
10TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’08
11 – 12 NOVEMBER 2008, STOCKHOLM, SWEDEN

USING THE DESIGN-STRUCTURE-MATRIX FOR THE
AVOIDANCE OF UNNECESSARY ITERATIONS
J. Roelofsen1, H. Krehmer2, U. Lindemann1 and H. Meerkamm2
1 Institute of Product Development, TU München
2 Chair of Engineering Design, University Erlangen-Nürnberg

Keywords: avoidance of iterations, classification of iterations, design situation, development process

1 INTRODUCTION
Due to the growing application of electrical, software-based and electronic components in technical
systems the complexity in these systems and their development steadily increases. The participation of
many different domains such as mechanical engineering, automatic control engineering, software
design, electrical engineering, and information technology adds up to this challenge. Due to the often
unclear definition of interfaces between the different development partners and the increasing
complexity, a strong risk of unnecessary iterations during the development of those systems arises.
This points out the demand for an approach to avoid unnecessary and unwanted iterations in product
development processes. Those are iterations, which have no contribution to an increasing degree of
product maturity and thus are to be recognised as time-consuming and cost-intensive detours. The aim
of this contribution is to use the Design-Structure-Matrix as a tool for the preventive avoidance of
those kinds of iterations.

2 APPROACH TOWARDS THE AVOIDANCE OF UNNECESSARY
ITERATIONS
To be able to avoid unnecessary iterations and to distinguish the useful from the unwanted ones, it is
required to define criterions, which denote iterations as unnecessary or as advantageous. Therefore it is
necessary to classify the iterations regarding their possible causes and their influences on the
development process.

2.1 Classification of iterations
In prior work an “approach on the control of iterations in the multidisciplinary development of
technical systems” was presented [1]. This approach is based on a classification of iterations
depending on research for the causes and influences of different kinds of iterations. It identifies two
classes of iterations, the so called class of “large iteration” and the class of “small iteration”. Another
classification of iterations is presented in [2]. This classification identifies six different kinds of
iterations: “Exploration”, “Convergence”, “Refinement”, “Rework”, “Negotiation” and “Repetition”.
In the following chapter the six kinds of iterations according to Wynn [2] will be integrated into the
framework of the two classes of “large” and “small” iterations.

Small iteration
According to [1] the class of “small iteration” can be understood as a quantitative approximation
towards the optimal solution. This means, the developer has to approach iteratively through several
partial steps, which becomes necessary because often the solution cannot be found in one step due to
the complexity of modern technical systems. This small iteration is necessary for engineering design
and has to be supported. Four of the six kinds of iterations according to [2] can be integrated into this
class of “small iteration”:
“Exploration” according to [2] means an “iterative exploration of problem and solution spaces” which
is determined by a “repeated process of space divergence” in synthesis followed by convergence in
evaluation. This can be understood as the constant alternation from synthesis to analysis and vice
versa. “Convergence” according to [2] is the iterative approach towards a “satisficing design”, which
gets necessary because of the fact that a solution can not be found in one step [2].
“Refinement” is the third kind of iteration according to [2], which can be seen as a part of the class of
“small iteration” according to [1] and means the “further refinement to enhance secondary

209

characteristics”, in cases where the product meets its primary requirements. “Convergence” has to
precede “Refinement”, because the solution first has to approach (converge) the optimal solution, not
till then it is possible to refine this solution.
The fourth and last kind of iteration according to [2] which can be seen as part of the class of “small
iteration” is the “negotiation”. This means, that there are for example developers of different
disciplines that are contributing together to achieve an acceptable solution in spite of competing goals.
These four kinds of iterations according to [2] have in common, that they are helpful and absolutely
necessary in engineering design. So, all kinds of “small iterations” are to be supported during the
development of technical systems.

Large iteration
Triggers for this class of iteration for example can be a change in the information basis, unclear
requirements in the beginning of the process, a completion of the data basis by new cognitions
regarding the total system. This means, that the development process must be run through again, so
this class of iteration causes a return to the beginning of the product development process, why it is
called the class of “large iteration” [1].
The iteration called “Rework” according to [2] is an equivalent to the class of “large iteration” and
means that some “tasks may require rework in response to problems that emerge as analysis is
conducted”. Rework of one or less process steps can be seen as convergence.
The kind of iteration called “Repetition” can be seen as an outlier, which cannot be classified as
“small” or “large” iteration: In different phases of the process some (same) design activities are
conducted to achieve different goals. This is different from all the other kinds of iterations: In the other
kinds different activities are conducted repeatedly to achieve the same goals.

2.2 Design-Structure-Matrix for preventive avoidance of unnecessary iterations

After the classification of different kinds of iterations the approach towards optimised process
planning supported by a DSM will be introduced. It is the goal of this approach to prevent large and
unnecessary iterations and to identify potential support for the small ones. By conducting small
iterations as early as possible and preventing late time consuming large iterations an optimal result is
promoted and knowledge is generated as soon as possible. Moreover support for the selection of
development methods shall be provided later on in the research project. The approach will be
described using part of an exemplary development process. In this process the basic steps that have to
be carried out in order to generate the product concept are defined, but the sequence in which to carry
them out is not determined. The defined sub-steps are: ”Planning energy-supply”, “Planning flow of
energy”, “Planning flow of signals”, “Defining signal processing”, “Defining Energy conversion”,
“Defining geometrical layout”, “Preselecting material”, “Preselecting manufacturing method”, “Rough
dimensioning”, “Subdividing available space”, “Developing software concept”.
These sub-steps have to be arranged that way, that large iterations are prevented and small iterations
are supported. This is done by a DSM. The approach is based on the use of time-based DSM as
described in [4]. In this DSM the influence of the sub-steps on each other is represented according to
the development project on hand. Dependencies result from the dependency of one process step on the
results of another step or from a high demand for communication between different steps. The project
on hand is classified by certain parameters (industrial sector, risk assessment, type of product,
complexity of product). This project classification will be used to address different kinds of project
situations according to which the DSM will be filled differently. In this example the DSM was filled
by a team of experts as an algorithm for automatically filling the DSM is not developed yet. The
different kinds of situations are still to be developed. The suggestion for process planning derived
from this DSM is to start with the most active element as it provides most information for the
following steps. Thus downstream information flow is enabled and upstream information flow
prevented [3], which would result in a large iteration. Another possibility to use this DSM is to analyse
it for clusters and start these clusters as work packages in order to support short iterations by short
communication cycles.

210

1 2 3 4 5 6 7 8 9 10 11 Act ive sum Passive sum Activity Criticality
1 Plan energy-supply x x x x x x x 7 4 1,75 28
2 Plan f low of energy x x x x x 5 6 0,833333333 30
3 Plan f low of signals x x x 3 4 0,75 12
4 Define signal processing x x x x 4 4 1 16
5 Define Energy conversion x x x 3 3 1 9
6 Define geometrical layout x x x x 4 6 0,666666667 24
7 Preselection of material x x x 3 5 0,6 15
8 Rough dimensioning x x x x x 5 3 1,666666667 15
9 Preselection of manufacturing method x x 2 3 0,666666667 6

10 Subdivide available space x x x x x x 6 5 1,2 30
11 Develop software concept x x x 3 2 1,5 6

Passive sum 4 6 4 4 3 6 5 3 3 5 2
Figure 1. DSM displaying the influence of process steps

2.3 Benefits of the approach
This approach is meant to prevent the class of “large iterations” and support “small iterations” and
thus to reduce development time and cost. By planning the sequence of process steps according to
their activity a better downstream information flow is achieved. As the process steps that provide
information for other process steps are carried out first, late changes can be prevented. By conducting
small iterations as soon as possible at least the same knowledge can be generated as by conducting a
large iteration without the disadvantages of the large iteration. By starting clustered process steps at
the same time small iterations can be supported better, as co-work of the different domains is
simplified.

3 CONCLUSION AND OUTLOOK
This contribution introduces a DSM-based approach towards the prevention of iterations in system
design. Next step in enabling this approach will be to generate an algorithm to fill the described DSM
automatically concerning the project situation. Afterwards the concept will be validated at a partner
company affiliated to the research alliance this work stems from.

Acknowledgements
The projects this approach was developed in take place as part of the research alliance ForFlow
consisting of six Bavarian research institutes working on the fields of engineering design and
computer science collaborating with 21 companies that is promoted by the Bayerische
Forschungsstiftung.

REFERENCES
[1] Krehmer, H.; Stöber, C.; Meerkamm, H.: Approach on the control of iterations in the

multidisciplinary development of technical systems. In: Proceedings on the 10th International
Design Conference – DESIGN 2008, D. Marjanović (Ed.), FMENA, Zagreb, 2008.

[2] Wynn, D.; Eckert, C. M.; Clarkson, P. J.: Modelling iteration in engineering design. In:
Proceedings on the International Conference on Engineering Design, ICED´07, Paris, 2007.

[3] Grebici, K.; Goh, Y. M.; McMahon, C.: Uncertainty and risk reduction in engineering design
embodiment process. In: Proceedings on the 10th International Design Conference – DESIGN
2008, D. Marjanović (Ed.), FMENA, Zagreb, 2008.

[4] Browning, T.: Applying the Design Structure matrix to System Decomposition and Integration
Problems: A Review and New Directions. In: IEEE Transactions on Engineering management,
Vol. 47 No. 3, 2001

Contact: J. Roelofsen
Technische Universität München
Institute of Product Development
Boltzmannstraße 15
85748 Garching
Germany
+49 89 289 151 54
+49 89 289 151 44
roelofsen@pe.mw.tum.de

211

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Using the Design-Structure-Matrix for the
Avoidance of Unnecessary Iterations

J. Roelofsen1

H. Krehmer2

U. Lindemann1

H. Meerkamm2

1Institute of Product Development, Technische Universität München
2Chair of Engineering Design, University Erlangen Nürnberg

10th International DSM Conference 2008- 2

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Agenda

• Introduction

• Iterations

• Approach

• Benefits

• Conclusion and Outlook

212

10th International DSM Conference 2008- 3

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Introduction

• increased application of electrical, software-based and electronic
components in technical systems

• participation of many different disciplines
• growing complexity of products and development processes
• unclear definition of interfaces and requirements causes iterations in

development processes, that do not contribute to product maturity

demand to help the designer to prevent time-consuming and
cost-intensive iterations

10th International DSM Conference 2008- 4

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Iterations - Causes and Influences

• causes for iterations
– complexity of products and development processes
– high degree of division of labor (SE, CE)
– lack of communication
– undetermined boundary conditions
– faulty decisions on basis of unclear or uncertain assumptions

• influences of iterations
– extended development period
– difficult traceability of the development process
– less and challenging reuse of existing solutions
– increasing costs

213

10th International DSM Conference 2008- 5

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Classification of Iterations

• Small iteration
– solution cannot be found in one step

iterative approach through several partial steps
(quantitative approximation towards the best solution)

• small iteration is necessary in engineering design and has to be
supported

• Large iteration
– change of requirements / boundary conditions
– unclear requirements in the beginning of the development process
– false assumptions due to unclear or uncertain data basis
– lack of communication

jumping back to prior process steps
repeated passing through the hole development process

10th International DSM Conference 2008- 6

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Kinds of Iterations

Small iterations
– exploration: constant alternation from synthesis to analysis
– convergence: iterative approach towards the best solution
– refinement: further refinement of secondary characteristics

(product meets the requirements)
– negotiation: contributing experts form different discipines

Large iteration
– Rework Process steps need rework to solve problems that

emerge in later process steps

Outlier
– Repetition same design activities are conducted in different

phases to achieve different goals

Source: Wynn, D.; Eckert, C. M.; Clarkson, P. J.: Modelling iteration in engineering design. (ICED´07)

214

10th International DSM Conference 2008- 7

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Approach

• consideration of dependencies between process steps depending on the
design situation

• start with the most active process step to prevent changes in later
process steps

• identify independent process steps
• identify clusters of steps with high communication-demand to start

simultaneously
• communicating the results of one step with its „neighbor“ is simplified

large stepbacks during the development process shall be avoided
• approach shall help to „make things right“ the first time by arranging

process steps sensibly

10th International DSM Conference 2008- 8

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Definition of Design Situation

• parameters:
– type of product (mechanic or mechatronic)
– degree of novelty (new product, development of variants, changes in

existing product)
– product complexity (low, medium, high)
– units produced (single unit, small batch, large batch, mass

production)
– customer (easy to work with – hard to work with)
– development risk (small, medium, high)

215

10th International DSM Conference 2008- 9

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Process Steps to Create a Design Concept

Developing
software
concept

Defining signal
processing

Planning
energy-supply

Defining Energy
conversion

Preselecting
manufacturing

method

Planning
flow of energy

Rough
dimensioning

Defining
geometrical

layout

Planning
flow of signals

Preselecting
material

Subdividing
available space

10th International DSM Conference 2008- 10

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Filling the DSM

• DSM showing the dependencies between the process steps according to
the design situation is filled and analysed

• an example is given for the situation:
– type of product: mechatronic
– degree of novelty: new product
– product complexity: medium
– units produced: small batch
– customer: easy to work with
– development risk: medium

216

10th International DSM Conference 2008- 11

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

DSM

after
triangularization

10th International DSM Conference 2008- 12

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Derived Sequence of Process Steps

Developing
software
concept

Defining signal
processing

Planning
energy-supply

Defining Energy
conversion

Preselecting
manufacturing

method

Planning
flow of energy

Rough
dimensioning

Defining
geometrical

layout

Planning
flow of signals

Preselecting
material

Subdividing
available space

: Cluster to be carried out simultaneously

217

10th International DSM Conference 2008- 13

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Benefits

• Benefits
– designer is supported in the avoidance of preventable and

unnecessary iterations
– knowledge about the technical system is generated as soon as

possible in the development process
– small iterations (as are to be carried out in clustered steps) are

recognized and carried out as soon as possible to prevent major
fallbacks in the development process

– reduction of development time
– reduction of costs

10th International DSM Conference 2008- 14

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Conclusion and Outlook

• approach to plan development processes according to the design
situation

• next steps:
– validate derived process sequences in a development project
– generate an algorithm that fills the DSM automatically according to

the assessment of the design situation

218

