
9TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’07
16 – 18 OCTOBER 2007, MUNICH, GERMANY

ASSESSMENT AND IMPROVEMENT OF SOFTWARE
SYSTEMS BY APPLYING DSM
Han van Roosmalen
D2Groep B.V.

Keywords: DSM, Software Architecture, Assessment, Improvement

1 INTRODUCTION
The application of DSM proves to be a very valuable tool for providing oversight and detailed insight
in existing software systems. Based on the information shown in the DSM, managers and software
and/or system architects obtain up-to-date information about the current state of their system. Since
software DSMs provide technology-independent insight, more stakeholders can become informed
easily.

Insight in the architectural structure is extremely valuable to any organisation because it is the real
basis of the quality of their software system(s) and therewith the potential future of the system under
development. Although most software systems are developed with valid intentions and might be
documented properly, software architectures tend to erode overtime. With each new release,
functionality is added incorrectly sometimes by new developers unaware of the initial architecture or
due to extreme time-pressure. This will have a negative long-term effect on the overall quality
characteristics of the system and it becomes less understandable.

For this and other reasons, applying DSM can play a special role when assessing and improving
software systems.

2 ASSESSMENT
After more than one year of assessing different kind of systems, such as e-business, administrative and
technical (embedded) systems, it is clear that applying DSM consistently provides benefits to the
systems’ stakeholders. In a short amount of time, the system complexity is revealed and valuable
information is provided to the architect and the developers. After modelling the intended software
architecture in the DSM, insight to the other stakeholders improves dramatically. The actual system
complexity and adherence to the predefined software architecture is now demonstrated.

Figure 1. Example of an automatically generated DSM.

As an example figure 1 shows a DSM after the application code is imported. Even this relative simple
system shows already two breakages of the hierarchy and modularity.

The DSM can now be utilised to perform assessments with a multitude of goals, such as:

• assess the quality of a third party component;
• assess the quality (and therewith the actual value) of a software component as produced by a

supplier;

325

• determine ways to improve the system structure, e.g. amongst others by simulation of a possible
refactoring approach,

or perform more concrete actions such as determine the required steps to perform a platform port or to
decrease the memory footprint by identifying the actual used software parts.

Each assessment consists of the following steps:

1. Determine which software modules (internal and well as external) make up the system and thus
need to be investigated.

2. Load those modules into Lattix LDM and build the DSM.
3. Obtain a first draft overview of the structure.
4. Model the (intended) software architecture in the DSM.
5. With help of the systems architect and/or the architectural documents, determine correctness of

the architectural structure.
6. Record deviations and ways to improve the structure of the systems and/or underlying

components.

Possible assessment outcomes range from demonstrating the high quality of an excellent system
decomposition to stopping any further development effort on a poor quality system. The minimum
result of an assessment based on DSM is always an improved insight of the system at hand.

3 IMPROVEMENT
If the assessment outcome is sufficiently positive, the DSM is now used to guide the development
team to a better architecture for the next release(s). First activities to be done will be in the area of
improving the dependencies between the various software parts of the system. An improved
architecture is demonstrated easily when dependencies are moved to the lower triangular area of the
DSM.

Figure 2. Modeling of the intended architecture.

To continue with the previous example the system as presented in Figure 1, the model of a simple high
level architectural layering is added. Parts that belong to such layer are moved to it. In this case as
illustrated in Figure 2, as a result three inconsistencies appear in the upper triangle. Here software
parts (Java classes in this example) in a lower layer call classes in the layer above and thereby break
the intended layered architecture.

An improved hierarchy/structure will automatically provide a better understanding for all stakeholders
involved, and thereby decrease maintenance cycles and increase robustness. How this can be achieved
is first established in the DSM without making any changes to the code. If the structure does improve
as intended, the proposed changes can then be handed over to the developer and implemented. The
result of this action is then updated in the DSM and verified for correctness, making the DSM an even
more valuable tool for the system architect who now can track changes at on a more abstract level.
The architect can even allow and disallow predefined dependencies between software parts at different

326

levels of abstraction. In the DSM in Figure 2, this is indicated by the small coloured triangles, where
red indicates a violation of the design rule.

4 AUTOMATED CONTINUOUS ARCHITECTURE IMPROVEMENT
Of course the assessment and improvement processes can be combined as depicted in Figure 3. The
workflow is composed of the following steps:

• Step 1: Loading compiled source code into the DSM modelling tool
• Step 2: Store architecture intend as design rules into a repository
• Step 3 and 4: During the following compilation and build cycles verify adherence to design

rules
• Step 5: Generation of reports
• Step 6: Verify correctness and adapt source code where required

LDM

XML

Reports

Build System

.ldz

sources

binaries
LDC

Architecture modelling

Architecture verification

LDM: Lightweight Dependency Modelling
LDC: Lightweight Dependency Checking

Figure 3. Automatic Continuous Improvement of Architecture.

Steps 1, 2 and 6 are not automated and require interference of the architect and/or developers. The
other steps are automatically executed during a recompilation of the source code.

5 CONCLUSION
Problems with the architecture of software system can result in:

• release date slippage,
• an increase of the number of people involved in the software development and testing,
• complaints of software developers who build systems on top of other systems.

When these kinds of problems occur, it becomes necessary to revaluate the system’s structure and its
internal and external dependencies. Assessment of the system by means of DSM proves to be a very
effective option. To help the development team, the intended architecture can be modelled as a
guidance tool for further development.

Contact: Han van Roosmalen
D2Groep BV.
Hakgriend 42
3371 KA Hardinxveld-Giessendam
The Netherlands
+31.184.621.232
han.van.roosmalen@d2groep.nl
http://www.d2groep.nl

327

Assessment and Improvement of
Software Systems by applying DSM

Ing. Han van Roosmalen

D2Groep
Dedicated to Software Architecture

The Netherlands

9th International DSM Conference 2007- 2

Index

• Introduction
• Software Architecture
• Assessment
• Improvement
• Contact data

328

9th International DSM Conference 2007- 3

Introduction

• DSM to visualise components within a software system

• Software Architecture erodes overtime, due to:
– Time-to-market pressure
– Software architects leave the project
– Unclear architecture intentions
– System becomes too complex to comprehend
– No architecture verification during development

• Negative results:
– Short term:

• New features and changes are difficult to realise
– Long term:

• Quality characteristics (ISO9126) detoriate

9th International DSM Conference 2007- 4

Software Architecture

• When Software Architecture is not OK!

• What do you notice:
– Fuzzy answers
– Developers complaining on (external) lower level systems
– More developers and testers required
– Slippage of release dates
– Call-back of systems and/or components
– Customers going elsewhere

• Reason: Insight in Software Architecture is missing

• Software in your system is valuable!

329

9th International DSM Conference 2007- 5

Insight in Software Architecture

• Static analysis of high-level system
structure

– Decomposition/Structure
– Abstraction
– Layering

• For software architecture it is more
logical to position the lower level
components to the lower left
triangle, since this makes hierarchy
discovery easier

9th International DSM Conference 2007- 6

Insight in Software Architecture

interface

cyclic dependency

no intra-component dependencies

hierarchy breakage

class never used

layer skipping

330

9th International DSM Conference 2007- 7

Assessment

• DSM is software platform/technology neutral, e.g.:
– Embedded and professional systems:

• C/C++/Ada
– Administrative systems:

• .Net, Java, Delphi, Oracle
– E-business systems:

• J2EE, .Net, Hibernate, Spring
– Extensions via plug-ins
– Assessment possibilities are tool dependent

• code and/or database

• Software architecture DSMs are easy to understand:
– Architect
– Developer
– Project manager
– Stakeholders

9th International DSM Conference 2007- 8

Assessment

• Determine which software modules make up the system architecture
– Internal and external modules

• Load those modules (binaries)
– Obtain overview of the system structure
– Use partitioning algorithms

• Model the intended architecture
– Group functionality in components and layers
– Use partitioning algorithms

• Record deviations and improvement paths
– Find violations with respect to intended structure

331

9th International DSM Conference 2007- 9

Assessment Example 1

Partitioning based on strength provides first cut of realised architecture
and shows 2 hierarchy violations

Code read > 30 minutes vs. DSM < 2 minutes

9th International DSM Conference 2007- 10

Assessment Example 2

332

9th International DSM Conference 2007- 11

Assessment

• Results of an assessment:
– Insight in the current state of the actual software

• Not the colourful diagrams of the “how-it-should-be”
architecture

– Possible hot spots and areas of concern

9th International DSM Conference 2007- 12

Improvement

• Relocate software parts (classes/functions) to improve system structure
concerning:
– Violations in (strictly) layering
– Violations in hierarchy
– Violations in functionality to component mapping

• Simulate improvements without any code changes:
– Change DSM structure first
– Change code structure afterwards

• Verify improvements:
– Run structure verification checker directly after system (re)build
– Receive detailed reports on current violations

333

9th International DSM Conference 2007- 13

Improvement Example

More imperfections show up after layering and componentisation
of intended architecture

9th International DSM Conference 2007- 14

Improvement

• Steps:
– Add architecture intend to DSM model:

• Architecture diagrams
• Architect, architecture team

– Make violations visible

– Set-up design rules for automatic verification during software
compilation and build

334

9th International DSM Conference 2007- 15

Improvement

• Automated Continuous Architecture Improvement

LDM

XML

Reports

Build System

.ldz

sources

binaries LDC

Architecture modelling

Architecture verification

LDM: Lightweight Dependency Modelling
LDC: Lightweight Dependency Checking

9th International DSM Conference 2007- 16

Results of Improvement

• Improved insight and structure for:
– Architect
– Developer
– Tester

• Better architecture:
– Easier/faster to add new features

• Release dates can be set more realistic
– Reduction of test time
– Less/no erosion over software product life-cycle

• Some encountered side effects:
– Find external libraries easily (license concerns)
– Architect knows something is not perfect, but cannot pinpoint

problem (build-in obfuscation)
– Discussions that matter based on output (team communication)

335

9th International DSM Conference 2007- 17

Other possibilities with software DSMs

• Not discussed in detail
– Applicability during software product life cycle

• DSM/Lattix LDM tool further offers:
– Impact analyses
– Basic metrics
– Test coverage
– Automated verification after software build
– Automated reporting
– Automated e-mailing of results and violation

• DSM applicability during off shoring

9th International DSM Conference 2007- 18

Summary

• DSM can be used to visualise large/complex software systems easily
– DSM abstracts UML diagrams

• Using DSM provides dramatic insight into:
– the actual system (developed in-house or bought through vendor)

or
– third-party components (closed and/or open source)

• DSM guides further software architecture development
• DSM controls quality in home-grown and/or off shored product

development
– Very bad systems are caught
– Bad systems can be made better
– Good systems can be made excellent!

• Techniques discussed here cannot be achieved with every DSM
software architecture tool on the market

336

