
10TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’08
11 – 12 NOVEMBER 2008, STOCKHOLM, SWEDEN

SYNTHESIS OF PRODUCT ARCHITECTURES USING
A DSM/DMM-BASED APPROACH
David Wyatt, David Wynn and John Clarkson
Cambridge Engineering Design Centre, University of Cambridge

Keywords: Product architecture, Component DSM, constraint, computational synthesis

1 INTRODUCTION
The Component Design Structure Matrix (DSM) is an established tool for studying product
architectures. Previous research using Component DSMs has mainly focused on capturing and
analysing existing product architectures (e.g. [1]). Methods which use DSMs to support the design of
better product architectures are less common. This short paper proposes that the design of better
products can be supported by a method which captures the rules governing architectures that “make
sense”, and uses these rules to compare a particular architecture concept represented in a Component
DSM against the space of possible architectures for that product. We describe a constraint model that
uses DSMs and DMMs to specify these rules and an algorithm for generating and evaluating
alternative Component DSMs which satisfy the constraints. The architecture synthesis approach has
been implemented in a prototype tool, which is illustrated through application to a simple problem.
The motivation for the research is elaborated in Section 2. The computational approach for
architecture design is outlined in Section 3. Section 4 illustrates the method using an example, and
Section 5 draws conclusions and indicates further work.

2 MOTIVATION
Decisions about product architecture have great significance for the cost, quality and performance of
an engineering product. It is therefore critical that appropriate decisions are made when designing
product architectures, which must be done early in the design process. However, architecture decisions
are some of the most difficult to make in design, due to the large number of possible architectures, the
complex constraints governing their feasibility, as well as the high levels of uncertainty often present
in the early stages of design. In this paper, we argue that formal computer-based methods for
architecture design have the potential to support these difficult decisions by generating a wide variety
of possible architectures and helping the designer evaluate these alternatives objectively.
As well as assisting with the design of original product architectures, we propose that such methods
could support design-by-redesign, which is common practice for complex products [2]. In particular,
computational synthesis may be used to investigate the scope for improvements to an existing
architecture by comparing it with the alternatives that can be obtained through incremental change. In
such cases, either the regions of the architecture to be redesigned could be indicated by the designer or
the existing architecture could be iteratively “mutated” by computer to explore alternatives.

3 APPROACH
“Architecture” has been used to refer to many aspects of product structure. In this paper we consider
the pattern of connections between the components of a product (the topology of the product),
represented as a Component DSM. This definition corresponds to the third of the three elements of
product architecture defined by Ulrich [3] (the other two are a) the way an overall function is
decomposed into an arrangement of functional elements, and b) the way functional elements are
embodied by components). We focus on topology, the ‘least fundamental’ element of product
architecture, since it requires the least investment to vary. In our model, components have component
types to indicate interchangeability (e.g., engines on aircraft), and connections have connection types.
There are many potential topologies for an artefact described in this way; however, the majority of
these are infeasible in that they do not “make sense” and could not serve as the architecture of a real
product – they are not “feasible”. Our method defines feasibility through two classes of constraints:
1. Connection requirements (‘syntax’) specify which connections a given type of component may

have, in terms of minimum and maximum degrees for each type of connection. For example, a

349

component might require between 1 and ∞ “attached to” connections, indicating that it must be
attached to at least one other component but may be attached to an unlimited number.

2. Path requirements (‘semantics’) specify paths that must exist in the Component DSM. These
constrain ‘long-range’ properties of the DSM’s connections, unlike the ‘local’ connection
requirements. Path requirements are defined by the component types between which a path must
exist and the connection types that may constitute the path, and are related to the overall
function of the product. For example, in a hairdryer with overall function “produce a flow of hot
air”, there must be an airflow path from the heater to the outlet nozzle.

The ontology of components, component types and connection types, combined with the constraints,
define an architecture schema.
To generate candidate architectures from such a schema, an exhaustive breadth-first search is carried
out. The search starts from an empty Component DSM, and connections are added one-at-a-time (up
to a specified maximum search depth). Once all connection requirements (minimum and maximum)
are satisfied, graph-search algorithms are used to test the path requirements. The resulting list of
feasible architectures may then be reviewed by the designer to check that the schema is suitable, i.e.,
that it results in possibilities that “make sense”. Each feasible architecture is then evaluated against
objectives. In this paper, we consider two objectives: ‘changeability’, i.e. immunity from change
propagation, calculated as the average of the shortest graph distances between all pairs of components
(based on [4]); and ‘designability’, or design effort required, calculated as the skewness of the
distribution of numbers of interfaces per component. These objectives are used to present the feasible
architectures to the designer on a Pareto plot to allow a final selection to be made. This method may
also be used for design based on an existing architecture by starting the search with a partially filled
Component DSM representing the parts of the architecture to be conserved; the computational search
generates options for the remainder.

4 ILLUSTRATIVE EXAMPLE
Figure 1 shows the approach applied to aeroplane configuration. The top row of shows the architecture
schema, which consists of: a DMM to list components and relate them to component types; a DMM
between component types and connection types, specifying the numerical connection requirements;
and a DSM of component types, whose entries indicate the path requirements (both where paths are
required and the allowable connection types). The schema and the search algorithm were implemented
using the Scheme programming language. The middle row of the figure shows the architectures of
three commercial aircraft that were independently re-invented by the search process. The lower part of
the figure shows the ‘designability’ and ‘changeability’ (as defined above) of all 375 feasible
architectures resulting from this schema. Many of these alternatives coincide on the Pareto plot due to
the poor resolution of the evaluation methods used.

5 CONCLUSIONS
In many domains, a design’s overall performance is strongly influenced by its architecture. This paper
has proposed that computational synthesis of alternative architectures could help designers produce
‘better’ designs. A constraint model was introduced that defines the ‘feasibility’ of a product
architecture represented as a Component DSM. An algorithm for synthesising architectures
conforming to these constraints was described, and a simple example of aircraft configuration was
presented to demonstrate the ideas. The main contribution of this paper is to show one way in which
DSM tools can directly support the creation of better designs – as well analysing existing designs.
In addition to designing new product architectures, we have argued that the same computational
synthesis approach could potentially be used to identify beneficial improvements to existing product
architectures. It could also support the design of systems in other domains, such as organisations and
processes, whose architectures can be described in a similar way to those of products.
To tackle more realistic problems a number of issues require further work. These include:
− More detailed representations of architecture: The information contained in a binary Component

DSM is not sufficient to assess many of the objectives relevant to design [5]. Additional domains,
entity types and attributes may need to be added to the information in the Component DSM.

− Implementation: We envisage a generally-applicable tool for architecture synthesis and evaluation,
allowing intuitive specification of constraints and evaluation methods for different types of
system. Research is ongoing to explore how this can be achieved.

350

Figure 1. The aircraft architecture schema and the results of the computational search process.

REFERENCES
[1] Sosa M.E., Agrawal A., Eppinger S.D. and Rowles C.M. A network approach to define

modularity of product components. In Proceedings of the ASME Design Engineering Technical
Conference and Computers and Information in Engineering Conference (IDETC/CIE 2005),
Long Beach, California, USA, September 24-28 2005.

[2] Eckert C.M., Clarkson P.J. and Zanker W. Change and customisation in complex engineering
domains. Research in Engineering Design, 2004, 15(1), pp. 1-21.

[3] Ulrich K. The role of product architecture in the manufacturing firm. Research Policy, 1995,
24(3), pp. 419-440.

[4] Keller R., Eckert C.M. and Clarkson P.J. Heuristics for Change Prediction. In Proceedings of
the International Design Conference (DESIGN 2006), Dubrovnik, Croatia, 2006, pp. 873-880.

[5] Wyatt D.F., Wynn D.C. and Clarkson P.J. Comparing representations for system architecture
design through life-cycle evaluation methods. In Proceedings of the 2nd Nordic Conference on
Product Lifecycle Management, Göteborg, Sweden, January 28-29 2009 (to appear).

Contact: David F. Wyatt
Cambridge Engineering Design Centre
Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ, UK
+44 (0)1223 332 673
dw274@cam.ac.uk

351

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Synthesis of Product Architectures using
a DSM/DMM-based Approach

David Wyatt, David Wynn, John Clarkson

Engineering Design Centre,
University of Cambridge Department of Engineering

10th International DSM Conference 2008- 2

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Outline

• Introduction
• Motivation
• Aims
• Formalism: Architecture Schema
• Architecture generation and evaluation methods
• Future work
• Summary and conclusions

352

10th International DSM Conference 2008- 3

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Introduction

• Research to understand product architecture design
– Levels of architecture

• Functions
• Modules
• Components
• Key parameters
• …

– Phases in design
• Generate
• Evaluate
• Select

10th International DSM Conference 2008- 4

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Product architecture

• Karl Ulrich, 1995, "The role of product architecture in the manufacturing
firm", Research Policy 24(3) pp. 419-440:
1. the arrangement of functional elements;
2. the mapping from functional elements to physical components;
3. the specification of the interfaces among interacting physical

components.
– Represent as DSM

353

10th International DSM Conference 2008- 5

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Motivation

• Important but difficult to design
architectures
– Up to 80% of lifecycle cost

committed
– Combinatorial possibilities

with complex constraints
– Pre-existing product

(platform) issues

10th International DSM Conference 2008- 6

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Aims

• Provide a formal set of constraints to determine whether a given
component DSM is “feasible”

• Implement computationally for sample problems

354

10th International DSM Conference 2008- 7

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Aims (2)

modelling analysis

•Component modularity
•Clusters
•Change outcomes
•…

Product

Component
DSM

embodiment

product improvement

Product

DSM for analysis:

DSM for synthesis:

?
Problem

description

synthesis
? Component

DSM evaluation
& selection

10th International DSM Conference 2008- 8

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Formalism: Architecture schema

• Ontology
– Components and types
– Connection types

• Constraints
– Connection requirements
– Path requirements

355

10th International DSM Conference 2008- 9

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Connection requirements

• Minimum and maximum degrees
for each connection type for a
given type of component

• “What can be connected to what,
and how many times”
– “Syntax”

• Example (hairdryer):
– power supply:

• “attached to” = 1
• “supplies electricity to” =

0…∞
• Represent as DMM

A

?

?

?

?

?

?

B

?

?

?

?

?

?

10th International DSM Conference 2008- 10

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Path requirements

• Paths (of particular connection
types) that must exist in the
component DSM

• Related to overall function
• “What has to be linked to what,

and how”
– “Semantics”

• Example (hairdryer):
– Function “produce hot air” ⇒

path of connection-type
“airflow” from “heater” to
“nozzle”

• Represent as DSM

A

B

C

D E

356

10th International DSM Conference 2008- 11

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Architecture schema example: aeroplanes

ConstraintsOntology

10th International DSM Conference 2008- 12

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Architecture generation algorithm

• Breadth-first search:
– Start with blank DSM
– Add connections one-at-a-

time
– Once connection

requirements fulfilled, check
path requirements

– Search exhaustively up to a
maximum depth

• Implementation
– Written in Scheme

1 2 3 4 5 6
Left wing 1

Right wing 2
Left engine 3

Right engine 4
Fuselage 5

Cargo 6

√

x

x x

1 2 3 4 5 6
Left wing 1 1

Right wing 2 1
Left engine 3

Right engine 4
Fuselage 5

Cargo 6

1 2 3 4 5 6
Left wing 1 1

Right wing 2
Left engine 3 1

Right engine 4
Fuselage 5

Cargo 6

1 2 3 4 5 6
Left wing 1 1 1

Right wing 2 1
Left engine 3 1

Right engine 4
Fuselage 5

Cargo 6

1 2 3 4 5 6
Left wing 1 1

Right wing 2 1
Left engine 3 1

Right engine 4 1
Fuselage 5

Cargo 6 x

1 2 3 4 5 6
Left wing 1 1 1

Right wing 2 1 1
Left engine 3 1

Right engine 4 1
Fuselage 5 1 1 2

Cargo 6 2’

…

x

357

10th International DSM Conference 2008- 13

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Example architecture evaluation methods

• Immunity from change
propagation (“Changeability”):
– Average graph distance

between pairs of components
• René Keller, Claudia Eckert

& John Clarkson, 2006,
"Heuristics for Change
Prediction", in Proceedings
of the International Design
Conference (DESIGN 2006)

• Design effort requirement
(“Designability”):
– Skewness of distribution of

number of interfaces per
component

1 2 3 4 5 6
Left wing 1 1 1

Right wing 2 1 1
Left engine 3 1

Right engine 4 1
Fuselage 5 1 1 2

Cargo 6 2’

3

1 5

6

2

4

26
5

1
3 4

Shortest graph distance from 3 to 6, d36 = 3

Number of interfaces of component 2, z2 = 2

10th International DSM Conference 2008- 14

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

• 375 possible architectures
• 15 seconds on 2.2GHz Athlon with 1Gb RAM

Results: aeroplanes Corresponding
real aircraft:

Airbus A320

Boeing 717

SC Boomerang

358

10th International DSM Conference 2008- 15

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Issues arising from approach

• Does it make sense for architectures to be designed in advance of
embodiment?
– In practice architecture emerges from detailed design

• Are current practices insufficient?
– How much do you gain in terms of objectives?

• Is components-and-connections the right level at which to be designing
architectures?
– Tradeoff:

• Higher => wider range of possibilities
• Lower => more concrete, easier to grasp
• Lower => less likely to require new capabilities

• How to find the “best” architecture?
– What is the right point on a trade-off surface?
– What do you do if the Pareto-optimal architecture is not usable?

• Move “inland” to the next-best architecture?

10th International DSM Conference 2008- 16

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Limitations of method

• Sufficiency of formalism is uncertain
– Need wider validation (larger-scale problems/industrial case studies)

• Difficult to compile schema [accurately]
– Where do the constraints come from?

• Functions of product?
• Scope for evaluations is limited

– Need more attributes/entities in modelling language
• Neglects product family considerations
• Neglects spatial & numerical constraints on architecture feasibility
• Can’t identify/specify architecture “patterns” in detail

– Symmetry
– Redundancy
– Distributed control

• Software implementation
– Re-implement using P3 Signposting framework

359

10th International DSM Conference 2008- 17

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Future work: Design-by-redesign

• Instead of starting from blank DSM, 2
possible ways to incorporate elements of
existing product architectures:
– Manually specify subsections to

redesign
• Straightforward
• May be difficult to identify most

important section
– Computationally explore possible

“mutations”
• Allows speculative “what could we

gain” investigations
• May produce infeasible suggestions

• Can be used separately or together
• Also allow assessment of existing

architectures by comparing with “near”
alternatives

x

x

x
x

xx

x

x

10th International DSM Conference 2008- 18

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Future work: Non-product architectures

• Other types of designed system:
– Processes

• Choosing order and parallelisation structure of a set of tasks with
dependencies

– Organisations
• Allocating tasks to personnel within sections of the organisation

– Services
– Choosing how specific products will be used to provide an overall

service
• Our approach may be applicable

– What is the ontology?
– What are the constraints?

360

10th International DSM Conference 2008- 19

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Summary & conclusions

• Computational architecture synthesis can help produce better designs
and improve existing ones.

• A formalism for establishing the validity of component DSMs is the
Architecture Schema presented here, consisting of an ontology of
components and connections and two types of constraint (connection
requirements and path requirements).

• An exhaustive search algorithm can use such a schema to generate all
possible architectures allowed by the constraints.

• Further work will be undertaken on applying this method to problems
involving the redesign of existing products and to systems in other
domains (processes and organisations).

10th International DSM Conference 2008- 20

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Appendix: architecture evaluation formulae

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∑ −

∑ −

−
−

==
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

=
2/3

1

2

1

3

)(1

)(1

2
)1(

)(
n

i
i

n

i
i

i

zz
n

zz
n

n
nn

ezSkewnesseitydesignabil

2
)1()(1 1

−
==

∑ ∑
= +=

nn

d
dMeanitychangeabil

n

i

n

ij
ij

ij

Where:
•n = total number of components
•dij = shortest graph distance from component i to component j
•zi = number of connections of component i
•z = mean number of connections per component

n

z
n

i
i∑

== 1

361

