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Abstract 

The paper deals with the resource limited optimization of optimal sequence constructional 
design processes represented in a Design Structure Matrix (DSM). The method based on 
genetic algorithms, applied for the optimization of the sequence of constructional processes 
is introduced. Then a discrete linear programming and a heuristic simulation method is de-
tailed to solve the resource allocation problem. 

 

1 Introduction 

Work process management sub-systems in current process control and Product Data Man-
agement (PDM) systems are shaped by various quality assurance standards. As a result, 
these sub-systems are inherently bound and limited, ignore efficiency, and often are not well-
suited to a given planning task [8], [9]. Furthermore, a typical shortcoming is that they do not 
adapt easily to activity-based scheduling and human resource allocation. As a result, for the 
typical project planning parameters (time, cost, and resources) they can provide coarse esti-
mations only [14]. 

The subject of the planning activity (product development, software engineering, construction 
planning) is usually a complex and semi-structured problem that involves iterations (it re-
quires repetitious execution of the same tasks or group of tasks) in contrast to production 
planning processes where there are no repetitive work steps. The planning problem at hand 
should be dissected into sub-problems in such a way that these reflect the structural make-
up of the desired outcome and match the organizational structure of the business [8], [9]. In 
view of the previous two conditions, our approach makes it possible to schedule renewable 
resources in an optimal and flexible way driven by multiple considerations. On one hand, 
optimal, because the total expenditures and total time that can be spent on the planning 
phase are derived from the available resources. On the other, flexible, because the planning 
process breakdown, the grouping of available resources, their needs and constraints and the 
overall resource allocation strategy can be fully customized. 

We use the Design Structure Matrix (DSM) approach to represent the structural breakdown 
of the planning problem (a given product, for instance) itself. This choice is made because 
DSM is widely used with a long history of applicability in engineering (it is part of various 
CAD systems), it is adequately versatile, and it can be embedded in IT solutions easily [2], 
[10]. 

2 Design Structure Matrix 

The DSM approach is based on the idea that one can change the order of activities based on 
the relationships among the design processes of sub-components. By reordering, one can 
find a sequence of activities that may contain fewer cycles, and identify those activities that 
can be performed in parallel. This optimum signifies the most favourable assignment of total 
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man hours and total cost, and the final project plan may take less time if there are activities 
that can be performed in parallel. When planning the relationships among product activities 
the following are useful. 

The main activities Ai (i=1,…,n) involved in a product identify the matrix shown in Figure 1. 
The diagonal elements (activities) represent themselves, and these are set to zero: aij=0 (for 
i=j). The remaining entries can be used to denote various relationships between the main 
activities. If Ai provides information to Aj, then aij=1, otherwise aij=0 which signifies that there 
is no direct relationship between Ai and Aj. If for an element of this matrix it holds that aij=1 for 
i<j, then we speak of a feed forward relationship (and the entry lies above the diagonal), 
whereas for i>j the entry denotes a feedback relationship, representing a cycle (and lies be-
low the diagonal). In the case of cycles, one can supply the planned number of cycles based 
on the actual ordering. 

Furthermore, the elements of the matrix can be assigned numerous placeholders that make 
it more applicable to a wider range of problems. The approach we present in this paper, in its 
current form, handles the cost and time constraints specified by the management of the or-
ganization. 

For scheduling and optimization of the various steps of the planning process we had chosen 
a genetic algorithm that makes it possible to quickly solve robust and extensive problems 
yielding an optimum solution that fits multiple criteria. 

 

Fig. 1: An Optimal DSM. 

3 Activity scheduling via genetic algorithms 

The DSM developed by a typical planning professional is far from optimal: the time and cost 
requirements are likely to exceed the optimal level, planning cycle iterations are unnecessar-
ily complex and pessimistic, making the resource allocation unnecessarily involved. There-
fore, as a first step using a genetic algorithm we compute a DSM that reflects the optimal 
activity breakdown which provides the best time and cost combination. The inputs of this 
optimization step are the activities and their time, cost and resource needs. 

In the method described here a chromosome (a potential solution instance in the genetic 
algorithm) corresponds to a particular activity ordering where the genes contain the index of 
the activity. The genetic algorithm uses the usual operators: selection (binary contender se-
lection), crossing (partial crossover), and mutation (per gene). The probability values that 
drive these operators are discussed in [2]. 

3.1 The Unfolded DSM 

A DSM optimized by order may still contain feedback entries (this is inevitable in the case of 
cycles). We would like to eliminate these before the resource allocation process, as they 
complicate the task of resource assignment, and furthermore no project plan can be made in 
their presence. Therefore, we extend the original DSM by a new transformation that yields an 
equivalent representation but without feedback links. The basic idea is to record into the 
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DSM multiple versions of those activities that are part of cycles based on how many times 
they repeat in the planning process [1]. These activities will become separate rows and col-
umns in a new, larger than the original DSM. This algorithm is referred to as DSM unfolding. 
Naturally, in an unfolded DSM each version of an activity will supply information to the ver-
sion that follows it, since repeating a given activity can only be performed upon finishing the 
previous one. The feed forwards are embedded in the new DSM as is, whereas the feed-
backs are transferred between the appropriate versions of linked elements only. 

 

Fig. 2: The corresponding unfolded DSM. 

This approach essentially dissects a given planning step into multiple activities according to 
how many times it is repeated in the original formulation. As a result, we obtain a new DSM 
that contains only feed forwards that basically constitute the predecessor network used dur-
ing resource scheduling. For the sake of simplicity, we will uniformly call each version of an 
activity a separate activity, or simply DSM elements. 

4 Resource allocation problem 

The resource allocation problem deals with assigning the necessary amount of renewable 
(primarily human) resources to the various activities. We assume that the starting time S, the 
total planning time T (the practical time constraint on the planning process), the duration of 
each activity (t1,…,tn), the resource constraints, and the predecessor network (in our case the 
unfolded DSM) is given. The resources are supplied in resource categories, these being the 
basic units of the resource allocation process, in other words the output will not be a person-
based allocation. Introducing resource categories decreases complexity as we are dealing 
with fewer entities, and they also yield to a more flexible project plan. Management can freely 
decide how the resource needs appearing at a given time in the project plan will be served 
from the available human resource pool. The resource category needs for each activity, and 
the quantity of resources in each category are pieces of input as well. These constraints can 
vary in time, and our model allows for their absence as well (for instance the allocation proc-
ess can assume unlimited resources). However, the resource categories can not be substi-
tuted with another in any ways or as a result of any rules. 

Initially, we represent the total planning time T as d unit length time intervals, for the sake of 
simplicity in such a way that the durations of each activity are multiples of this time unit. We 
call d the elementary allocation time unit. The resource allocation problem is executed in 
such a way that in each allocation time unit we determine what tasks (activities) are active. 
Any solution to the allocation problem then should conform to the following criteria: 

• More than one task can be active in any given time unit. 

• The cumulative resource needs of the active tasks can not exceed the resource con-
straints for that allocation time unit. 
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• The tasks can be interrupted and there may be a delay in their execution. 

• A given task is active exactly 
d
ti times. 

• During scheduling we respect the predecessor network, in other words if activity aij 
precedes akl then the last unit of aij will happen earlier than the first unit of akl. 

• All activities finish before S+T. 

The goal is to find the solution with the shortest effective time (the end of the last activity) 
given the resources available at each time period. 

5 Heuristic simulation approach 

The basis of our approach is simulating the planning process in time. During the virtual plan-
ning process after each elementary allocation time unit we activate some unfinished activities 
using various allocation politics in such a way that all previously discussed conditions still 
hold. We distinguish between two families of allocation politics. We called the first family fil-
tering, and the second ranking politics. 

A filtering politics can activate (favour: place before others) or suppress a unit of unfinished 
activity based on some logic. A suppressed element can not be scheduled at the given time. 
However, a favoured element will get a higher priority and will be placed higher up in the list 
of unit activities that can be scheduled. 

A ranking politics assigns a unique score between 1 to n to the n available activities. The 
most important activity will get the highest score, and the least important one will get the low-
est score. The available activities then are activated based on their priority score. 

There can be multiple versions of filtering and ranking politics, and they can be applied in 
combination in a given simulation context. In case of multiple filtering politics we obtain the 
list of favoured and suppressed elements by combining those resulting from applying the 
individual politics. If a given element appears in both the favoured and suppressed list (as a 
result of opposing politics), we remove it from the favoured ones and place it in the sup-
pressed list. Finally, we obtain three disjoint sets: that of the favoured, the suppressed and 
the normal elements. Their semantics are identical to those we described in the case of filter-
ing politics. 

In the case of multiple ranking politics we have a slightly more difficult situation. One possibil-
ity to proceed would be to assign weights to the various politics, calculate the scores of all 
elements per politics, and then sum these using the weights. These cumulative scores could 
then be used to rank the available activities in a decreasing order. The main difficulty with 
this approach is that it can produce interference between policies: a given activity may get an 
average score despite the fact that it ranked the best by one politics and the worst by a con-
flicting other, provided that the two politics are weighted equally. This is not necessarily effec-
tive since despite being ranked on the top by one politics it is not activated due to averaging. 
An alternative approach would be to use one politics at any given time unit. In this case, we 
would choose a politics function at random, although we may elect to assign different prob-
abilities for each politics selection. This approach is free of interference between politics 
given that only one is applied at any moment, and we can control the politics selection proc-
ess by setting the appropriate probabilities for selecting a given politics function. This proce-
dure, however, contrary to the previous approach, is not deterministic. 
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The simulation thus proceeds as follows. First, before each allocation time unit we determine 
the set of activities that can be scheduled. After this, using the filtering politics, we compute 
the favoured and suppressed elements (activities), and apply the ranking politics to those 
that are not suppressed. Finally, we iterate through the favoured and then the normal ele-
ments based on the ranking we obtained. For each element we attempt to allocate all the 
resources that are needed, if we do not have sufficient quantities of a resource category the 
given activity can not be scheduled. Provided that all resource needs can be fulfilled, we de-
crease the available resources accordingly and activate the given task. Then we proceed to 
assign the remaining resources to the elements with lower ranks. 

The simulation can end in two ways: either all elements are scheduled within the total plan-
ning time, or we exceeded the total planning time. In the former case, we can create a pro-
ject plan (for instance a Gantt diagram) from the final solution, in the latter case we conclude 
that the resource allocation problem can not be satisfied, and probably we need to loosen the 
conditions (need more resources, longer total planning time, simpler DSM, or perhaps apply-
ing different politics functions); this is always a management decision. 

5.1 Number of interruptions filtering politics 

This filtering politics favours those activities that had been interrupted relatively more often 
than other activities. A break counter is assigned to each activity and the activities are or-
dered by the cardinality of interruption. This way we can avoid the fragmentation of a com-
plex planning process. 

5.2 Completeness filtering politics 

Generally many scheduling techniques are trying to assign resources to short activities in 
order to finish easy task as quickly as possible. This way the relative waiting time (effective 
working time / total time between start and finis) can be kept at a good value. Hence this poli-
tics favours those activities that are almost (at least 90%, say) finished because they need 
relatively short time to be completed. This politics doesn’t differ between tasks beyond 90% 
readiness or tasks beneath this rate it only deals with two seceding categories: nearly ready 
and ongoing tasks. 

5.3 Critical path ranking politics 

Examining the critical path of a process is very common method in project planning. Every 
process has a critical path: this is the longest task sequence in the whole process graph. The 
total time of the design process cannot be shorter than the cumulative time of the critical 
path. This algorithm ranks the available elements based on their maximal buffer time (MBT): 
the maximum amount of delay that does not extend the length of the critical path (longest 
predecessor chain) [4]. It is obvious that MBT is 0 for tasks on the critical path and the higher 
value this property of tasks has the less it influences the total time of design. There are some 
quick algorithms for calculating the MBTs [4]. During the scheduling the critical path of the 
remaining process may change so it is worthy of note that MBTs should be recalculated after 
every allocation time in the simulation. 

5.4 Dominant resource needs ranking politics 

Since it is possibly that a particular resource is only available for a short amount of time it is 
important to exploit the period best. To embed this kind of wise into our simulation model the 
dominant resource needs ranking politics was developed. This politics ranks the available 
activities based on their resource needs, where the activity requiring the most resources is 
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placed in the front. In this manner resource demanding tasks are having the benefit of getting 
the required resources immediately it is possible according to the resource environment. 

6 Case study 

We chose a classic gear drive development process for our examination. A process consists 
of 24 tasks with some iterative sub-processes (fig. 3). With the genetic algorithm-based opti-
mization the optimal linear order of the design tasks can be achieved (fig. 4, 5). The resulting 
order can be used for automatic creation of a project plan fitting the defined resource envi-
ronment (fig. 6) provided by the heuristic algorithm described before (fig. 7). 
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1 1 14,06 937 6
1 1 14,06 4685 6

1 34,39 6 878 4
1 1,9 950 2

1 1 46,86 14 056 6
1 1 1 3,8 1 900 2

5,695 0 8
1 1 1 1 3,8 1 900 2

1 1 1 1 0 1
1 10,32 1 719 4

1 1 15,65 4173 7
1 1 5,217 5 217 7

1 27,51 6 878 4
1 5 1 000 1

1 1 1 1 4,686 2 342 6
1 27,51 6 878 4

1 1 1 1 2,71 1 355 3
1 1 1 9,5 2 850 2

1 5 1 500 1
1 27,51 3 439 4

1 1 1 4,686 4685 6
1 1 13,55 5 420 3

1 1 7,6 1 900 2
1 1 11,4 3 800 2  

Fig. 3: The DSM of an unstructured ordered gear drive development process. 
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1 1 1 1,9 1 900 2
1 1 5 2 000 1

1 10 2 000 1
1 8 1 000 1

1 0 1  

Fig. 4: The process graph of the optimal development process. 
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Fig. 5: The DSM of the optimal development process. 

The defined resource environment was prepared in such a way that it resulted in a three-day 
shift with respect to the project start at Jan 1, 2006, since we prescribed a FEM specialist for 
the start of the project, but from this resource category there was none available in the first 
three days (fig. 6). The second artificial resource management problem was induced by tak-
ing out some needed resources for a few days. This way, the affected activity was inter-
rupted, and when the needed resources were once again available the activity was resumed 
(Market research and Bearing selection (1)). 
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Fig. 6: A possible resource environment diagram of a design company. 

 

Fig. 7: The final project plan for the gear drive development process. 

Furthermore, it is worth mentioning that our algorithm recognized those activities that can be 
scheduled in parallel, and it shows them in the Gantt diagram (Design of gear parts (1) and 
Strength calculation shaft and shaft couplings (1)) accordingly, given that the available re-
sources allow for such parallel execution. The critical path ranking politics algorithm can also 
be effectively applied. The resource allocation essentially reveals a time unit-based simula-
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tion, where the completion times of each simulation can be supplied, which in our case this is 
one day. Upon completing a given simulation the algorithm re-computes the critical path and 
assigns resources to those elements that are on this critical path before to any other (Design 
of gear parts (2) and Strength calculation shaft and shaft couplings (2)). 

7 Conclusion and further work 

Current work is underway to automate the assignment of the resource profile (which contains 
resource categories that participate in the allocation process) to the human resource registry 
of the business. Further goals are to consider additional resource parameters and to devise 
refined allocation politics that simulate more realistic scenarios. Another fruitful endeavour is 
reducing the DSM complexity based on cluster analysis. 
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