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1. Self-Optimizing Systems 
Nowadays, most mechanical engineering products rely on the close interaction of mechanics, 
electronics, control engineering and software engineering, which is aptly expressed by the term 
mechatronics. The aim of mechatronics is to optimize the behavior of a technical system. The 
conceivable development of information technology will enable mechatronic systems with inherent 
partial intelligence. These systems are called self-optimizing systems. In order to structure such self-
optimizing systems, the hierarchy of complex mechatronic systems suggested by [Lückel et al., 2001] 
was adopted and extended to include the aspect of self-optimization, as shown in Figure 1.  
The basis of this hierarchy is provided by mechatronic function modules (MFMs), consisting of a 
basic mechanical structure, sensors, actuators and a local information processing containing the 
controller. The combination of MFMs, coupled by information technology and/or mechanical 
elements, constitutes an autonomous mechatronic system (AMS). Such systems also possess a 
controller, which deals with higher level tasks such as monitoring, fault diagnostics and maintenance 
decisions as well as generating parameters for the local information processing of the individual 
MFMs. Similarly, a number of AMSs constitute what is called a networked mechatronic system 
(NMS), simply by coupling the associated AMSs via information processing. On each level the 
controllers can be enhanced by the functionality of self-optimization. Thus the system elements 
receive an inherent partial intelligence. The behavior of the overall system is characterized by the 
communication and cooperation between these intelligent system elements. From the information 
processing point of view they are considered as a distributed system of cooperative software agents. 
The behavior of self-optimizing systems emerges from the self-optimization process, which is 
expressed as a series of three actions:  

1. Analysis of the current situation. Here the self-optimizing system collects all relevant data 
about its actual state and its environment. Such observations may also be made by 
communicating with other systems indirectly. 

2. Determination of the system objectives. This means, the self-optimizing system 
autonomously derives its current objectives by using the acquired data. The objectives form 
the basis for the adaptation of the system behavior. 

3. Adaptation of the system behavior by adapting the parameters and/or the structure of the 
system if necessary.  

From a given initial state, the self-optimization process proceeds, on the basis of specific influences, 
into a new state, i.e. the system undergoes a state transition.  
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Figure 1. Structure of mechatronic systems [Lückel et al., 2001] 

2. Development of Self-Optimizing Systems 
The established design methodologies of technical systems, for instance [Pahl et al., 1996] and [VDI 
Guideline 2206, 2004], lay the foundation for the development of self-optimizing systems. 
Nevertheless these methodologies have to be fundamentally extended. On a generic level, the 
development of self-optimizing systems starts with the domain-spanning conceptual design, followed 
by the domain-specific concretization and ends with the system integration. The result of the 
conceptual design phase is the principle solution. It describes the main physical and logical operating 
characteristics of the system in a domain-spanning way. On the basis of this jointly developed 
principle solution, further concretization will take place separately in the domains involved. Finally, 
during the system integration phase, the outcomes from the individual domains are integrated to form 
an overall system.  
Within the conceptual design phase, we use a set of semi-formal specification techniques to describe 
the principle solution of a self-optimizing system [Frank, 2006]. For a complete description several 
views on the self-optimizing system are needed. Each view is mapped by a computer onto a partial 
model. The principle solution is made up of the following views: requirements, environment, system 
of objectives, functions, active structure, shape, application scenarios and behavior. This last view is 
considered as a group because there are various types of behavior (e.g. the dynamic behavior of a 
multibody system, the cooperative behavior of system components etc.). The relationships between the 
partial models are also modeled, which leads to a system of coherent partial models, as shown in 
Figure 2. 
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Figure 2. Partial models describing the principle solution of self-optimizing systems 

This principle solution forms the basis for the subsequent domain-specific concretization. It is 
indispensable to transfer all design concepts formulated in the principle solution for the deployment of 
different domain-specific designs without any information loss. At this point, clear design goals have 
to be understood by the specialists and sufficient system information must be available as prerequisites 
before design concretization could be continued [Böcker et al., 2006]. Having the right information in 
hand, the specialists can concretize the design using their domain-specific methods and techniques. 
For instance, mechanical engineers design the optimum geometry; software engineers analyze the state 
transitions; control engineers select the controlled system variables, etc. The development of 
systematic approaches from the domain-spanning principle solution towards domain-specific design 
concretization is necessary to ensure a seamless development flow, but remains hitherto a challenge to 
the design community. 

3. From the Domain-Spanning Principle Solution towards Domain-Specific 
Controller Design 

A systematic approach has been developed to show control engineers how to identify the control 
concepts in the principle solution, extract them from the principle solution, and subsequently 
transform them into the specification of control engineering. The systematic approach is illustrated in 
Figure 3. The activities and the outcomes of each phase are described in more details in the following 
sub-sections. Besides allowing control engineers to integrate various control techniques at an 
abstraction level avoiding the design details of the self-optimization process, the systematic approach 
bridges the gap of the development flow between the top-down approach used in specifying the 
principle solution and the bottom-up approach used for controller design.  
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We clarify the points mentioned by the design of controllers needed by a self-optimizing motor drive. 
The focus here is the control of the angular dynamics, which is elementary for a large number of 
applications, e.g. machine tools and general drives for automation purposes. The control structures of 
the motor drive can be reconfigured. Different control structures demand different amount of resources 
and deliver different performances. The functionality of the controllers can be totally (or partly) 
implemented on a CPU1 or a FPGA2. The controllers run alongside the other applications on the same 
computation platform. They are competing for the available resources, such as memory, CPU time, 
and surface area on a FPGA. In this application, resources are allocated at run time. The run time 
switching between the different implementations of the controllers is done by means of partial run-
time reconfiguration [Schulz et al., 2007]. 

 
Figure 3. A procedural model from the domain-spanning principle solution towards the domain-

specific controller design 

3.1 The Principle Solution as exemplified by the Self-Optimizing Motor Drive 
Using the semi-formal specification technique, the principle solution of a self-optimizing motor drive 
is formulated. The principle solution of the self-optimizing motor drive presents a generalized solution 
concept which could be adapted into different applications, such as hydraulic pumps or as electrical 
part in the drive train of a hybrid car. Figure 4 shows a cut-out from the partial model behavior – state, 
behavior – activity, and active structure. The interconnections between these partial models are also 
indicated. Each of the partial models is described in detail below. 
                                                           
1  CPU: Central Processing Unit 
2  FPGA: Field-Programmable Gate Array 
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Figure 4. Cut-out from the principle solution of a self-optimizing motor drive 
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Active Structure: The active structure depicts the system elements that represent solution patterns and 
active principles, together with their characteristics as well as the relations between these system 
elements. Relations here refer to the flows of material, information, and energy, as well as their logical 
relations. Figure 4 shows an exemplary section of the active structure of the self-optimizing motor 
drive, which is a mechatronic function module (MFM). The motor drive consists of a self-optimizing 
motor drive controller, power electronics, and a permanent magnet synchronous motor. Besides that, 
the motor drive is equipped with a resource management module, a CPU, a FPGA module, and a load 
machine. The self-optimizing motor drive controller is built based on the concept of the Operator 
Controller Module (OCM), which is divided into three levels, i.e. cognitive operator, reflective 
operator, and controller [Oberschelp et al., 2004]. The controllers directly control the angular 
dynamics of the motor drive and have to fulfill hard real-time requirements. The controller structures 
can be reconfigured in response to the state transitions and the underlying adaptive processes. The 
switching between the controllers is specified by the alternative controller structures labeled with A, 
B, and C in the active structure. On top of the controllers, the reflective operator is responsible for the 
switching of the controller structures. It is event oriented and operates in hard real-time. At the highest 
level, the cognitive operator uses a preemptive optimization to improve the behavior of the motor 
drive. It does not interact in real-time with the motor drive. 
Behavior – Activity: The partial model behavior – activity describes logical sequences of system 
activities which includes all operation and adaptation processes. Figure 4 shows a cut-out of the partial 
model behavior – activity of the self-optimizing motor drive which describes the self-optimization 
process. The cognitive operator analyzes the current situation and subsequently determines the 
currently active objective function. The current objective function is weighted on the basis of the 
available resources, the evaluation of the currently active controller, the prediction of probable system 
behavior, as well as the influences from the environment and within the system itself. The weighting 
of the objective functions is carried out by means of a fuzzy-rule base. As the environment changes, 
the rules to select a controller can also be changed. If necessary, a new controller will be loaded, 
initialized, and subsequently activated. Finally, the unused resources will be released. These activities 
of loading, initialization and activation of controllers until the release of unused resources are executed 
by the reflective operator.  
Behavior – State: The partial model behavior – state describes the envisaged system states, the state 
transitions, as well as the events that trigger a state transition. In our application example, the 
operating conditions of the motor drive include the constant load operation, the acceleration operation 
and the dynamic load operation. With the help of a load machine, these different operating conditions 
are simulated, i.e. by setting the load torque or the driving velocity, in each case with temporal 
changes. Such operating conditions require the motor drive to operate in three different states, each of 
them with low, medium, or high control quality and resources demand. Different controller structures 
are required in different states. Considering both resources demand and control quality, the most 
viable system state is selected depending on the environmental influences, desired performance and 
available resources. Both the initialization of the new controllers and their switching take place, as the 
system transits from an initial state into a new state, on the encounter of specific triggering events. 
However, frequent switching and/or toggling on and off between the controllers have to be avoided. 

3.2 Extraction of Control Functionality 
Having formulated the principle solution, the functionality to be implemented on the controllers has to 
be extracted. For this purpose, control engineers will first need to interpret the system functionality 
specified within the partial models. The understanding of the system functionality is used to guide the 
extraction of the control functionality at each hierarchical level of the system. Depending on the 
complexity of the product, the functionality of the controllers is accordingly mapped onto the 
hierarchical level of MFM, AMS or NMS, as per the mechatronic structure shown in Figure 1. As self-
optimizing systems usually require multiple control algorithms, the precise insight into their control 
functionality will help to enable the decomposition and the integration of control solutions in the later 
stages. The partial model functions provides a good reference for the extraction of the control 
functions. 
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In our application example, the system functionality of the motor drive is the ability of maximizing the 
control quality and yet minimizing the resources demand while the system is operating under changing 
environmental influences. The control functionality is the control of the angular dynamics, which is 
achieved through the adjustment of the angular velocity by controlling the torque of the motor drive. 
The highlighted function blocks at the upper right of Figure 5 are the extracted control functionality 
from the partial model functions. The linkages between the control functions and their associated 
system elements in the active structure are also indicated. 

 
Figure 5. Extraction of control functionality from the principle solution 

3.3 Outline of Control Hierarchy 
The outline of a control hierarchy can be done in two successive steps. The first step is the analysis of 
the interdependencies among the control functionality. The main interdependencies can be identified 
from the linkages of the extracted control functions with their associated system elements in the active 
structure. The types of interdependency partly determine how the control algorithm should be derived. 
Therefore, understanding of the interdependency is important here for effective coordination among 
the control algorithms. The second step involves the outline of a control hierarchy based on the 
identified interdependencies. In order to realize the main control function, different controlled system 
variables can be involved, depending on the physical characteristics of the plant and the selected 
sensors and actuators. This may involves further decomposition of the control hierarchy, if necessary. 
Each of the control functionality in the hierarchy refers to a particular task to be carried out by a 
control algorithm in a cascaded control structure. Therefore, the hierarchical levels in the control 
hierarchy resemble the cascaded controller structure to be developed. The control functionality which 
has to be delivered in different degree of quality is marked as duplicated function blocks.  
As an example, the control hierarchy of the self-optimizing motor drive is outlined. Referring back to 
the active structure in Figure 5, it is to be noted that the ‘control algorithm’ has ‘to control the torque’ 
though it has two information flows of ‘current’ and ‘torque’ as the inputs. On one hand, the main 
dependency between the ‘angular velocity controller’ and the ‘control algorithm’ is the adjustment of 
the driving torque. On the other hand, the technique used to control the torque has to be made clear to 
be able to outline the control hierarchy. It is to be understood that the adjustment of torque, is a result 
of current control, which directly influences the angular velocity of the motor drive. Therefore, in 



WORKSHOP 4: MECHATRONICS DESIGN 1270 

order to control the torque of the motor drive, the current of its permanent magnet synchronous motor 
has to be controlled.  
Adopting such a strategy, we build up a control hierarchy as shown in Figure 6. The function ‘to 
control the angular dynamics’ is first decomposed into the function ‘to control the angular velocity’, 
then decomposed into the function ‘to control the torque’, and further decomposed into the function 
‘to control the current’ of the motor drive. The dependency between the control functions are marked: 
‘adjustment of driving torque’, ‘adjustment of current’, and ‘adjustment of control signal’. The 
controlled variables, which serve as the reference input and actual output at each hierarchical level, are 
also indicated in the control hierarchy. On top of that, the current controllers are represented as 
multiple function blocks. Implementation wise, this implies the switching between the controller 
structures which realize the functionality of current control with different degrees of quality and 
resources demand. This information can be extracted from the alternative control algorithms A, B, and 
C, as indicated in the active structure. 

 
Figure 6. Outline of the control hierarchy 

3.4 Conception of Controller Design 
Generally, the favorable or proven controller structures for a standard application are usually well-
known. A viable control solution that should work accordingly can be predetermined based on the 
information extracted from the principle solution and the experience of the engineers. The conception 
of controller design involves the analysis of controlled variables and their behavior adaptation. That 
means, the necessary feedback loops are identified from the information flows and the required 
switching of the controllers at each hierarchical level is known. Subsequently, the initial controller 
structures are outlined. The blocks and the feedback loops can be drawn with reference to the active 
structure. Control-specific information that can be extracted from the active structure includes, for 
instance, comparison elements, correction elements and measurement elements. These elements are 
organized together within the controller loops.  



WORKSHOP 4: MECHATRONICS DESIGN 1271

Within this phase, control engineers have to decide if an open-loop control will be sufficient, or a 
closed-loop control is necessary. In addition, a feedforward control can be used to eliminate 
undesirable effects of disturbances on the system output. A proper combination of open-loop and 
closed-loop controls is usually less expensive and will give satisfactory overall system performance. 
Besides the active structure, the behavior ─ states provide information about the adaptation of the 
controller structure under different application scenarios. The availability of different systems states as 
well as the triggering events of the state transitions can now be understood. The outcomes of this 
phase are the conceptual controller layout in the form of preliminary block diagrams. The preliminary 
block diagrams are used as the preliminary control system descriptions, which were conventionally 
represented in the form of system equations. By applying formal design techniques, the preliminary 
block diagrams can be further concretized to implement each of the control functionality.   
Figure 7 exemplifies the preliminary block diagrams for the control of angular dynamics of the self-
optimizing motor drive. The block representing the electrical plant will contain power electronic and 
equations describing the electrical part of the motor that covers the voltage-current behavior. The 
blocks representing the mechanical plant includes the dynamics of the motor and the generation of 
driving thrust. The blocks representing the controllers will be added with control algorithms. In this 
example, while the torque is controlled by an open-loop controller, the PI-controller is used for both 
the angular velocity control and the current control. The current control involves the control of a 
vector of current components: the d-current and the q-current. On one hand, the d-current has to be 
controlled to zero in order to avoid energy losses in the motor. On the other hand, the q-current has to 
be controlled for the adjustment of the torque driving the motor. The focus here is the switching 
between the current controllers when the motor drive transits from a particular state into another. As 
shown in Figure 7, the concept of using different control structures and the generation of switching 
command are clearly indicated within the controller loops. 
All controller structures used to control the current are based on a Field Oriented Control (FOC) 
scheme. The properties of these controllers are well known by control engineers and have been 
presented by several authors, for instance [Blaschke, 1972]. The difference between the controller 
structures A, B and C lie in the internal structure of the current control block. In control structure A, 
the current control block contains a FOC structure where the output of the PI-controller is directly the 
output of the block. Therefore, the dynamics of the control loop is determined by the PI-controller. 
Besides the PI-controller, the current control block in controller structure B contains a feed-forward 
for Back-EMF compensation. As such, the dynamics of the control loop is improved as compared with 
using the FOC alone. In controller structure C, both compensation for the Back-EMF and the 
decoupling of the current are incorporated in the feed-forward for the FOC. Switching between these 
controller structures leads to the behavioral adjustment of the motor drive in delivering the self-
optimizing capability. 

3.5 Concretization of Controller Design 

Naturally, not all design considerations can be made during the conceptual design phase. Detailed 
design of the controllers is done using the de facto tools that supports the modeling, analysis, and 
synthesis of the feedback controllers. There are various established controller design techniques. On 
one hand, systematic approaches for parameter tuning are well known, e.g. the Ziegler-Nichols 
method. These approaches can be called heuristic approaches. On the other hand, there are also 
analytical approaches. The analytical control design algorithms can be structured in two ways, i.e. the 
formula-based algorithms (e.g. coefficient comparison for time constants and cross-ratio) and the 
graphic-based algorithms (e.g. pole-placement). [Schröder, 2001] [Umland, 1988] 
In order to ensure a structured controller design process and to prevent design errors, the controllers 
are simulated together with the plant. This is required to predict the behavior of the non-linear part of 
the system and the uncertainties, which can be examined by simulation. Such simulations can be 
understood as the premise for the implementation of the controllers on their target-platform. Depend- 
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Figure 7. Preliminary block diagrams for the self-optimizing motor drive 

ing on their applications, an analog (e.g. with op-amps) or a digital (with microcontrollers) target-
platform may be used.  
The laboratory prototype of the self-optimizing motor drive has been developed in the Institute of 
Power Electronics and Electrical Drives at the University of Paderborn. The parameters of the 
controllers are tuned using the cross-ratio-approach. The target platform is a rapid prototyping system 
with a FPGA-based and a CPU-based controller prototyping. In this context, the controllers and their 
switching concepts are validated by the Hardware-in-the-Loop-Tests (HiL-Test). The hardware 
includes the power electronics, the permanent magnet motor drive and an induction motor as the load 
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machine. The load machine emulates the impacts of changing load on the motor drive. Test in a real 
plant application, like hydraulic pump or machine tool, is the final step of the design concretization of 
the controllers. 
Figure 8 shows the MATLAB-based implementation of the q-current controller with Back-EMF 
compensation and decoupling of the current, which was indicated as current controller C in Figure 7.  

 

Figure 8. MATLAB-based implementation of the q-current controller (Type C) 
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The internal of the block ‘PI-controller’ is shown at the right of Figure 8. The internal parameters of 
the PI-controller, i.e. the proportional gain and the integral gain are labeled. The current controllers are 
implemented using MATLAB Simulink and Xilinx System Generator, which is directly the source for 
the FPGA-platform. For the current controller B (FOC with Back-EMF compensation), the adder 
‘Sum 1’ and the block ‘id_decoupling’ are not implemented. For the current controller A (FOC 
without feedforward), only the block ‘PI-controller’ is implemented. Depending on the operational 
conditions of the motor drive, the feed forward parts of the current controller may not be required. If a 
feed forward for the Back-EMF and/or decoupling is dispensable, their associated reconfigurable 
resources on the FPGA can be released for other applications. 
The current controller A, B, and C as well as the switching between the controllers are implemented 
and tested under different conditions. There are three operating conditions as specified in Section 3.1: 
constant load operation (constant motor speed), acceleration operation (speed up) and dynamic load 
operation (speed is varied by means of a load machine). The left column of Figure 9 compares the 
measurement results of the current controller A, B, and C under the acceleration operation. The 
reference value of the q-current are step inputs. The experimental results obtained were as expected. 
On the right column of figure 9, the switching from current controller A to current controller C is 
shown. The time of switching is marked by the switching signal in the first graph. It is shown that the 
switching  does not have a negative influence on the control loop. 

 
Figure 9. Measurement results of the current controller A, B, and C (left)  
and switching from current controller A to current controller C (right) 

4. Conclusion 
The method described here provides a practical guidance for the development of controllers for self-
optimizing systems. From the domain-spanning principle solution towards the domain-specific 
controller design, the method delivers three concerns that we think are significant, i.e. easy handling of 
the design concepts, design at a high abstraction level from the beginning, and the re-use of the design 
concepts taken from the principle solution within the early design concretization phase. Using the 
holistic principle solution as the starting point for systematic development of controllers significantly 
reduce the late emerging design incompatibilities among various sections of the self-optimizing 
system, and consequently prevent major delays as well as cost overruns. 
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