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1 INTRODUCTION 
The Component Design Structure Matrix (DSM) is an established tool for studying product 
architectures. Previous research using Component DSMs has mainly focused on capturing and 
analysing existing product architectures (e.g. [1]). Methods which use DSMs to support the design of 
better product architectures are less common. This short paper proposes that the design of better 
products can be supported by a method which captures the rules governing architectures that “make 
sense”, and uses these rules to compare a particular architecture concept represented in a Component 
DSM against the space of possible architectures for that product. We describe a constraint model that 
uses DSMs and DMMs to specify these rules and an algorithm for generating and evaluating 
alternative Component DSMs which satisfy the constraints. The architecture synthesis approach has 
been implemented in a prototype tool, which is illustrated through application to a simple problem. 
The motivation for the research is elaborated in Section 2. The computational approach for 
architecture design is outlined in Section 3. Section 4 illustrates the method using an example, and 
Section 5 draws conclusions and indicates further work. 

2 MOTIVATION 
Decisions about product architecture have great significance for the cost, quality and performance of 
an engineering product. It is therefore critical that appropriate decisions are made when designing 
product architectures, which must be done early in the design process. However, architecture decisions 
are some of the most difficult to make in design, due to the large number of possible architectures, the 
complex constraints governing their feasibility, as well as the high levels of uncertainty often present 
in the early stages of design. In this paper, we argue that formal computer-based methods for 
architecture design have the potential to support these difficult decisions by generating a wide variety 
of possible architectures and helping the designer evaluate these alternatives objectively.  
As well as assisting with the design of original product architectures, we propose that such methods 
could support design-by-redesign, which is common practice for complex products [2]. In particular, 
computational synthesis may be used to investigate the scope for improvements to an existing 
architecture by comparing it with the alternatives that can be obtained through incremental change. In 
such cases, either the regions of the architecture to be redesigned could be indicated by the designer or 
the existing architecture could be iteratively “mutated” by computer to explore alternatives. 

3 APPROACH 
“Architecture” has been used to refer to many aspects of product structure. In this paper we consider 
the pattern of connections between the components of a product (the topology of the product), 
represented as a Component DSM. This definition corresponds to the third of the three elements of 
product architecture defined by Ulrich [3] (the other two are a) the way an overall function is 
decomposed into an arrangement of functional elements, and b) the way functional elements are 
embodied by components). We focus on topology, the ‘least fundamental’ element of product 
architecture, since it requires the least investment to vary. In our model, components have component 
types to indicate interchangeability (e.g., engines on aircraft), and connections have connection types.  
There are many potential topologies for an artefact described in this way; however, the majority of 
these are infeasible in that they do not “make sense” and could not serve as the architecture of a real 
product – they are not “feasible”. Our method defines feasibility through two classes of constraints: 
1. Connection requirements (‘syntax’) specify which connections a given type of component may 

have, in terms of minimum and maximum degrees for each type of connection. For example, a 
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component might require between 1 and ∞ “attached to” connections, indicating that it must be 
attached to at least one other component but may be attached to an unlimited number. 

2. Path requirements (‘semantics’) specify paths that must exist in the Component DSM. These 
constrain ‘long-range’ properties of the DSM’s connections, unlike the ‘local’ connection 
requirements. Path requirements are defined by the component types between which a path must 
exist and the connection types that may constitute the path, and are related to the overall 
function of the product. For example, in a hairdryer with overall function “produce a flow of hot 
air”, there must be an airflow path from the heater to the outlet nozzle.  

The ontology of components, component types and connection types, combined with the constraints, 
define an architecture schema. 
To generate candidate architectures from such a schema, an exhaustive breadth-first search is carried 
out. The search starts from an empty Component DSM, and connections are added one-at-a-time (up 
to a specified maximum search depth). Once all connection requirements (minimum and maximum) 
are satisfied, graph-search algorithms are used to test the path requirements. The resulting list of 
feasible architectures may then be reviewed by the designer to check that the schema is suitable, i.e., 
that it results in possibilities that “make sense”. Each feasible architecture is then evaluated against 
objectives. In this paper, we consider two objectives: ‘changeability’, i.e. immunity from change 
propagation, calculated as the average of the shortest graph distances between all pairs of components 
(based on [4]); and ‘designability’, or design effort required, calculated as the skewness of the 
distribution of numbers of interfaces per component. These objectives are used to present the feasible 
architectures to the designer on a Pareto plot to allow a final selection to be made. This method may 
also be used for design based on an existing architecture by starting the search with a partially filled 
Component DSM representing the parts of the architecture to be conserved; the computational search 
generates options for the remainder. 

4 ILLUSTRATIVE EXAMPLE 
Figure 1 shows the approach applied to aeroplane configuration. The top row of shows the architecture 
schema, which consists of: a DMM to list components and relate them to component types; a DMM 
between component types and connection types, specifying the numerical connection requirements; 
and a DSM of component types, whose entries indicate the path requirements (both where paths are 
required and the allowable connection types). The schema and the search algorithm were implemented 
using the Scheme programming language. The middle row of the figure shows the architectures of 
three commercial aircraft that were independently re-invented by the search process. The lower part of 
the figure shows the ‘designability’ and ‘changeability’ (as defined above) of all 375 feasible 
architectures resulting from this schema. Many of these alternatives coincide on the Pareto plot due to 
the poor resolution of the evaluation methods used. 

5 CONCLUSIONS 
In many domains, a design’s overall performance is strongly influenced by its architecture. This paper 
has proposed that computational synthesis of alternative architectures could help designers produce 
‘better’ designs. A constraint model was introduced that defines the ‘feasibility’ of a product 
architecture represented as a Component DSM. An algorithm for synthesising architectures 
conforming to these constraints was described, and a simple example of aircraft configuration was 
presented to demonstrate the ideas. The main contribution of this paper is to show one way in which 
DSM tools can directly support the creation of better designs – as well analysing existing designs. 
In addition to designing new product architectures, we have argued that the same computational 
synthesis approach could potentially be used to identify beneficial improvements to existing product 
architectures. It could also support the design of systems in other domains, such as organisations and 
processes, whose architectures can be described in a similar way to those of products. 
To tackle more realistic problems a number of issues require further work. These include: 
− More detailed representations of architecture: The information contained in a binary Component 

DSM is not sufficient to assess many of the objectives relevant to design [5]. Additional domains, 
entity types and attributes may need to be added to the information in the Component DSM. 

− Implementation: We envisage a generally-applicable tool for architecture synthesis and evaluation, 
allowing intuitive specification of constraints and evaluation methods for different types of 
system. Research is ongoing to explore how this can be achieved. 
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Figure 1. The aircraft architecture schema and the results of the computational search process. 
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Introduction

• Research to understand product architecture design
– Levels of architecture

• Functions
• Modules 
• Components
• Key parameters
• …

– Phases in design
• Generate
• Evaluate
• Select
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Product architecture

• Karl Ulrich, 1995, "The role of product architecture in the manufacturing 
firm", Research Policy 24(3) pp. 419-440:
1. the arrangement of functional elements;
2. the mapping from functional elements to physical components;
3. the specification of the interfaces among interacting physical 

components.
– Represent as DSM
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Motivation

• Important but difficult to design 
architectures
– Up to 80% of lifecycle cost 

committed 
– Combinatorial possibilities 

with complex constraints
– Pre-existing product 

(platform) issues
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Aims

• Provide a formal set of constraints to determine whether a given
component DSM is “feasible”

• Implement computationally for sample problems
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Aims (2)

modelling analysis

•Component modularity
•Clusters
•Change outcomes
•…

Product

Component 
DSM

embodiment

product improvement

Product

DSM for analysis:

DSM for synthesis:

?
Problem 

description

synthesis
? Component 

DSM evaluation 
& selection
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Formalism: Architecture schema

• Ontology
– Components and types
– Connection types

• Constraints
– Connection requirements
– Path requirements
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Connection requirements

• Minimum and maximum degrees 
for each connection type for a 
given type of component

• “What can be connected to what, 
and how many times”
– “Syntax”

• Example (hairdryer): 
– power supply: 

• “attached to” = 1
• “supplies electricity to” = 

0…∞
• Represent as DMM

A

?

?

?

?

?

?

B

?

?

?

?

?

?
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Path requirements

• Paths (of particular connection 
types) that must exist in the 
component DSM

• Related to overall function
• “What has to be linked to what, 

and how”
– “Semantics”

• Example (hairdryer): 
– Function “produce hot air” ⇒

path of connection-type 
“airflow” from “heater” to 
“nozzle”

• Represent as DSM

A

B

C

D E
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Architecture schema example: aeroplanes

ConstraintsOntology
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Architecture generation algorithm

• Breadth-first search:
– Start with blank DSM
– Add connections one-at-a-

time
– Once connection 

requirements fulfilled, check 
path requirements

– Search exhaustively up to a 
maximum depth

• Implementation
– Written in Scheme

1 2 3 4 5 6
Left wing 1

Right wing 2
Left engine 3

Right engine 4
Fuselage 5

Cargo 6

√

x

x x

1 2 3 4 5 6
Left wing 1 1

Right wing 2 1
Left engine 3

Right engine 4
Fuselage 5

Cargo 6

1 2 3 4 5 6
Left wing 1 1

Right wing 2
Left engine 3 1

Right engine 4
Fuselage 5

Cargo 6

1 2 3 4 5 6
Left wing 1 1 1

Right wing 2 1
Left engine 3 1

Right engine 4
Fuselage 5

Cargo 6

1 2 3 4 5 6
Left wing 1 1

Right wing 2 1
Left engine 3 1

Right engine 4 1
Fuselage 5

Cargo 6 x

1 2 3 4 5 6
Left wing 1 1 1

Right wing 2 1 1
Left engine 3 1

Right engine 4 1
Fuselage 5 1 1 2

Cargo 6 2’

…

x
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Example architecture evaluation methods

• Immunity from change 
propagation (“Changeability”):
– Average graph distance

between pairs of components
• René Keller, Claudia Eckert 

& John Clarkson, 2006, 
"Heuristics for Change 
Prediction", in Proceedings 
of the International Design 
Conference (DESIGN 2006)

• Design effort requirement 
(“Designability”):
– Skewness of distribution of 

number of interfaces per 
component

1 2 3 4 5 6
Left wing 1 1 1

Right wing 2 1 1
Left engine 3 1

Right engine 4 1
Fuselage 5 1 1 2

Cargo 6 2’

3

1 5

6

2

4

26
5

1
3 4

Shortest graph distance from 3 to 6, d36 = 3

Number of interfaces of component 2, z2 = 2
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• 375 possible architectures
• 15 seconds on 2.2GHz Athlon with 1Gb RAM

Results: aeroplanes Corresponding 
real aircraft:

Airbus A320

Boeing 717

SC Boomerang
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Issues arising from approach

• Does it make sense for architectures to be designed in advance of 
embodiment?
– In practice architecture emerges from detailed design

• Are current practices insufficient?
– How much do you gain in terms of objectives?

• Is components-and-connections the right level at which to be designing 
architectures?
– Tradeoff: 

• Higher => wider range of possibilities
• Lower => more concrete, easier to grasp
• Lower => less likely to require new capabilities

• How to find the “best” architecture?
– What is the right point on a trade-off surface?
– What do you do if the Pareto-optimal architecture is not usable?

• Move “inland” to the next-best architecture?
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Limitations of method

• Sufficiency of formalism is uncertain
– Need wider validation (larger-scale problems/industrial case studies)

• Difficult to compile schema [accurately]
– Where do the constraints come from?

• Functions of product?
• Scope for evaluations is limited

– Need more attributes/entities in modelling language
• Neglects product family considerations
• Neglects spatial & numerical constraints on architecture feasibility
• Can’t identify/specify architecture “patterns” in detail

– Symmetry
– Redundancy
– Distributed control

• Software implementation
– Re-implement using P3 Signposting framework
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Future work: Design-by-redesign

• Instead of starting from blank DSM, 2 
possible ways to incorporate elements of 
existing product architectures:
– Manually specify subsections to 

redesign
• Straightforward
• May be difficult to identify most 

important section
– Computationally explore possible 

“mutations”
• Allows speculative “what could we 

gain” investigations
• May produce infeasible suggestions

• Can be used separately or together
• Also allow assessment of existing 

architectures by comparing with “near”
alternatives

x

x

x
x

xx

x

x
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Future work: Non-product architectures

• Other types of designed system:
– Processes

• Choosing order and parallelisation structure of a set of tasks with 
dependencies

– Organisations
• Allocating tasks to personnel within sections of the organisation

– Services
– Choosing how specific products will be used to provide an overall 

service
• Our approach may be applicable

– What is the ontology? 
– What are the constraints?
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Summary & conclusions

• Computational architecture synthesis can help produce better designs 
and improve existing ones.

• A formalism for establishing the validity of component DSMs is the 
Architecture Schema presented here, consisting of an ontology of
components and connections and two types of constraint (connection 
requirements and path requirements).

• An exhaustive search algorithm can use such a schema to generate all 
possible architectures allowed by the constraints.

• Further work will be undertaken on applying this method to problems 
involving the redesign of existing products and to systems in other 
domains (processes and organisations).
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Appendix: architecture evaluation formulae
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Where:
•n  = total number of components
•dij = shortest graph distance from component i to component j
•zi = number of connections of component i
•z = mean number of connections per component
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