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1 INTRODUCTION 
The application of DSM in software development has been focused on visualization and analysis of 
code bases associated with complex software applications.  By extracting dependencies automatically 
from the code base of an application, it has been possible to quickly build an initial DSM based upon 
its code organization.  The DSM must then be transformed to reflect the intended architecture of the 
application, which can be accomplished through both manual manipulation of its hierarchy and the use 
of special partitioning algorithms.   Much value has been achieved by refactoring the code base to 
eliminate dependencies which violate the intended architecture and enforcing rules for allowable 
dependencies during subsequent builds of the application.  
 
It is insufficient to consider today’s complex software systems only in terms of code written in a 
specific language.  They consist of multiple elements in a variety of languages, application 
frameworks, web services, databases, and configuration files.  It is preferable to treat a complex 
software system as a system-of-systems than spans multiple domains.  Interdependencies exist 
between these many domains of the system and an understanding of the overall architecture as well as 
the explicit structure of each domain is required.   
 
Driven by customer requests, we have extended our DSM approach beyond software applications and 
have developed the capability to map dependencies across the domains of an enterprise architecture.   

2 MULTI-DOMAIN DSM APPROACH 
Our approach to managing the architecture of software applications, which was presented at previous 
DSM conferences [1−3], also works well in other domains.  While each domain has different kinds of 
elements and different types of dependencies, the same data model and DSM analysis can be applied.  
For example, an application code base consists of packages with classes or directories with files, while 
a database system includes schemas, tables, packages, sequences, etc. Database architectures can have 
subsystems of schemas which are layered just like applications, with similar rules to prevent unwanted 
interdependencies.   
 
Mapping dependencies across domains in software systems has been accomplished through a variety 
of techniques.  For example, Hibernate enables the mapping of a database object to the application 
objects which use it.  A system that uses Hibernate has Java code, Hibernate mapping files, and 
databases.  Parsing just the Java code would provide interdependencies between Java classes, while 
parsing the database code provides interdependencies of its elements.  By parsing the Hibernate 
mapping files, it is possible to extract the dependencies between database elements and Java code.  
The resulting DSM is now a multi-domain DSM which includes the application, the Hibernate 
mapping layer, and the database.   In addition, it is possible to merge elements from the domains to 
eliminate the mapping layer and show direct connections in the DSM (see Figure 1).  
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Figure 1.  Multi-domain DSM of Application with Database 
 
Spring Framework is a very popular application framework that uses metadata to configure enterprise 
Java applications.  The architecture of the enterprise application is driven by the Spring configuration, 
which can now be parsed to extract the structure and dependencies between its elements such as 
Spring beans and Java classes (as illustrated in Figure 2). 

 

 
Figure 2.  Multi-domain DSM with Application Framework 

 
Finally, it is possible to extend this multi-domain approach to business processes and software 
services.  This, for the first time, allows users to understand the relationships between business 
processes and the software architecture.  Users can now query the system to understand which 
business processes would be affected by changes to the software architecture or how the architecture 
must change to accommodate evolving business processes. 
 

3 CONCLUSION 
Multi-domain DSM have can used to create the big picture view of the enterprise software 
architecture, extracted from the actual implementation.  The hierarchy in the multi-domain DSM 
enables the scalability needed to represent the thousands of elements and millions of dependencies in 
complex enterprise architectures.   With the enterprise architecture DSM, it is possible to reduce risk 
by better understanding the impact of change and how change propagates. 
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Software Architecture Views
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Combines two Views
• Implementation View (Solid Arrows)
• Logical View (Dotted Arrows)

Combining Implementation and Logical Views
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Combining Logical, Implementation, & Process Views

Ordered hierarchy reflects the 
Implementation and Logical Views, 
including layering and modules

Run-time dependencies reflect 
the Process View

Static dependencies 
reflect the Logical 
View
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Evolution of Multi-Domain DSM

Applications

Databases

Frameworks

Services

Different elements
Similar results

Hibernate to connect
Spring to configure
Multi-module merge

LDI to load any source
Services Extraction

Java was first 
C/C++, .NET, Ada
Modules, integrations
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Example:  PetStore (Enterprise Application)

• Uses the Spring 
Framework to configure 
the application

• The application logic is 
written in Java which 
should conform to the 
architecture

• The system uses an 
Oracle database

• The Hibernate 
Framework is used to 
map the Java objects to 
the data objects which 
they use
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Example:  PetStore (Enterprise Application)

Spring Module Hibernate Module
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Example:  PetStore (Enterprise Application)

• Each module can be 
initially loaded as its 
own subsystem

• The application 
codebase only 
loosely maps to the 
framework
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Example:  PetStore (Enterprise Application)

• Merging combines 
elements in both 
modules

• In this example, the 
Spring classes are 
merged with the Java 
classes 
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Example:  PetStore (Enterprise Application)

• Comparing the DSM 
before and after 
merge, the 
interdependencies 
between the modules 
are now understood 

• The classes which 
are not in the right 
place in the Logical 
structure are quickly 
identified
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Example:  PetStore (Enterprise Application)

• Decouple by moving 
Java classes from 
one partition to 
another  

• Use the Spring 
modularization to 
move the Java 
classes to the 
appropriate 
subsystem 

• The architecture is 
now expressed 
across both domains
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Example:  PetStore (Enterprise Application)

• Hibernate module is 
added to the merge 
sequence to show 
the dependencies of 
the code on the 
database   

• Easy to identify the 
violation of improper 
access to the 
database   

• Impact analysis can 
now be performed 
across all domains 
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Summary

1. Enterprise Architectures consist of many subsystems in different
domains which are interdependent

2. Dependencies in constituent domains can be extracted from actual
implementation and loaded into a DSM using modules for each domain

3. Merging the elements that are common to different modules enables a 
multi-domain DSM to show the interdependencies between domains

4. Once the Enterprise Architecture is expressed in one DSM, impact
analysis can be performed which identifies the extent of change 
propagation across the constituent domains
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