. 

 
eanwhile, ‘standoff’ annotation has shown the capabilities of insertion of multiple contextspecific 
information and being independent of model format (e.g. CAD model). The question is whether 
‘standoff’ annotation is able to overcome the issues identified for previous constraint based design 
applications. In other words, how should annotation be used effectively to drive constraint based 
design The ‘standoff’ annotation method offers many advantages. Firstly, the same annotation file 
can be applied to any copy of the model in any format; this allows the annotation information to be 
shared by a wide variety of users. Secondly, multiple independent annotation files can be safely 
applied to the same CAD model. Thus, it allows contextspecific information to be stored in a number 
of separate files and passed around only as needed. Thirdly, annotations can be edited, circulated, and 
processed independently of the model, and the CAD model remains unchanged. 
 


To resolve the problem identified in section 1, an approach using constraints and standoff annotation 
has been created. This section introduces the initial implementation of the approach. The overall 
approach is shown in figure 3.  
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
To demonstrate the proposed approach, a prototype system has been implemented within a 
commercially available design software package: Unigraphics NX3. Visual C++ and Microsoft XML 
Core Services (MSXML) are used to write/read the XMLbased annotation files. The NX3 pen C 
API is employed to build a reference system between the annotation files to the specific entities of the 
CAD model that the annotations refer to. In addition, the UIStyler dialogue in NX3 has been utilized 
to develop a friendly user interfaces. 


The constraint modeller [9] was created to help understand the design process. The software is 
designed to handle evolving design structures, shifting design goals, and changing design constraints. 
The constraint modeller is an interactive tool allowing users to easily adjust design parameters, and 
modify, add or remove design constraints. It allows the user to quickly generate feasible solutions and 
the corresponding set of design parameters. It provides an interface where the influence of the design 
constraints can be ascertained and the effect on the resulting design can be studied and visualized. The 
interface language of the constraint modeller is based on an underlying Clike synta. This language is 
used to declare and assign values to the design parameters, to create geometric objects such as points, 
lines and curves, and to define and solve design constraints. The language includes much of the 
common functionality of C such as array structures, mathematical operations and functions. In 
addition, other bespoke functions required to model engineering systems are included. These include 
numerical differentiation algorithms for kinematic analysis of mechanisms, curve fitting procedures 
for defining cam profiles, and various visualization tools. The language also supports user defined 
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functions which can be invoked as required. The body of the function itself can consist of any 
combination of other usersupplied commands and commands from the interface language. Functions 
can take any number of input variables and can return any number of output values. An important 
inbuilt function is the rule command. Each time the rule command is invoked a “constraint rule” is 
defined which is associated to a mathematical expression written in terms of some or all of the design 
parameters. For example if  is a design parameter representing the velocity of a point in a 
mechanism then the following statement defines the constraint rule specifying that the velocity of the 
point should be equal to 10.0.  
 
( 

Any number of  statements can be used to build up the constraint set of a given problem. During 
resolution the constraint expression for each rule command is evaluated and the sum of the squares is 
calculated. If this is zero then the constraint set is already satisfied, if not the constraint resolution 
process commences. The constraint software uses numerical optimization methods [27] to minimize 
the objective function formed from the sum of the squares of the constraint expressions.. The sum of 
the squares of the constraint expressions are used to generate the corresponding objective function. 
Mathematically, this problem is written in equation 1 

 minimize   () = Σ ()2       (1) 
where  is the vector of the  design parameters and () corresponds to the th constraint rule. For 
practical problems the “best compromise” solution may be unacceptable because the corresponding 
design violates one or more essential constraints or physical laws. In this case additional weighting 
terms can be added to high priority constraint expressions and the resulting objective function is then 
defined equation 2 

 ()  =  Σ [ () ]2        (2) 

where  is the weighting term corresponding to the th constraint rule. arge relative weighting 
terms act as penalty factors against the violation of the corresponding constraint rule and help to 
ensure these more important constraints are satisfied. All algorithms for optimization problems require 
at least one set of design parameters to use as a starting point denoted by 0. From 0 a sequence is 
generated  that terminates when a solution has been found to the required accuracy or when no 
further progress can be made. Methods differ by how they move from one iterate to the next with a 
lower value of the objective function. The simplest numerical algorithms for the solution of 
optimization problems are directsearch methods [9].  
 

For this approach to be successful, there are three particular aspects of information that the constraint 
modelling environment requires:  
     The constraint modelling environment adopts simple wireframe 

entities, the basic geometric of which are points, lines and circular arcs. Thus, the transformation 
of the 3D solid entities in a CAD model to the wireframe entities is needed. It is different from the 
transformation to other lightweight representations [28], which not only depends on the geometry 
and topology, but also depends on the functions of the entities in the system.  

  Constraints can be broadly classified into two types: hard and soft. Generally, the 
hard constraints are concerned with assembly, which ensure that the various parts of a system 
connect together correctly [14]. 

  The variables refer to two key aspects:
 The variables for optimization process refer to the variables that are needed for building 

constraints and execute optimization process.
 The variables for optimization of a product represent the variables that define geometry 

and topology of the product, and can be updated after optimization. Such variables must 
link with the parameters that appear in the CAD model.

 

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A technique/ approach is required to pass data between the constraint modeling environment and the 
CAD environment. Building on previous work by the authors [23, 24] XML is employed. XML is a 
descendant of SGML (the Standard Generalized Markup Language, ISO 8879) and became an ISO 
standard in 1998. XML offers many benefits, including: XML is both computer interpretable and 
human readable. XML tag names are normally transferred from the meaning of the data and therefore 
they are readable; XML allows users to define their own tags based on the specific needs of a 
document, and therefore it is extensible; and XML lies in the separation of the information and its 
presentation so that the content of the XML file can be transformed for different viewers, devices and 
applications.  
 
The structure of the XML schema aims to record the information presented in section 3.3, and have 
the capability of subsequent structuring and manipulation of the information into a computer
processable form. In addition, the structure of the schema must be open so as to be easily expanded to 
other application domains. The general structure of the XML schema is designed to be flat, which 
consists of two main sections:  and . The  records the metadata 
for the annotation file and the corresponding references to the CAD model, including the path and the 
file name of the CAD model (), the specific element that the annotation links to 
(), the people who insert the annotation (), the dates of creation and 
the latest modification (); what particular viewpoints the annotation belongs to (), e.g. 
constraints optimization, etc. The   describes the detailed annotation information. The 
structure of the   could be a special structure, which is open for users to define, as the 
number of different possible structures of information required for various applications throughout a 
product lifecycle is effectively infinite. For the constraintbased design, the structure of the 
is specified as: constructing information of the product (), defining information of the motion 
added on the product (), and optimising information for the product ().  
 The  further includes three aspects:  

and . The  is the name of the assembly, which means a component can 
own multiple annotation files to support different assemblies the component is involved, and only 
the annotation files for the particular assembly are used. The  defines the local 
geometry that is specially adopted by the constraintbased language [9]. It is described by the 
 and the . The  records the parameters that 
actually define the geometry and topology of a product, and the variables needed for the 
constraints. According to different types of the parameters, it is divided into , 
 and , each of which further consists of name and a value. Here, the 
value for the parameter represents the initial value before the optimization, and it is able to be 
updated during the optimization and then finally used to update the CAD model. The  
stores the information that transforms the entities in the CAD model to the wireframe entities 
defined in the constraintbased environment.  

 The  generally gives two aspects of the information: the motion information that is added to 
the product, and what output needs to be measured. For example, a circledriving motion, it 
includes which model space it belongs to, what kind of motion, definition of each motion step, and 
the output entity. 

 The  records constraints in the product. As discussed earlier, it includes the hard 
constraints and the soft constraints. According to different kinds of constraints, it can be further 
divided, such as the connection link, the assembly link, and the speed requirement. 



An XMLbased annotation file can be generated by collecting the corresponding information and 
written based on the XML schema. The information that is required for the optimization can be gained 
by three major ways:  
       Each component model can have one or more 

template annotation files, each of which includes some standard information required for the 
constraintbased environment. These template annotation files can be initialized once the 
component is added to an assembly. For example, a triangleshape component is normally 
transformed into three lines in the constraintbased environment. Such information can be stored 
in an annotation file with the CAD model of the component, and used to generate a new 
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annotation file by initialising the parameters giving the appropriate coordinates, lengths and 
model spaces when the component is used by a new assembly. 

     A lot of information needed for the constraintbased 
environment that can be extracted from the CAD model. For example, a mateassembly usually 
refers to a hard constraint – connection link.  

   It is always possible there is extra information required for the 
constraintbased environment but that cannot be obtained from the CAD model. To support users 
on easily inputting such information, various interfaces have been developed, such as the 
interface to input hard constraints like connection link, the interface to input soft constraints and 
the interfaces to input transformation information.  



 



The case study is a transfer mechanism used to pickandplace produce from one conveyor to another 
conveyor. Given new package and speed requirements (as shown in Figure 4), the design needs to be 
modified and optimied the speed at the pickup position must be 1600mm/sec in the x direction, and 
the speed at the dropoff position must be 10mm/sec in the y direction. 
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


Figure 5(a) shows the original mechanism of the machine. Users annotate the requirements through 
various interfaces within the CAD environment, which are shown in Figure 5(b). All the new 
requirements are stored into separate XMLbased annotation documents, which are linked back to the 
CAD model. In this case, there are five XMLbased annotation files, which are linked with the base 
and the moving links. Figure 5(c) shows the annotation files. Based on these annotation files, a 
developed module within the CAD system is used to generate a constraint model, which can be used to 
optimize the design. The XML files form a record of the constraints as a design evolves. Figure 5(d) 
shows the constraint model. After optimising the constraint model, the annotation files are modified. 
Finally, the modified annotation files are used to update the original mechanism. Figure 5(e) shows the 
optimized mechanism in the CAD environment. 



As design has change to become increasing knowledgeintensive covering broad areas, the constraints 
include not only from traditional design issues, like structural mechanics, control systems, material 
properties, but also from the requirements at later stages of a product lifecycle, such as manufacturing 
process, inspection, service feedback and various human and business related issues. It is easily for 
designers, especially for new designers, miss important constraints, which could pay a high penalty 
cost later. Both academics and software industry have shown their interests on these issues and some 
supporting tools have been developed, such as Coeditor and annotation tools in CAD systems. 
However, the major results are still limited to geometrical constraints, numerical calculations and 
small parts of manufacturing rules. This paper proposed a new strategy using the strengths of standoff 
annotation combined with constraint modeller to allow the association of product data throughout the 
lifecycle with geometric form of the product. A prototype implementation has been developed and a 
case study has been provided to demonstrate the proposed method. Although the initial case study has 
been aimed at the machine design, the process and outcome would be beneficial to design activities 
that span across different domains and various resource rich companies. Comparing to other method, 
the proposed AnnaCon has the following advantages: 
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1. The standoff annotation method records the constraints in separately documents so that it allows 
users to retrieve/reuse the constraints outside of CAD systems. On the other hand, the knowledge 
and new constraints required from other users (e.g. collaborative partners, or users at later stages 
of a product lifecycle) can also be feedback to the CAD models directly via separate annotation 
documents.  

2. The constraints are individually recorded in XMLbased format. XML is not only computer 
interpretable, but more important it can be assembled, tailored and transformed in different ways 
(e.g. through XSL/XSLT), for example, combining constraints pertaining to one viewpoint or one 
optimization process and tailoring subsets of the constraints for different users according to 
different level of security. Although the demonstrator shows the capability on how the annotated 
constraints to be used in the constraint modeller, the method can be easily extended to support any 
standalone software.  

3. The templates of standardized constraint annotations can be expanded by new applications and 
requirements, and therefore further support various design tools. In addition, the templates of 
standardized constraint annotations can not only help designers to escape respective work, but also 
minimize design errors and speed the design process.  

 
As design evolves, some constraints are added and others are removed. Thus, the future stream of 
research is to investigate the rationale for these changes and looking to see whether knowledge 
management techniques like data mining can be used to reorganize annotations so as to aid future 
designs of similar machine and avoid making the same ‘wrong’ design choices. Also to investigate 
how effective and ‘rich’ constraints could be for a design rationale indicator.  In addition, to avoid loss 
of standoff annotations when a CAD model is changed, further work is need to explore how 
annotations should cope with changes to underlying model  
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     
             
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             
            
   
              


5-48


