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1 INTRODUCTION 
The successful management of New Product Development (NPD) projects is an important source of 
gaining competitive advantages. To shorten the development time, lower the development-production 
costs and improve quality, NPD projects are often subject to Concurrent Engineering (CE). CE is a 
systematic approach to the integrated, concurrent design of products and their related processes, in-
cluding manufacture and support. Due to their inherent complexity, CE projects often face severe 
problems, such as budget and deadline overruns, missed specification and, therefore, customer and 
management frustration. Many CE projects end up failed and abandoned and therefore there is a cer-
tain need for innovative models and methods for coping with complexity. The goal of this paper is to 
introduce a novel complexity measure for CE projects which is theoretically underpinned by a sound 
complexity theory of basic research, and uses a rigorous model of project dynamics to assign complex-
ity values. Our approach can be phrased as “holistic” or “non-reductionistic” because it is able to cope 
with a large number of individuals in CE teams who make at least partially autonomous decisions on 
product components but also strongly interact in their impact on project performance. 

2 DYNAMICS OF CONCURRENT ENGINEERING PROJECTS 
In order to derive the novel complexity measure in a simple explicit form in section 3 a model of pro-
ject dynamics is introduced. Therefore, the fundamental work of Smith and Eppinger [3] on determi-
nistic project dynamics is considered and extended through the concept of multivariate random vari-
ables to model performance fluctuations. According to Smith and Eppinger, the dynamics of a CE 
project with p fully concurrent tasks can be modelled by a first order linear difference equation: 
xt = A0 · xt-1 , t ≥ 1. The matrix A0 is the p × p Work Transformation Matrix (WTM). The column state 
vector xt represents the work remaining of all p tasks in time slice t. The WTM does not vary with 
time and the state equation is said to be autonomous. In this paper the improved WTM concept of 
Huberman and Wilkinson [2] is used. Hence, the entries aii (i = 1…p) in the main diagonal of the 
WTM account for different rates of progress on different tasks and can be considered as autonomous 
task processing rates when no interactions among tasks occur. This is in contrast to the original WTM 
model where the tasks are performed at the same rate. To be precise, aii indicates the part of work left 
incomplete after one time slice for task i and therefore must be a positive real number, which in well 
planned projects is smaller than 1. The off-diagonal entries aij (i ≠ j) are arbitrary real numbers in the 
interval [-1;1] and have three different meanings: 1) a positive entry indicates that one unit of work on 
task j in time slice t causes aij units of rework on task i in time slice t+1; 2) a zero entry signifies that 
task j has no direct effect on task i; 3) a negative entry models that efforts on task j in time slice t ac-
celerate the completion of task i in the next time slice. In the first time slice it is usually assumed that 
all p tasks are 100% undone and there is x0 = [1 1 … 1]T. The WTM can be created for a particular CE 
project by assigning numerical values to the design structure matrix (DSM) of the product to be devel-
oped. For instance, Lukas et al. [3] developed a “rework matrix” for the development processes of a 
power-train control unit at Daimler AG. The fundamental weakness of the deterministic project model 
is to assume a perfect predictability of task processing and to ignore the significant amount of “noise” 
occurring in real CE projects (see [2]). This noise allows different interpretations. When looking in-
wards from outside of the project the noise reflects the capacity limits of the project manager and the 
participating engineers when processing large amounts product and process information, and can 
therefore be considered as an effect of ignorance. When looking outwards from inside of the project, 
the noise reflects nonpredictable exogenous fluctuations of the business environment, e.g., slightly 
changing customer requirements, a change in the priority of design objectives, unsteady maturity of 
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involved technologies, etc. Hence, we believe that it is reasonable to model CE projects as an open 
system. In order to do so, an algebraically simple but conceptually important development of the de-
terministic model is given by the linear stochastic difference equation 

1 1.t t tX X S t−= ⋅ + ≥0A  (1) 

A0 is the WTM. The p components of the project state vector X0 in time slice zero are typically not 
subject to random fluctuations. Instead, they are set to positive real numbers in order to represent the 
percentage of work remaining according to the initial project state. In spite of the deterministic project 
start, the regime in the following time slices is stochastic and a sequence of independent and identi-
cally distributed (iid) multivariate random variables St is added to the project state to model fluctua-
tions. In real CE projects there are many stochastic influences acting on the work progress. Although 
we neither know their exact number nor their distribution, the multivariate central limit theorem tells 
us that, to a good approximation, a sum of iid random vectors can be represented by a normally dis-
tributed vector. In other words, if at each time instant the sum of many fluctuating influences acts on 
an CE project, the total effect at each time instant can be thought of as a Gaussian random vector. We 
assume that the noise has no systematic component influencing average project dynamics and the ran-
dom vectors St follow the multivariate Gaussian distribution with zero means and a covariance matrix 
ΣS: St ~ N(0,ΣS), t ≥ 1. The covariance matrix ΣS is the natural generalization of the variance of a sca-
lar-valued random variable to higher dimensions. The σii entries in the main diagonal of ΣS denote the 
variance of the fluctuations of task i. If σii is large, task i is heavily perturbed. The stochastic project 
model defined in eq. (1) is asymptotically stable if and only if all eigenvalues λi of A0 have modulus 
less than one. If this is not the case, the project is divergent and the work remaining grows over all 
limits. If the project is asymptotically stable, the convergence rate of the work remaining is dominated 
by the largest eigenvalue λmax = max({λi}]. λmax is therefore called the dominant eigenvalue. The larger 
the dominant eigenvalue, the lower the mean convergence rate. The supplementing slides show traces 
for three basic project organizations with only two tasks. Furthermore, the fundamental effect of ex-
cited fluctuations due to task coupling is shown which can lead to a significant “design churn”. 

3 COMPLEXITY MEASUREMENT 
Surprisingly, complexity theories of basic research have rarely been considered in the DSM commu-
nity. A highly satisfactory complexity theory and an associated measure were developed by the theo-
retical physicist Grassberger [1]. His forecast complexity represents the amount of information re-
quired for optimal prediction of behaviour of a complex system. We believe that this approach is also 
reasonable in project management, because there is a limit on the accuracy of any prediction of a given 
project that is set by the characteristics of the project itself. For instance, there is a limited precision of 
measurement of work progress, maturity of technology, etc. Even the most experienced project man-
ager cannot exceed this level of prediction accuracy. Suppose we had a maximally predictive project 
model, i.e., its predictions were at this limit of accuracy. Prediction is always a matter of mapping 
input to output. In our context the inputs are the traces of work remaining. However, in most projects 
not all aspects of the entire past are relevant. In the extreme case of “perfect” chaos, the project past is 
entirely irrelevant and the work progress is completely randomized from time slice to time slice. Con-
versely, in the case of a completely predictable and repetitive work process with period l, one only 
needs to know which of the l phases the work sequence is in to make perfect predictions. If we ask 
how much information about the past is relevant in these two cases, the answers are 0 and log(l), re-
spectively. Hence, highly random and highly deterministic CE projects are of low complexity. More 
interesting cases arise if there are multiple interactions between tasks due to a coupled product design 
leading to extensive cooperation and communication of the engineers. In this case long-range informa-
tional interactions are generated and significantly higher complexity values must be assigned. Follow-
ing these lines of thought we define an Effective Measure Complexity (EMC) of project dynamics. 
EMC represents the mutual information between the past and the future of a CE project and is a lower 
bound of the unknown forecast complexity. EMC can be estimated from either a project model (eq. 1), 
as we do in this paper, or from project data alone, without intervening models. Since it can quantify 
the degree of “informational structure” between the past and the future, it is an especially interesting 
measure for CE projects. The derivation of EMC on the basis of the project model from eq. 1 is 
mathematically involving and not given here. We only present the final result in eq. 2. 
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The novel complexity measure from eq. 2 has six favourable properties: 1) EMC is small for projects 
with uncoupled tasks and assigns larger complexity values to intuitively more complex projects with 
the same dominant eigenvalue λmax (determining the mean convergence rate of work remaining), but 
stronger task couplings. 2) The measure indicates the same bounds of project stability as the classic 
eigenvalue analysis: if the dominant eigenvalue λmax of the WTM A0 has modulus less than 1 the infi-
nite sum in eq. (2) converges and finite complexity values are assigned. On the other hand, if λmax has 
modulus greater than 1 the infinite sum diverges and infinite complexity values indicate a diverging 
project. 3) The measure tends to assign larger complexity values to projects with more tasks if the task 
couplings are similar, and therefore is sensitive to the cardinality of the project. Alternatively, one can 
divide EMC by the dimension p of the state space and compare the complexity of projects with differ-
ent sizes. 4) The measure is able to cope with fluctuations and performance variability in project dy-
namics and is able to assess emergent design churn effects. (5) The measure is independent of the ba-
sis in which the state vectors of work remaining are represented; it is invariant under arbitrary linear 
transformations of the state space coordinates, and therefore is robust concerning different estimation 
and measurement procedures of the project managers. (6) The measure is derived from first principles 
on the basis of Grassberger’s seminal complexity theory and was not heuristically constructed. There-
fore, the construct validity can not put into question. The supplementing slides show more details on 
the cited properties, give a closed-form solution for two tasks in the spectral basis and clarify the rela-
tionship between the key performance indicator “total work in CE project” and EMC. 

4 VALDITION STUDY 
In order to validate both the stochastic project model from eq. 1 and the novel complexity measure 
from eq. 2 a field study in a small-sized company of the German industry was conducted. The com-
pany develops advanced sensor technologies for automotive suppliers. To deal with a valid business 
case, the work of three engineers in a multiproject setting with three development projects, A, B and C 
was analyzed. The main project A had 10 development tasks, from the conceptual design of the re-
garded sensor to the product documentation for the customer and ran for 13 weeks. Projects B and C 
were “fast track projects” which both ran for less than 3 weeks. The acquired time data of task proc-
essing was very fine grained because the company used a barcode-based labor time system. In the 
supplementing slides the focus is on the initial two development tasks, (1) “conceptual sensor design” 
and (2) “design of circuit diagram” of project A. These tasks determine the total project costs to a 
large extent. The slides also show the results of a corresponding sensitivity analysis of EMC.  
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Complexity and Concurrent Engineering Projects

• Complexity →Large number of engineers in multifunctional teams who
make partially autonomous decisions on product components, but also strongly 
interact in their overall impact on project performance

• CE projects →networks of tightly coupled and concurrent tasks with frequent 
iterations among actors plus performance fluctuations

• Graph depicts network of 
information flows between tasks 
of a development project

• The task network consists of 
1245 directed information flows 
between 466 (overlapping) tasks

• Each task is assigned to one or 
more actors (individual or team)

Braha & Bar Yam 2007
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Work Transformation Matrix (WTM)

aii: autonomous task processing rates
aij: rework parameters
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Dynamic Models of Concurrent Engineering Projects (I)

Huberman & Wilkinson (2005)

Calculation of work remaining for distinct time slices t = 1, 2, … with the WTM A0:
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Lucas et al. (2007)
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Parametric example for two tasks:

Dynamic Models of Concurrent Engineering Projects (II)

Schlick (2007)

Linear stochastic difference equation. Random variable St models individual performance 
variability and non-predictable fluctuations of business environment ⇒CE project is an 
open organizational system. The means of work remaining evolve unperturbed. St has 
covariance matrix ΣS representing fluctuation strength si of tasks and their correlations ρij.

The correlation coefficient ρ has the following effect on the probability density of St :
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Traces of Project Dynamics (I)

The stochastic model is able to represent different project organizations, e.g.
1) Uncoupled concurrent tasks → decaying geometric series with small fluctuations

2
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Traces of Project Dynamics (II)

2) Only forward coupled tasks → overshoot of work remaining plus excited fluctuations 
2
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Traces of Project Dynamics (III)

3) Forward and backward coupled tasks → overshoot plus heavily excited fluctuations 
2
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Excitation of Fluctuations: Comparison of Cases II and III 

The additional tiny backward task coupling of 0.01 in each time slice has a very large effect 
on both average and standard deviation of total work* to be done in CE project

0.9406 0.01
0.2 0.8720

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
03A0.9406 0

0.2 0.8720
⎛ ⎞
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⎝ ⎠

02A

*the key performance indictor “total work” represents the accumulated work remaining for both
tasks 1 and 2 until the stopping criterion is met and the simulated project is finished.

as in previous slidessΣ

~log-normal ~log-normal
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Scientific Complexity Theory

• Physicist  P. Grassberger developed a seminal complexity theory of open dynamic systems 
which has not been considered in engineering and complexity management before

• His work is the foundation of novel DSM-based complexity measure for CE projects, which 
is called the Effective Measure Complexity (EMC)

• EMC counts the amount of information required for optimal prediction of project dynamics; 
it can discover long and short range interactions between tasks and is able to deal with 
emergent complexity due to excited fluctuations

EMC1 >> >EMC2 EMC3 = 0 

complex pattern  regular random (perfect chaos)

Grassberger 1986
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Effective Measure Complexity of Project Dynamics

Computed complexity measure for stochastic CE project model (in stationary state):
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Beside its mathematical beauty the novel complexity measure EMC…
1. …is small for CE projects with uncoupled tasks and large for complex projects with  

multiple and strong task couplings
2. …unambiguously shows the bound of project stability by assigning infinite complexity 

values to diverging projects (that is λmax(A0) > 1)
3. …assigns larger complexity values to projects with more tasks if the task couplings are 

similar, and therefore it is sensitive to the cardinality of the project
4. …is able to cope with fluctuations and performance variability in project dynamics
5. …is independent of the basis in which the project state vectors are represented and 

invariant under arbitrary linear transformations of the state space coordinates
6. …is derived from first principles and is not heuristically constructed.
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Effective Measure Complexity – Some Details on Properties (I)
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note that increase of EMC by 1 
represents doubling of information 
being communicated to the future, 
because log2(.) has base 2!

EMC…

1. …is small for CE projects with uncoupled tasks and large for complex projects with  
multiple and strong task couplings:
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Effective Measure Complexity – Some Details on Properties (II)

This proposition can be proved easily for the case of uncoupled tasks:
If the p tasks of a CE project are uncoupled (that is aij = 0 for all i ≠ j ; i, j = 1…p),
the eigenvalues λi of A0 are equal to the autonomous work progress rates aii.
If furthermore the fluctuations are uncorrelated (that is ρij = 0 in ΣS for all i ≠ j), 
EMC can be fully simplified:  

2 22 2
1 1

1 1 1 1log log
2 1 ( ) 2 1

p p

i ii ii

EMC
aλ= =

= =
− −∑ ∑

0A

Clearly, EMC → ∞ if  λmax(A0) → 1

( ) -i i th Eigenvalue ofλ 0 0A A

EMC…

2. …unambiguously shows the bound of project stability by assigning infinite complexity 
values to diverging projects (that is λmax(A0) > 1):

The proposition also holds for arbitrary work transformation matrices A0 and 
covariance matrices ΣS!
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Effective Measure Complexity – Some Details on Properties (III)

For only two tasks (p = 2) one can find a simple closed solution for EMC in the spectral 
basis. Therefore, the WTM A0 is decomposed by a basis of eigenvectors, given as the 
columns of the matrix S and a diagonal matrix Λ with the eigenvalues λi:   

( )1 ( )iS S with diag λ−= Λ Λ =0 0A A

In the spectral basis one can analyze the project dynamics as a set of uncoupled linear 
processes with correlated noise (coefficient ρ´). We assume that both eigenvalues λ1 and 
λ2 are real. In this case the closed form solution is:

EMC…

5. …is independent of the basis in which the project state vectors are represented and 
invariant under arbitrary linear transformations of the state space coordinates:

Compare EMC with the closed form solution of the key performance indicator “total work”
in the deterministic case with uncoupled tasks and discover the similarities: 
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Validation Study in Industry

• Field study in a small company of the German automotive supplier industry

– Considered project 1 was on the design of a mechatronic acceleration sensor with 
three engineers and 10 tasks

– Highly parallel task processing and frequent iterations among subtasks

– Very accurate project time data was available, because of the use of a barcode-based 
labor time system (resolution of one minute!).

• Focus on the initial two development tasks of the considered project
task 1: “conceptual sensor design”
task 2: “design of circuit diagram”

• Estimated parameters from historical data through maximum likelihood estimator:

estimated WTM

estimated initial 
work remaining

estimated 
fluctuations

0.9406 0.00169
0.00846 0.8720

−⎛ ⎞
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1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
0casex

1 2( 0.0144, 0.0477, 0.3833)s s ρ= = = −sΣ

228



10th International DSM Conference 2008- 15

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Validation Study – Comparison of Project Dynamics

The real work progress is quite similar to the simulated:

real processing of task 1 “conceptual sensor design”

real processing of task 2 “design of circuit diagram”

simulated processing of task 1 

simulated processing of task 2 

10th International DSM Conference 2008- 16

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Validation Study – Sensitivity Analysis (I)

• Only structural validation of EMC was possible, because there were only three company 
specific CE projects analyzed in detail

→ Sensitivity analysis of complexity measure for tasks 1 and 2 of most 
complex project 1

• Therefore, the off-diagonal elements of the WTM A0case were not “clamped”, but two 
rework parameters a12 and a21 - varying between 0 and 1 - were introduced:

• Computed stability bound based on eigenvalue analysis:
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Stability bound for considered tasks 1 and 2 
of CE project 1 based on eigenvalue 
analysis:

Contour plot of computed EMC values 
for varying rework parameters a12 and 
a21 of the WTM A0case (ΣS as before):

12 21 0.0076a a⋅ =

Validation Study – Sensitivity Analysis (II)

21a

12a
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Future Work and Acknowledgement

• More simulation and validation studies of the novel complexity measure EMC
in the German industry

• Development of an ergonomic software tool for integrative modeling, 
simulation and complexity assessment of NPD projects

• Complexity study of multiplicative noise St instead of additive noise which was 
pioneered by Huberman & Wilkinson (2005):

– Calculate probability distributions in steady state

– Calculate dynamic entropies for steady state distributions and derive the 
associated complexity measure EMC.
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