
10TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’08
11 – 12 NOVEMBER 2008, STOCKHOLM, SWEDEN

THE WHY-MATRIX
Maik Maurer1, Thomas Braun2
1Institute of Product Development, TUM, Boltzmannstraße 15, 85748 Garching, Germany
2Teseon GmbH, Parkring 4, 85748 Garching, Germany

Keywords: Multiple-Domain Matrix, indirect dependencies, software support

1 INTRODUCTION
The Multiple-Domain Matrix (MDM) allows to model dependencies within and between several
domains of a system. The main feature of the MDM application is the deduction of indirect
dependencies from acquired direct ones. That means that information about dependencies between
elements from two domains (e.g. components and people) can be concentrated in the specific system
view of one domain (e.g. dependencies between people due to their work on identical components).
Figure 1 shows such an concentration of dependency information: At the left side the direct
dependencies between elements of two domains are depicted. The network at the right side shows the
derived indirect dependencies in one domain due to the identical connection to elements of the second
domain. That means that, e.g., “1” and “2” get connected, because both link on element “I”. As the
concentrated view only contains one single domain it is easier for users to understand than networks
comprising several types of elements. Such a reduced system view can be seen as DSM-conform
model and therefore allows the application of common analysis algorithms [1].

I

III

1

2

3
II

4

5 1 2

3

4 5MDM
methodology

Figure 1. Direct and indirect system dependencies

A significant disadvantage of the concentrated representation of indirect dependencies within one
domain is that users can not see the originating cause of a dependency. This problem is tackled by the
“Why-Matrix”, which provides the explication for existing indirect dependencies based on the direct
ones. Basically, this matrix represents an enhanced DSM that can be applied for specific information
about the source of an actually considered indirect dependency. The functionality of the Why-Matrix
has been implemented to the software tool LOOMEO [2].

2 CREATION OF THE WHY-MATRIX

2.1 Conventional representation of indirect dependencies
Generally, it is possible to set up a matrix of indirectly connected system elements and to note the
linking causes in the matrix cells. Hereby, the causes mean the system elements that are sited on the
path connecting the indirectly linked elements. [3] applied such a notation for “connectivity maps”,
which indicate indirect dependencies in Domain-Mapping Matrices (DMMs). Figure 2 shows the
exemplary creation of a connectivity map. If two DMMs are apparent that provide the direct links
between elements from domain B to domain A and from domain A to domain C, the approach on
connectivity maps derives indirect links from elements of domain B to domain C. The figure depicts
these elements from domain A in the matrix cells of the resulting DMM that cause the indirect links.
In practice, limits of applicability exist for this notation of indirect dependencies. Complex systems
often possess a high quantity of indirect dependencies. Thus, matrices representing all indirect
dependencies can become difficult to read. As well, indirect dependencies do probably not pass by one
further system element only. In fact, many indirect dependencies result from dependency chains

35

spanning several system elements. In addition, Figure 3 shows six general possibilities to define
indirect dependencies [1]. If these are considered simultaneously, the quantity of indirect dependencies
further increases.

Element type A

Element B1 X X
Element B2 X
Element B3 X X
Element B4 X
Element B5 X
Element B6 X
Element B7 X X
Element B8 X

E
le

m
en

t A
1

E
le

m
en

t A
2

E
le

m
en

t A
3

E
le

m
en

t A
4

E
le

m
en

t A
5

E
le

m
en

t A
6

E
le

m
en

t t
yp

e
B

Element type C

Element A1 X
Element A2 X X
Element A3 X X
Element A4 X X
Element A5 X
Element A6 X

E
le

m
en

t C
1

E
le

m
en

t C
2

E
le

m
en

t C
3

E
le

m
en

t C
4

E
le

m
en

t C
5

E
le

m
en

t C
6

E
le

m
en

t t
yp

e
A

E
le

m
en

t C
7

Element type C

Element B1 1 2 2
Element B2 4 4
Element B3 2 2 3 3
Element B4 3 3
Element B5 3 3
Element B6 4 4
Element B7 4 4 5
Element B8 6

E
le

m
en

t C
1

E
le

m
en

t C
2

E
le

m
en

t C
3

E
le

m
en

t C
4

E
le

m
en

t C
5

E
le

m
en

t C
6

E
le

m
en

t t
yp

e
B

E
le

m
en

t C
7

Figure 2. Creation of a connectivity map (according to [3])

A

B

A

B

1

A

B

1

A

B

1

2

A

B

1

2

A

B

1

2

1 2 3

4 5 6

A

1

Element of the
domain in
question

Element of the
additional
domain

Native
dependency

Derived
dependency

1

Figure 3. Possibilities of indirect dependencies (according to [1])

Generally, if comprehensive information (e.g. names of system elements) of a large quantity of
indirect links has to be depicted, the notation in matrix cells (see Figure 2) becomes disadvantageous.

2.2 Selective representation of indirect dependencies
A new approach on representing indirect dependencies bases on the fact that not all indirect
dependencies of a specific system are inquired simultaneously. Users always concentrate on selected
aspects. Basically, two questions are supposable for the application of information about indirect
dependencies:
1. Which indirect dependencies (or dependency paths) exist between two specific system

components?
2. Which system components are indirectly linked by (paths containing) a specific system

component?
For both use cases information from the Why-Matrix can be represented by use of a simple list that
complements the matrix of indirectly linked elements. The practical use of selected information from
the Why-Matrix requires software support, as dynamic analyses of the considered network are
mandatory. If users select specific system elements (case 1) or a dependency (case 2) in the view of
indirectly linked elements, individual list of dependency causes have to be promptly generated.

36

3 SOFTWARE IMPLEMENTATION OF THE WHY-MATRIX
Figure 4 shows two screenshots of the application of the Why-Matrix as implemented in the software
LOOMEO. The example comprises a network of indirectly linked product designers. The cause for
dependencies between designers arises from their occupation with the same product component.
At the left side of Figure 4 a dependency between two designers has been selected (by mouse click). In
the second window the cause for the people linkage is depicted (both designers are occupied with the
component “differential”), as it can be deduced from the Why-Matrix. At the right side of Figure 4
first the dependency cause has been selected (from a list of all dependency causes). The software
implementation then highlights all designers that are linked due to this cause.

Figure 4. Implementation of the use cases within the software LOOMEO

4 CONCLUSIONS
The Why-Matrix represents a useful information base for aggregated system views. So far, applied
applications possess disadvantages in case of larger quantities of indirect dependencies, as information
representation becomes complex. Here, the selective representation of individual dependency causes
in list form depicts a possible improvement, as typically not all information from the Why-Matrix is
required simultaneously. This selective representation of dependency causes has been realized in the
software LOOMEO for both basic application scenarios. The implementation has already been applied
successfully in several industrial projects.

REFERENCES
[1] Maurer, M. Structural Awareness in Complex Product Design, 2007 (Dr. Hut, München).
[2] Teseon GmbH. http://www.teseon.com. Taken: 30.06.2008
[3] Yassine, A.; Whitney, D.; Daleiden, S.; Lavine, J. Connectivity Maps: Modeling and Analysing

Relationships in Product Development Processes. In: Journal of Engineering Design, 2003,
14(3), 377-394.

Contact: Maik Maurer
Technische Universität München
Institute of Product Development
Boltzmannstraße 15
85748 Garching
Germany
Phone +49 89 3074815-11
Fax +49 89 3074815-29
maik.maurer@pe.mw.tum.de

37

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

The Why-Matrix

Maik Maurer, Thomas Braun

Institute of Product Development (TUM), Teseon GmbH

10th International DSM Conference 2008- 2

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Introduction

• Direct and indirect dependencies

• Representation of aggregated system views

• The necessity of the Why-Matrix

• Existing approaches and their limits

• Two basic use cases for the Why-Matrix

• Software implementation for practical use

38

10th International DSM Conference 2008- 3

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Direct and indirect dependencies

Document 1

Person 2Person 1

Component 1

composes delivered to

required byworks on

„links on“

People Documents Components
People „links on“ composes works on

Documents delivered to

Components required by

Representation
in MDM

Deduction of indirect
dependencies by matrix

multiplication

10th International DSM Conference 2008- 4

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Systematic deduction of indirect dependencies

&

X

α β γ δ

α

β

γ

δ

A

B

C

1

2

3

α

β

γ

δ
4

Derive indirect dependencies
using MDM

Derived DSM

Maurer, M. Structural Awareness
in Complex Product Design, 2007

(Dr. Hut, München).

• Six basic logics for
deduction of indirect
dependencies

• Result:
– DSM-conform model
– Information about

links to other
domains aggregated
in the dependencies
of the DSM

39

10th International DSM Conference 2008- 5

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Representing native dependencies in several domains

• All native system
dependencies
represented

• Structural
constellations can
hardly be interpreted

• No expressiveness
of elements‘
positioning

10th International DSM Conference 2008- 6

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Representation of aggregated system views

Designers collaboration due to
responsibility for cross-linked components Designers collaboration due to

exchanged documents

Significant constellations – but dependency causes are unknown

40

10th International DSM Conference 2008- 7

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

The Why-Matrix approach applied to the deduction of DMMs

Element type A

Element B1 X X
Element B2 X
Element B3 X X
Element B4 X
Element B5 X
Element B6 X
Element B7 X X
Element B8 X

El
em

en
t A

1

El
em

en
t A

2

El
em

en
t A

3

El
em

en
t A

4

El
em

en
t A

5

El
em

en
t A

6

El
em

en
t t

yp
e

B

Element type C

Element A1 X
Element A2 X X
Element A3 X X
Element A4 X X
Element A5 X
Element A6 X

El
em

en
t C

1

El
em

en
t C

2

El
em

en
t C

3

El
em

en
t C

4

El
em

en
t C

5

El
em

en
t C

6

El
em

en
t t

yp
e

A

El
em

en
t C

7

Element type C

Element B1 1 2 2
Element B2 4 4
Element B3 2 2 3 3
Element B4 3 3
Element B5 3 3
Element B6 4 4
Element B7 4 4 5
Element B8 6

El
em

en
t C

1

El
em

en
t C

2

El
em

en
t C

3

El
em

en
t C

4

El
em

en
t C

5

El
em

en
t C

6

El
em

en
t t

yp
e

B

El
em

en
t C

7

Yassine, A.; Whitney, D.; Daleiden, S.;
Lavine, J. Connectivity Maps: Modeling
and Analysing Relationships in Product
Development Processes. In: Journal of

Engineering Design, 2003, 14(3), 377-394.

10th International DSM Conference 2008- 8

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

General Layout of the Why-Matrix

a) work on component 2
b) work on related components 3 and 4

a) work on the same document 5
b) provides document 3

Components Designers Documents

C
om

po
ne

nt
s

D
es

ig
ne

rs
D

oc
um

en
ts

Designers are (indirectly) linked, because:

41

10th International DSM Conference 2008- 9

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Limits for the conventional notation of the Why-Matrix

• The existence of many indirect
dependencies makes the Why-
Matrix difficult to read

• Indirect dependencies can pass
by more than one additional
system element

• Six basic logics for the
deduction of indirect
dependencies

• Specifications of dependencies
(e.g. dependency meaning) can
not be displayed in matrix cells

A

B

A

B

1

A

B

1

A

B

1

2

A

B

1

2

A

B

1

2

1 2 3

4 5 6

A

1

Element of the
domain in
question

Element of the
additional
domain

Native
dependency

Derived
dependency

1

Maurer, M. Structural Awareness in Complex
Product Design, 2007 (Dr. Hut, München).

10th International DSM Conference 2008- 10

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Selective Application of the Why-Matrix

• Users do not require comprehensive
information from the Why-Matrix

• Two application scenarios exist for the
consideration of dependency causes
– Which indirect dependencies (or

dependency paths) exist between
two specific system components?

– Which system components are
indirectly linked by (paths
containing) a specific system
component?

?
Designer 1 Designer 2

Why do they have to cooperate?

Representation of dependency
causes in list form is possible

Component 1

Designer 1 Designer 2

Designer 3 Designer 4
?

Who has to cooperate because
of component 1?

42

10th International DSM Conference 2008- 11

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Use Case 1: Dependencies between specific nodes

• Both use cases have
been implemented to
LOOMEO

• Click on one dependency
in graph representation
provides the linking cause
in an additional window

• Dependency causes are
identified on demand
(dynamic system changes
can be handled)

10th International DSM Conference 2008- 12

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Use Case 2: Nodes connected by the same dependency cause

• Provision of all possible
dependency causes in
a separated list

• Click on one
dependency cause
highlights the
connected elements
linked due to this cause

43

10th International DSM Conference 2008- 13

MANAGE COMPLEX SYSTEMS
FOLLOW THE FLOW OF INFORMATION!

Conclusions

• Aggregated system views are required to gain system understanding

• Disadvantage of aggregated views is the absence of dependency reasons

• The (DSM-conform) Why-Matrix can provide the dependency reasons but
can become rather complex to read

• The entire Why-Matrix is not needed for analyses

• Two different application scenarios allow representation in list form

• Software implementation available

44

