
9TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’07
16 – 18 OCTOBER 2007, MUNICH, GERMANY

APPLYING DSM TO ENTERPRISE ARCHITECTURES
Frank Waldman and Neeraj Sangal
Lattix Inc.

Keywords: DSM, Enterprise Architecture, Multi-Domain

1 INTRODUCTION
The application of DSM in software development has been focused on visualization and analysis of
code bases associated with complex software applications. By extracting dependencies automatically
from the code base of an application, it has been possible to quickly build an initial DSM based upon
its code organization. The DSM must then be transformed to reflect the intended architecture of the
application, which can be accomplished through both manual manipulation of its hierarchy and the use
of special partitioning algorithms. Much value has been achieved by refactoring the code base to
eliminate dependencies which violate the intended architecture and enforcing rules for allowable
dependencies during subsequent builds of the application.

It is insufficient to consider today’s complex software systems only in terms of code written in a
specific language. They consist of multiple elements in a variety of languages, application
frameworks, web services, databases, and configuration files. It is preferable to treat a complex
software system as a system-of-systems than spans multiple domains. Interdependencies exist
between these many domains of the system and an understanding of the overall architecture as well as
the explicit structure of each domain is required.

Driven by customer requests, we have extended our DSM approach beyond software applications and
have developed the capability to map dependencies across the domains of an enterprise architecture.

2 MULTI-DOMAIN DSM APPROACH
Our approach to managing the architecture of software applications, which was presented at previous
DSM conferences [1−3], also works well in other domains. While each domain has different kinds of
elements and different types of dependencies, the same data model and DSM analysis can be applied.
For example, an application code base consists of packages with classes or directories with files, while
a database system includes schemas, tables, packages, sequences, etc. Database architectures can have
subsystems of schemas which are layered just like applications, with similar rules to prevent unwanted
interdependencies.

Mapping dependencies across domains in software systems has been accomplished through a variety
of techniques. For example, Hibernate enables the mapping of a database object to the application
objects which use it. A system that uses Hibernate has Java code, Hibernate mapping files, and
databases. Parsing just the Java code would provide interdependencies between Java classes, while
parsing the database code provides interdependencies of its elements. By parsing the Hibernate
mapping files, it is possible to extract the dependencies between database elements and Java code.
The resulting DSM is now a multi-domain DSM which includes the application, the Hibernate
mapping layer, and the database. In addition, it is possible to merge elements from the domains to
eliminate the mapping layer and show direct connections in the DSM (see Figure 1).

61

Figure 1. Multi-domain DSM of Application with Database

Spring Framework is a very popular application framework that uses metadata to configure enterprise
Java applications. The architecture of the enterprise application is driven by the Spring configuration,
which can now be parsed to extract the structure and dependencies between its elements such as
Spring beans and Java classes (as illustrated in Figure 2).

Figure 2. Multi-domain DSM with Application Framework

Finally, it is possible to extend this multi-domain approach to business processes and software
services. This, for the first time, allows users to understand the relationships between business
processes and the software architecture. Users can now query the system to understand which
business processes would be affected by changes to the software architecture or how the architecture
must change to accommodate evolving business processes.

3 CONCLUSION
Multi-domain DSM have can used to create the big picture view of the enterprise software
architecture, extracted from the actual implementation. The hierarchy in the multi-domain DSM
enables the scalability needed to represent the thousands of elements and millions of dependencies in
complex enterprise architectures. With the enterprise architecture DSM, it is possible to reduce risk
by better understanding the impact of change and how change propagates.

62

Contact: Frank Waldman
Lattix Inc.
8 Harper Circle
Andover, MA 01810
USA
+1.978.474.5022
+1.978.222.8468
frank.waldman@lattix.co
http://www.lattix.com

[3] Sangal N. New Techniques for Leveraging Hierarchy in DSMs. 7th International DSM
Conference, Seattle, November 2005.

63

REFERENCES
[1] Waldman F and Jordan E. Using DSMs to Manage the Architecture of Software Systems. 6th

International DSM Conference, Cambridge UK, September 2004.
[2] Waldman F and Sangal N. Results of DSM Analysis of Industrial Software Systems. 7th

International DSM Conference, Seattle, November 2005.

Applying DSM to
Enterprise Architectures

Frank Waldman and Neeraj Sangal

Lattix Inc.
USA

9th International DSM Conference 2007- 2

Index

• Introduction
• Enterprise Architecture (Domains, System of Systems)
• Evolution of Multi-Domain DSM Approach
• Example
• Summary
• Contact data

64

9th International DSM Conference 2007- 3

Software Architecture Views

Logical Development

DeploymentProcess

Scenarios

Kruchten, Philippe, “Architectural Blueprints—The “4+1” View Model
of Software Architecture,” IEEE Software 12(6), Nov 1995

Logical Development
(Implementation)

DeploymentProcess

Scenarios

, Philippe, “Architectural Blueprints—The “4+1” View Model
of Software Architecture,” IEEE Software 12(6), Nov 1995

9th International DSM Conference 2007- 4

S

p3p2p1

C2 C4C1 C3

Combines two Views
• Implementation View (Solid Arrows)
• Logical View (Dotted Arrows)

Combining Implementation and Logical Views

65

9th International DSM Conference 2007- 5

Combining Logical, Implementation, & Process Views

Ordered hierarchy reflects the
Implementation and Logical Views,
including layering and modules

Run-time dependencies reflect
the Process View

Static dependencies
reflect the Logical
View

9th International DSM Conference 2007- 6

Based on work by
Jo hn A. Z achman

VA Enterprise
Arch itectu re

DATA
What

F UNCTI ON
How

NETW ORK
Where

PEOPLE
Who

TI ME
When

MOTI VATI ON
Why

DATA
What

F UNCTI ON
How

NETW ORK
Where

PEOPLE
Who

TI ME
When

MOTI VATI ON
Why

S COPE
(CONTEX TUAL)

Planner

ENTERPRI S E
MODEL
(CONCEPTU AL)

Owner

S YS TEM MODEL
(LOGI CAL)

Designer

TECH NOLO GY
MODEL
(PHYSI CAL)

Builder

DETAI LED
REPRES ENTATI ONS
(OUT-OF -CONTE XT)

Sub-Contractor

FUNCTI ONI NG
ENTERPRI S E

S COPE
(CONTEX TUAL)

Planner

ENTERPRI S E
MODEL

(C ONCEPTU AL)

Owner

S YS TEM MODEL
(L OGI CAL)

Designer

TECHNOLO GY
MODEL

(PHYSI CAL)

Builder

DETAI LED
REPRES ENTATI ONS
(OUT-OF-CONTE XT)

Sub-Contractor

FUNCTI ONI NG
ENTERPRI S E

T hings Im portant
to the Bus ines s

Entity = C lass of
Bus iness T hing

Processes
Perform ed

F unc tion = C lass of
Bus iness Process

Sem antic M odel

Ent = Bus ines s Entity
R el = Bus ines s R elationship

Bus iness Process
M odel

Proc = Bus iness Process
I/O = Bus iness R esourc es

Bus iness Logis tics
Sys tem

N ode = Bus iness Location
Link = Bus iness Linkage

Work F low M odel

People = Organization Unit
Work = Work Product

M as ter Schedule

T ime = Bus iness Event
Cyc le = Bus iness Cyc le

Bus iness Plan

End = Bus iness Objec tiv e
M eans = Bus iness Strategy

Im portant
Organiz ations

People = Major
Organiz ations

Bus iness
locations

N ode = M ajor
Bus iness Locations

Ev ents Signific ant
to the Business

T ime = M ajor
Bus iness Ev ent

Bus iness Goals
and Strategy

Ends/Means =
M ajor Bus iness Goals

Logic al Data
M odel

Ent = Data Entity
R el = Data Relationship

Application
Arc hitec ture

Proc = Application Func tion
I/O = U ser View s

Dis tributed Sys tem
Architec ture

N ode = IS F unc tion
Link = Line C harac teris tics

Hum an Interface
Architec ture

People = Role
Work = Deliv erable

Processing
Struc ture

T ime = Sys tem Ev ent
Cyc le = Process ing Cycle

Bus iness R ule
M odel

End = Struc tural Assertion
M eans = Ac tion As sertion

Phys ical Data
M odel

Ent = Segm ent/Table
R el = Pointer/Key

Sys tem
Des ign

Proc = C om puter Func tion
I/O = Data Elem ents /Sets

T ec hnology
Architec ture

N ode = Hardw are/Softw are
Link = Line Spec ific ations

Pres entation
Architec ture

People = User
Work = Screen F orm at

C ontrol
Struc ture

T ime = Ex ec ute
Cyc le = C om ponent Cyc le

R ule
Des ign

End = C ondition
M eans = Ac tion

Data
Definition

Ent = F ield
R el = Address

Program

Proc = Language Statem ent
I/O = C ontrol Block

N etw ork
Architec ture

N ode = Address es
Link = Protoc ols

Security
Architec ture

People = Identity
Work = Job

T im ing
Definition

T ime = Interrupt
Cyc le = M ac hine Cycle

R ule
Des ign

End = Sub-C ondition
M eans = Step

Data

Ent =
R el =

F unc tion

Proc =
I/O =

N etw ork

N ode =
Link =

Organiz ation

People =
Work =

Schedule

T ime =
Cyc le =

Strategy

End =
M eans =

Based on work by
Jo hn A. Z achman

VA Enterprise
Arch itectu re

DATA
What

F UNCTI ON
How

NETW ORK
Where

PEOPLE
Who

TI ME
When

MOTI VATI ON
Why

DATA
What

F UNCTI ON
How

NETW ORK
Where

PEOPLE
Who

TI ME
When

MOTI VATI ON
Why

S COPE
(CONTEX TUAL)

Planner

ENTERPRI S E
MODEL
(CONCEPTU AL)

Owner

S YS TEM MODEL
(LOGI CAL)

Designer

TECH NOLO GY
MODEL
(PHYSI CAL)

Builder

DETAI LED
REPRES ENTATI ONS
(OUT-OF -CONTE XT)

Sub-Contractor

FUNCTI ONI NG
ENTERPRI S E

S COPE
(CONTEX TUAL)

Planner

ENTERPRI S E
MODEL

(C ONCEPTU AL)

Owner

S YS TEM MODEL
(L OGI CAL)

Designer

TECHNOLO GY
MODEL

(PHYSI CAL)

Builder

DETAI LED
REPRES ENTATI ONS
(OUT-OF-CONTE XT)

Sub-Contractor

FUNCTI ONI NG
ENTERPRI S E

T hings Im portant
to the Bus ines s

Entity = C lass of
Bus iness T hing

Processes
Perform ed

F unc tion = C lass of
Bus iness Process

Sem antic M odel

Ent = Bus ines s Entity
R el = Bus ines s R elationship

Bus iness Process
M odel

Proc = Bus iness Process
I/O = Bus iness R esourc es

Bus iness Logis tics
Sys tem

N ode = Bus iness Location
Link = Bus iness Linkage

Work F low M odel

People = Organization Unit
Work = Work Product

M as ter Schedule

T ime = Bus iness Event
Cyc le = Bus iness Cyc le

Bus iness Plan

End = Bus iness Objec tiv e
M eans = Bus iness Strategy

Im portant
Organiz ations

People = Major
Organiz ations

Bus iness
locations

N ode = M ajor
Bus iness Locations

Ev ents Signific ant
to the Business

T ime = M ajor
Bus iness Ev ent

Bus iness Goals
and Strategy

Ends/Means =
M ajor Bus iness Goals

Logic al Data
M odel

Ent = Data Entity
R el = Data Relationship

Application
Arc hitec ture

Proc = Application Func tion
I/O = U ser View s

Dis tributed Sys tem
Architec ture

N ode = IS F unc tion
Link = Line C harac teris tics

Hum an Interface
Architec ture

People = Role
Work = Deliv erable

Processing
Struc ture

T ime = Sys tem Ev ent
Cyc le = Process ing Cycle

Bus iness R ule
M odel

End = Struc tural Assertion
M eans = Ac tion As sertion

Phys ical Data
M odel

Ent = Segm ent/Table
R el = Pointer/Key

Sys tem
Des ign

Proc = C om puter Func tion
I/O = Data Elem ents /Sets

T ec hnology
Architec ture

N ode = Hardw are/Softw are
Link = Line Spec ific ations

Pres entation
Architec ture

People = User
Work = Screen F orm at

C ontrol
Struc ture

T ime = Ex ec ute
Cyc le = C om ponent Cyc le

R ule
Des ign

End = C ondition
M eans = Ac tion

Data
Definition

Ent = F ield
R el = Address

Program

Proc = Language Statem ent
I/O = C ontrol Block

N etw ork
Architec ture

N ode = Address es
Link = Protoc ols

Security
Architec ture

People = Identity
Work = Job

T im ing
Definition

T ime = Interrupt
Cyc le = M ac hine Cycle

R ule
Des ign

End = Sub-C ondition
M eans = Step

Data

Ent =
R el =

F unc tion

Proc =
I/O =

N etw ork

N ode =
Link =

Organiz ation

People =
Work =

Schedule

T ime =
Cyc le =

Strategy

End =
M eans =

Enterprise Architecture

Zachman Framework

Applications
(codebases)

Connected to
Databases

Connected to
Services

66

9th International DSM Conference 2007- 7

Evolution of Multi-Domain DSM

Applications

Databases

Frameworks

Services

Different elements
Similar results

Hibernate to connect
Spring to configure
Multi-module merge

LDI to load any source
Services Extraction

Java was first
C/C++, .NET, Ada
Modules, integrations

9th International DSM Conference 2007- 8

Example: PetStore (Enterprise Application)

• Uses the Spring
Framework to configure
the application

• The application logic is
written in Java which
should conform to the
architecture

• The system uses an
Oracle database

• The Hibernate
Framework is used to
map the Java objects to
the data objects which
they use

67

9th International DSM Conference 2007- 9

Example: PetStore (Enterprise Application)

Spring Module Hibernate Module

9th International DSM Conference 2007- 10

Example: PetStore (Enterprise Application)

• Each module can be
initially loaded as its
own subsystem

• The application
codebase only
loosely maps to the
framework

68

9th International DSM Conference 2007- 11

Example: PetStore (Enterprise Application)

• Merging combines
elements in both
modules

• In this example, the
Spring classes are
merged with the Java
classes

9th International DSM Conference 2007- 12

Example: PetStore (Enterprise Application)

• Comparing the DSM
before and after
merge, the
interdependencies
between the modules
are now understood

• The classes which
are not in the right
place in the Logical
structure are quickly
identified

69

9th International DSM Conference 2007- 13

Example: PetStore (Enterprise Application)

• Decouple by moving
Java classes from
one partition to
another

• Use the Spring
modularization to
move the Java
classes to the
appropriate
subsystem

• The architecture is
now expressed
across both domains

9th International DSM Conference 2007- 14

Example: PetStore (Enterprise Application)

• Hibernate module is
added to the merge
sequence to show
the dependencies of
the code on the
database

• Easy to identify the
violation of improper
access to the
database

• Impact analysis can
now be performed
across all domains

70

9th International DSM Conference 2007- 15

Summary

1. Enterprise Architectures consist of many subsystems in different
domains which are interdependent

2. Dependencies in constituent domains can be extracted from actual
implementation and loaded into a DSM using modules for each domain

3. Merging the elements that are common to different modules enables a
multi-domain DSM to show the interdependencies between domains

4. Once the Enterprise Architecture is expressed in one DSM, impact
analysis can be performed which identifies the extent of change
propagation across the constituent domains

71

