
DESIGN PROCESS: HOLISTIC VIEW

V. Sedenkov

Belarusian State University
SW Engineering Department

e-mail: sedenkov@bsu.by

Keywords: CAD reengineering, design problem, action system, design process designing

Abstract: Design process (DPR) disintegration, which apparently has entered the phase of self-
development, is economically wasteful and technologically unpromising. A possible strategy to
oppose this tendency is the revealing and neutralization some trigger factors. DPR complexity, for
instance, is frequently referred to those assuming that the complexity reduction would weaken
disintegration tendencies as well. But disintegration had arisen concurrently with design
computerization. Hence, the properties of key design paradigm signs (paradigmants) should have
yet something that does not hamper disintegration progress. Paradigmants modification
contributing to DPR integration is referred to as reengineering of the current design paradigm
(generally, CAD). The paper presents theoretical background, results and implications of logical
reengineering.

1. INTRODUCTION

The tendency of design process (DPR) disintegration
into autonomous segments, presenting types, levels,
aspects, stages and goals of designing, seemingly
has entered the phase of self-development.
Disguising itself as inevitability, this tendency
entails drastic implications. DPR disintegration,
conceived at one time with design automation,
imparted to the latter a "piece-wise" mode and
preserves it to present day as extensive and highly
wasteful activity. The promising studies (PLM, CE,
knowledge harnessing, etc.) cannot reach the
expected efficiency under conditions of segmented
DPR, while exploration for the segments often has
no prospects. A rather fragmented, if not a chaotic,
picture of this research [1] makes, on the one hand,
its area boundless, and, on the other hand, causes the
feeling of "the end of design methodologies" [2].
Finally, DPR disintegration triggers a number of
other disintegrations – educational courses, expert
corps, design science itself.
Our standpoint in respect of DPR disintegration
consists in active counteraction. One of the
strategies of such opposition may be the
identification and subsequent elimination or
neutralisation of disintegration factors (among those
are, for instance, DPR complexity, DPR model
dependence on an executive processor and a domain,
unsolved problems, etc.) But such straightforward
strategy does not exceed the limits of restraining
facilities, and may turn to be unsuccessful under
conditions of the current CAD paradigm.

The way to counteract disintegration more
effectively should be, in our opinion, CAD
reengineering. This strategy is based on the fact that
disintegration is rooted in the properties and states of
a few distinctive features of a design paradigm,
which we call paradigmants. We associate with
those the following fore members: design progress
concept, design goal presentation, "the problem of
the design problem", and action system. Then the
proposed reengineering will consist in purposive
modification of paradigmants' properties or states in
that direction, which ensure holistic DPR
presentation and realization. Starting with the
elements of theoretical base being used, the paper
describes reengineering operations and the results
obtained.

2. ELEMENTAL THEORETICAL
EXTRACTIONS

2.1. Continuous process theory
The subject matter of continuous process theory
(CPT) [3] is the scheme technique of processes. The
goal of the discipline is to proof the runability of
some process through the building up for its scheme
a runable continuous structure of processes. CPT
serves for the major theoretical support of CAD
reengineering. Its technique is characterized by the
following:

• Each process (PR) can be presented by its scheme:
PR=(D, P), where P stands for a processor that
performs transformation of energy, raw materials,

Design methods for practice 228

information or products entering its input (IP), and
D stands for a procedure that describes the
function of P over its IP. D and P are referred to
as a process object and subject respectively.

• A set of process schemes is added with a number
of binary relations.

• Process schemes linked by distinguished
relations make up a structure.

• The rules for structure formation and conditions
for the structure runability are stated.

There are two relations appropriate for making up
the structures: providing relation or p-relation and
relation of determination or d-relation. PR1 and PR2
are linked with p-relation (PR2 →p PR1) if the
output of PR2 serves for the input of PR1. If the
output of PR2 becomes a scheme component of PR1
(D or P), these two processes are linked by d-
relation (PR2 →d PR1).

A set of processes (or their schemes) continuously
linked by d- or p-relation forms an elementary
structure of processes (or processes schemes). This
structure is represented by a graph, the nodes of
which serves for the processes and each arc is a
cross-linking relation. Elementary structures have an
order n, equal to 1. Elementary structures generated
by one of the relations can form a new structure by
the alternative relation; such non-elementary
structures have n=2. Non-elementary structures may
serve for the members in a structure of the next
order based on the relation alternative to a previous
one. A motive for structure formation may be as
follows.

Associate with each process scheme a level of its
uncertainty (UL) as UL of the scheme's
components.

• A process, which has UL=0, is called physical: its
D and P are real.

• UL=1 corresponds to a logical process: its D and
P have descriptions sufficient for their physical
implementation.

• A virtual process has UL=2: its D and P exist only
as mental images.

• UL=3 is assigned to a conditional process (PRC):
its result has been declared but D and P are
presented by their symbols only.

Constructive proof of logical runability for PRC
consists in stepwise reduction of its UL. A step of
reduction is referred to as determination of
conditional, virtual or logical process. While two-
stroke determination of PRC, the objective of the
virtual (downward) determination is the reduction
UL=3→UL=2; during the second or the stroke of
logical (upward) determination, the reduction
UL=2→UL=1 will take place. The outcome of this
two-stroke determination cycle of PRC is, so called,

S-tree (super-tree) – an arc-bichromatic tree, each S-
node of which is an ordinary tree (Fig. 2).

2.2. Problems schematics
When some conditional PR has been declared, it
may need determination with respect to D and P. In
that case, the processes SD (search for D) and SP
(search for P) should be executed for PR (Fig. 1).

 SD →d PR ←d SP

Fig. 1. The structure of processes on d-relation

The triple of processes as a whole, which represents
the elementary structure based on d-relation, is
identified as a problem scheme (PRB):

PRB = <<SD, SP><PR>> (1)

Here <PR> is the core of the scheme. The result of
execution <SD, SP> is said to be a solution to the
problem, while the outcome of <PR> is an answer
to this problem. (It was G. Polya [4] who had
segregated the problem realization into obtaining a
solution and computing an answer.) The problems,
which have an answer but have not a solution, are
referred to as unsolvable of the second kind. The
problems that have neither solution nor answer (due
to the nature laws, for instance) have the
unsolvability of the first kind.

FP
C

2

3

111315

16

14
10 19 21

FPC
9

20
22

121718

49
8

7

6
5 24

23

d

d

PRC

S1

S2

 S0
1

Fig. 2. S-tree fragment

Relations identified for a set of processes schemes
stay valid for a set of problems schemes as well.
This makes possible the problems cooperation with
obtaining the problem structures equal to non-
elementary structures made up out of processes
schemes. In that case, relations between problems
are equivalent to relations between the cores of their
schemes.

In addition, introduce for a pair of problems one
more relation – the relation of substitution. The
problem to be substituted is named original (OP),
and the substituting one is termed conjugate (CP).
OP and CP are coupled in the following way: (a)
their input data are different, (b) an actual answer to
CP is identical to the virtual (required) answer to

PART II Specific methods and related topics 229

OP, (c) the input data for OP play part of the control
data (ID) for CP. If OP has unsolvability of the
second kind, the search and realization of CP is the
unique way to get the answer to OP. The immediate
example is presented by knowledge engineering: it
deals with unsolvable problems of the second kind
(for instance, diagnosis problem, or OP), and the
part of CP is performed there by the problem of
knowledge-based inference.

3. DESIGN PROGRESS CONCEPT

3.1. Design progress concept: AS IS
The product development process is a regular
technical evolution [5]. However, the concept of
evolution, accepted by a design paradigm, can have
different forms: evolution of populations [6],
evolution of individual entity [7], and pseudo-
evolution when design evolving has a mediate form,
reflecting some evolution of design description
notation. In the last case, design description
manipulation (stepwise refinement, for instance)
results in design structure modifications.

Design progress concept (DPC) accepted in CAD is
taken from the manual designing: this is the
evolution of a description made for component
architecture and treated as a reduction of an abstract
level of the complete product structure presentation.

3.2. Design progress concept: TO BE
In the first place, DPC reengineering presuppose the
disavowal of the H-centered DPC as stepwise
concretization of a design complete description. So,
there are two remainder candidates for a free DPC
vacancy: autogenetic evolution and the evolution of
individual. The first one is too laborious to be used
while designing of complex products. So, the only
choice for the part of DPC will be the "evolution of
individual" treated as the adaption of the current
design state (design maturity level, ML) to a new
state of adaption environment (AE). The notion of
AE is a derivative one. Its primary image is the
notion of a product operation environment (OE). We
specify the latter as follows.

OE is a set of ambient ongoing processes relevant to
the product under design (the latter will enter OE
after its physical implementation): {PRq}. With the
relevance to these processes, the product will play
only three parts: it can be a process subject, a
process input or a disturbance for a process (Fig. 3).

}q{PR

MLi as a processor ML i as an input

iML as a disturbance

Fig.3. Product relations to operation environment
processes

Hence, the family {PRq} may be divided into three
sets:
1. {PR С

q1
} – the set of processes whose members

accept the product as theirs subject (processor)
and specify for the latter the operating conditions
(Cn).

2. {PR R
q2

}: each member of the set takes the

product for its input and places on this input a
number of requirements (Rq).

3. {PR L
q3

}: members of this set take the product for

a disturbance – a potential modifier of their D or
P. These processes impose restrictions (Rs) on the
product.

Thus, the hierarchy of sets in the family of OE
processes assumes the form shown in Fig. 4.

{ PRq }

{PRRs
1}

{PRRs
2}

{PRCn
1}

{PRCn
2}

{PRCn
3}

{PRCn
4}

{PRRq
1}

{PRRq
2}

{PRRq
3}

{PRRq
4}

{PRRq
5}

{PRRq
6}

{ }q
2

{PR }q3q
1

{PR } PR

Fig. 4. Operation environment hierarchical structure

So, the processes of OE, which takes the product for
their input, impose upon this input the requirements
(Rq); this family of processes is shared by the life
cycle stages. The processes that take a product for
their subject (P) are the aim-achieving processes
with different extents of completeness; these
processes declare for their subject the operation
conditions (Cn) and specify one or other scope of
functionality. The processes, which take a future
product for a disturbance, stipulate the necessary
restrictions for the product (Rs), minimizing non-
intrinsic product resource consumption. If the
product operation itself is considered as a new
process in OE being disturbed by the inner product
processes, then the latter should be also imposed
with restrictions minimizing intrinsic product
resource consumption. Therefore, AE = {{Rq} ∪
 ∪ {Cn} ∪ {Rs}}.

4. DESIGN GOAL

4.1. Design goal presentation: AS IS
The current design paradigm either equates design
presentation with product presentation or does not
draw an essential distinction between those. Most
often it is said of a product but not a design

Design methods for practice 230

presentation. But for all that, the model of available
product perception, borrowed from cognitive
practice (structuring levels – subsystems,
assemblies, parts), is used as the model for creation
of unavailable design (system, organs, parts [8]).

The structure of DPR segments, which return
product design descriptions, practically reflects the
structure of a product under development presented
at the level of subsystems, assemblies or parts.

We shall call the product presentation fixing its
componentization at the moment ∆ti as synchronous
one (sh). This presentation is based on cognitive
motives, it is natural only for a real product and is
usually realized by an hierarchy of abstract leyers
for the lists of components. Devide the creation of
sh-presentation on three stages, the results of which
servers for building blocks while the product
structure description formation:

1.1 sh-structure scheme – an hierarchy of names
assigned to product decomposition layers
(subsystems, assemblies, parts);

1.2 sh-decomposition scheme – sets of product
constituents; each set refines an element from
the previous layer of hierarchy;

1.3 sh-structure – product componentization
obtained by application of 1.2 to 1.1.

4.2. Design goal presentation: TO BE
The goal of designing is a design – a self-dependent
and irrelative to any object (specific product or
process) entity, which should have its own unique
presentation. The non-existent design may have only

diachronic (dh) structure – a sequence of names of
yet unknown synchronous states ordered at
continuous time base and interpreted as the design
MLs. Then designing in evolutionary DPC appears
as a sequential assignment of synchronous images
(semantics) to the members of diachronic design
structure. The language for sh-states remains
unchangeable from the start to the final version of a
design.
It is pertinent to note that the DPR structure is not
considered here as the mapping of a product
structure. Quite the contrary, a unified design dh-
structure is borrowed for a product from the design
process design (cf. section 7).

The tuple of abstract design states or MLs (the
"boxes" assigned with sh-presentations) converging
to a required ML is called an approximate model of a
design (АМ). By analogy with synchronous product
structure from AS IS, we single out different in
power MLs assosoations and call those as premodels
or levels of AM completeness. List these premodels
for the case of diachronic structure and juxtapose
them with the sh-premodels (Fig. 5):
2.1 dh-structure scheme – q-hierarchy (hierarchy of

recurrent tuples) of higher MLs;

2.2 dh-decomposition scheme – a set of lower MLs
ordered into some structure, the members of
which are called intervals;

2.3. dh-structure – a full range of intervals (for
instance, ML intervals) obtained by substitution
2.1 into 2.2.

1 2

2.3

2.2

2.11.1

sh-presentation

sh-structure scheme

sh-decomposition
scheme

sh-structure dh-structure scheme

dh-decomposition
scheme

dh-structure

dh-presentation

Design structure presentations

1.3

1.2

AS IS TO BE

Fig. 5. Basic premodels obtained while development design structure presentations in AS IS and TO BE

The structures of diachronic AM are specific for
different objects. The choosing of those, as well as
the use of one product AM for the premodel role of
another product, clears the way to generate for some
collection of objects a unified AM structure. In the
case of evolutionary DPC, such a collection consists
of the needed product, its operation environment and
a design process. Since the design goals in our DPC
are defined as the reqired product design and its AE,
let us construct for those individual AMs.

4.3. Product design approximate model
Following evolutionary DPC, we distinguish for a
design four sequentially attainable states and name
them design goals:

• Prototype (PRT) – design state that implements
basic features of the required product, declared by
conceptual description of the demand;

PART II Specific methods and related topics 231

• Market version (ITM) – further functional
evolution of PRT to the level of secured market
callability;

• Manufacturing version (COM) – ITM evolution
that stresses especially a range of issues from the
product process planning to after-sales service;

• Artefact (ART) – aesthetic, sustainable and usable
COM.

Next, let each design goal involves four successively
attainable design subgoals. List them as follows:

• Quasisystem (qSYS) – a minimal set of product
units capable to realize within the scope of some
ML the basic functions specified by a developer;

• System (SYS) – the extension of qSYS with the
components that ensure interaction of their units
and introduce control functions;

• Quasidesign (qDES) – space layout of the system
constituents;

• Design (DES) – it is qDES, every component of
which is assigned with a shape, materials and all
necessary joints.

Transform the received hierarchy of elements into
quasi-hierarchy (q-hierarchy) by closing the nesting
hierarchy, i. e. making the latter actual across
horizontal as well. In this case, the terms of a tuple
concretizing some parent design state are coupled in
the way when the previous term is nested into the
next one (→). Besides, the state corresponding to
the end term of the tuple (for instance, DES) is
equivalent to the parent design state for this tuple
(for instance, PRT). The result of dh-structure
construction for the product design AM is shown in
Fig.6

DESIGN

D
E
S

q
D
E
S

q
S
Y
S

S
Y
S

ART

D
E
S

q
D
E
S

q
S
Y
S

S
Y
S

COM

D
E
S

q
D
E
S

q
S
Y
S

S
Y
S

PRT

D
E
S

q
D
E
S

q
S
Y
S

S
Y
S

ITM

Fig. 6. dh-structure for a virtual product design

4.4. Operation environment dh-structure
Here we employ a complete cycle of compiling AM
structure out of premodels, since, in contrast to
inexistent product, OE is available and needs only to
be refined. To get a scheme of OE dh-structure, we
use its sh-structure (Fig. 4): take for the desired
scheme a vector space, the rank of which is equated
to the number of members in the second layer of sh-
hierarchy processes (Fig. 7а).

The scheme of OE dh-decomposition will make up
the member tuples out of the third hierarchy layer
from Fig. 4. Then the substitution of dh-
decomposition scheme into the scheme of dh-
structure (Fig. 7b) will set the length of vectors,
which constitute OE dh-structure interval space.

PRq 2

PRq 1PRq 3
PRq 1

PRq 2

PRq3

(a) (b)
Fig. 7. Adaption environment construction

Having restored the three-dimensional space of
intervals (Fig. 8) and assigned a track of their
scanning, we shoud get dh-structure of ОЕ, named
&-cube.

PRq 1

2
PRq

PRq 3

Fig. 8. Operation environment dh-structure

There are two possible types of the tracks: the first
one looks like <PR

1q <PR
2q <PR

3q >>> while the

Design methods for practice 232

second one is <PR
2q <PR

1q <PR
3q >>>. Incident

intervals along the track in ОЕ dh-structure are
coupled with the nesting relation: the contents of a
previous interval becomes a part of the next interval.

5. ACTION SYSTEM

This paradigmant is presented by: (a) two types of
processors (informal processor H, i. e. human being,
and formal processor C, or computer), (b) a list of
type members, (c) a sort of relation between the
types and type members (for instance, "agent-
server") during realization of separate procedures or
DPR model in large.

5.1. Action system: AS IS
Semi-intuitive design terminology remains to be H-
oriented. Common semantic base for Н and C is
missing: С has been plunged into alien environment
of notions, models and methods that imposes
considerable restrictions on its abilities.
5.2. Action system: TO BE
While P∈PR=(D,P) is a physical processor in PR,
D∈PR can be considered as a logical processor,
which also has own input – the processed control
data (ID). Then any D∈PR is executed in the general
case by a pair of processors – working one (Pw),
processing an input of P∈PR (IP), and information
processor (PI), supplying ID for D∈PR.
This observation brings up the situation: on the one
hand, PI has not been presented in PR scheme; on
the other hand, we are dealing with PR providing
(IP) related only to its subject (P) whereas the latter
should be provided with ID as well.

The only way to avoid inconsistency and harmonize
the situation is to include PI into the scheme PR=(D,
P) and consider PW and PI as a unified P∈PR named
diprocessor, diP=P IP

w , and concretized as НН, НС,
СН or СС. A process, the subject of which is one of
the listed diprocessors, is referred to as manual,
computerized, automated or automatic respectively.

Thus, AS reengineering assumes the exchange of
hierarchical relation between Н and С for the
relation of cooperation when PW and PI have equal
awareness for some function realization and ability
to change the status. Henceforth we are dealing with
three types of processors – Н, С and diP. Hence it
follows that the subject (Р) of automated DPR will
be diP=CH.

6. DESIGN PROBLEM

6.1. Design problem resolution: AS IS
Designing is referred to as a unique type of problem
solving, which requires devising future states of the
world (goals), recognizing current ones (initial
states) and finding path to bridge both

(transformation function, TF) [9]. But design
problem (DP) has the reputation of ill-structured and
even wicked problem [10]. By the ill-structuredness
is meant the deficit of information in each of three
DP components: there is very little information
about initial problem state, even less information
about the goal and no information about TF.
Nevertheless, DP is somehow solved and this
presuppose the explicit distinction for it (perhaps
ersatz) a goal, an initial state and TF. How could it
occur?

While reducing design problem underdetermination,
the virtual goal (design) is splitted into k (k=1,2,...)
abstract and ordered images. This action entails the
splitting of original DP into a series {DPi},
i= 1,1 −k . Then the pairs of elements with numbers
(i, i+1) from the set of goals would constitute the
initial state and goal of each DPi respectively, while
the load of TFi is the transformation of the ith design
state into (i+1)th one. To illustrate the outlined
skeleton and sharpen the way of DP solution in
CAD paradigm, turn now to the problems
schematics (cf. section 2.2.).

In response to the description of needs, intentions
and requirements, generate a scheme of conditional
DPRk, which has to return a realizable design within
the scope of "refining" DPC. Restore for the DPRk
scheme the design problem scheme – DPk = <<SD,
SP><DPRk>> – and start its solution as two-stroke
determination of DPRk (cf. section 2.1.).
Virtual determination of DPRk with respect to its
object gives ↓D="Deriving the description of a
realizable design from its previous more abstract
description". The value of virtual ↓D∈DPRk
indicates the necessity to generate for DPRk a
process DPRk-1 that supplies the needed design
description. After DPRk-1 extanding to the problem
scheme DPk-1 and DPk-1 virtual solution with respect
to D, we come to generation of DPRk-2, and so forth
(Fig. 9) until the next generated DPR turns out to be
virtually and logically provided (DPR1). This stands
for the end of DPRk virtual determination.

DPk = <SD, SP><DPRk >

DPk-1 = <SD, SP><DPRk-1>

DPk-2 = <SD, SP><DPRk-2>

..……………………………

 DP2 =<SD, SP><DPR2>

 DP1 =<SD, SP><DPR1>

Fig.9. Problems structure reflecting DPRk
determination

PART II Specific methods and related topics 233

It should worth to notice that DPR1 is provided not
at all by the needs, intentions and requirements (or,
henceforth, by {Rq}∪{Cn}∪{Rs}) but by available
analogue or prototype for the desired product.

If there is no analogues solution, designer has to
synthesize its initial approximation ("to peep at
solution") – this agrees with the way of DP
realization named by Restrepo [9] "solution-led",
while the presence of analogue gives its "problem-
led" version.

Then the stroke of upward (or logical) determination
of processes DPRi, i = k,1 , begins. Determination
of ↑D1∈ DPR 1 gives the following value of TF:
↑Di = "Transformation of the ith design state into
the (i+1)th state". Regular and complete TF is
unavailable here since it involves unsolvable
structure synthesis problem (SSP). Therefore, the
state changing is concretized as translation the
design description of the previous abstract level into
design description with abstract level reduced for
one.

Thus, design problem, that was valid until upward
DPRk determination, has been substituted by the
conjugate one – the problem of translation, which is
regularly solvable only in the particular case
(automated synthesis of products with highly regular
structure, mostly in electronics).

Outside this case, the solution of translation problem
consists of implicit structure synthesis, worked out
by H, and the ascending treatment of design
subproblems distinguished and ordered into
hierarchy within the scope of DPi. Due to the
ascending treatment of subproblems inside DPi and
ascending solution of DPk in the structure in Fig. 8,
we identify the realization of original DP in CAD as
"upward" one (DP⇑). List now the major
implications of this realization analysis.

1. The mode of DP realization is H-centered
(borrowed from manual design): the abstract goal
(design) is splitted into three abstract subgoals –
conceptual, embodiment and detailed design. This
entailes the splitting of initial DP into three
successively solved design problems – {DPi},
i= 3,1 . Each of three design stages employs a
distinct language for the design description
obtained.

2. For the initial state of DP1 it is assumed some
approximated solution, which has the form of
available analogue. Thus, the problem under
solution in CAD corresponds implicitly not to
design problem but to conjugate one. The latter is
the translation problem for descriptions of the
same design accomplished at different abstract
layers1.

1 Thus, DP used to be referred to as ill-defined or

wicked is actually a phantom problem.

3. {Rq}∪{Cn}∪{Rs} as the formal image of needs,
intentions and requirements cannot serve for the
DPRi input. (Mejers [11] also remarks that "needs,
requirements and intentions" and "structure"
belong to different conceptual worlds.)
{Rq}∪{Cn}∪{Rs} plays the role of control
information for incomplete, irregular and domain-
specific TFi, equivalent to ↑Di∈DPi.

4. TFs coupled with DP2 and DP3 (i. e. ↑D∈DPR-
DP2 and ↑D∈DPR-DP3) are different functions of
translation (for conceptual design and
embodiment design). As for TF∈DP1, resulted in
conceptual design, it can not be a synthesis
procedure for the latter.

Conceptual design describes the level of
subsystems, and when there is no an analogues for
the product under design the separation of
subsystems is the final but not initial phase of
design development. Hence, TF1∈DP1 is the same
sort of translation as TF from DP1 and DP2; the
only difference is that TF1 implicitly "translates"
into conceptual design an available prototype of
the required product.

5. The mode of DP⇑ realization imparts quite a
naive nature to design automation in CAD: H-
technology of DP treating with attached computer
(computerized solution of subproblems and their
coalitions). Naive design automation is extensive
(task-by-task, product-by-product, aspect-by-
aspect, etc.), expensive, and unbounded in time
and space (of problems). The search for
continuous problem areas of computerization,
their compilation and recompilation is one of the
permanent factors of DPR disintegration.

6.2. Design problem resolution: TO BE
Within the scope of DP structure analysis (Fig. 8),
some directions for the ongoing reengineering are
quite obvious.

1. The solution of DP=<SD, SP><DPR> with
respect to subject (P) is de facto presented today
by diР. Hence, the DP solution with respect to
object (D) cannot stay a semi-intuitive and H-
centered procedure, obscured for diР's C-
component. Despite the fact that many authors
prefer to continue research on "how the designer
works on DP" [12, 13], we think that DP solution
with respect to object should dictate "how the diР
has to work ".

2. Picking the evolution DPC (adaption the current
design state to a new state of AE) opens up
possibilities to split the goal (final design) not into
k levels of its abstract presentation but into n
(n=1, 2,…) specific levels of design maturity (ML)
where n >> k. It should allow the replacement of
uneven transitions of design states peculiar to
CAD with the quasi-continuous increase of their
MLs, employing for description of those a single
language.

Design methods for practice 234

3. The way of DP1 realization defines the way of
resolution for the rest problems in the structure in
Fig. 8 with the only difference that DP1 turns, on
the phase of logical DPR1 determination, into the
structure synthesis problem, while DP2 and DP3
move to incremental synthesis. This opens the
way to reduce {DPi} to iterations of DP1=SSP
with getting a unified and complete TF.

However, design creation cannot be reduced to
merely SSP realization. Besides, the demands of
completeness and domain-independence we make on
TF are unattainable on application of DP⇑. So, on
account of above stated steps 1-3, we lay down the
fourth generalized step of DP solution.

4. The completeness and domain-independence of
TF are attainable only under downward DP
realization or "realization as a whole" (DP⇓).
Therefore, we begin the revision of analyzable
paradigmant not with the splitting of design goal
and DP but with an attempt to realize the
unsolvable DP "as a whole", i. e. with the search
of a conjugate problem for DP, which should have
SSP as a component part. Describe this attempt in
a formal way as determination effort for DPR∈DP
(cf. section 2.1.).

7. DOWNWARD DESIGN PROBLEM
RESOLUTION

Holistic DPR generation is incompatible with DP
decomposition, so we try to cope with it in "as a
whole" manner. When the desired product has no
prototype, DPR∈DP is provided only by initial
{Rq}∪{Cn}∪{Rs}, which describes immediate AE.
Hence, DP is unsolvable without its initial state.
DP's unsolvability has the second kind (cf. section
2.2.): the existing answer (a design) can be obtained
through realization the conjugate problem
concerning DP.
Begin the search for adequate conjugate problem
with the search of a process conjugate (supplying the
same answer) to DPR∈DP. Such process we have
called the process of DPR design implementation
and designated as DPR*. Since the latter has UL=3,
proceed to its two-stroke determination. On the
stroke of virtual (or downward, ↓) determination, the
tree of processes with virtually defined nodes is
generated. On the second (or upward, ↑) stroke the
processes in the nodes will be determined logically.
The course of such determination is reflected in
Fig. 10. In addition, this diagram is accompanied
with protocol comments where the logical
determination of each tree branch begins right after
the end of its generation.

DPR*: DPR design realization

DPR design
development

DPR design
dh-structure
compiling

DPR design
semantic definition

Search for the
concept of any
design state
generation

Current design
state deriving

PR2

PR1

PR5 PR10

PR13PR8

PR3

PR11

PR12

PS
modification

PS
increment
obtaining

Product
dh-structure

compiling

Components
identification

for the product
dh-structure

AE dh-structure
obtaining

PR6

PR7 PR9

Borrowing and
adaption AE
dh-structure

Borrowing
and adaption
product dh-

structure

PR4

OE dh-structure
construction

Fig. 10. The tree of DPR* determination

PART II Specific methods and related topics 235

7.1. The resolution protocol
DPR*: DPR design implementation.
↓D*=A procedure of DPR design implementation.

Logical determination of ↓D* may start only after
DPR* has been provided with a design (not a model)
of DPR. So, the scheme of a process that produces
and delivers to DPR*'s input such a design is
generated.

↓PR1: DPR design construction.
↓D1=Integration of structural and semantic aspects
of the DPR design.

Thereby we declare that the structure and semantics
of DPR design will be derived independently and,
with these operations completed, integrated by PR1.
The structural aspect of nonexistent design may be
presented only in diachronic (dh) mode.
Synchronous content of each diachronic structure
element serves for its semantic aspect. The integral
of those should deliver the DPR design semantics as
such.
↓PR2: dh-structure construction for DPR design.

The search for virtual D2 will be accomplished for
the following reasons. In view of the accepted
evolutional design concept, the structure of DPR
design has to mirror concurrently both the product
and AE design structures, preserving their
isomorphism as well. It would be possible when dh-
structures for the product and for AE designs are
considered as building blocks (premodels) of DPR
design structure – the scheme of dh-structure and the
scheme of dh-decomposition respectively.

↓D2=Integration the scheme of dh-structure and
the scheme of dh-decomposition.

↓PR3: regular semantics development for the DPR
design.
↓D3=Realization the product design progress
concept – adaption the current design state to a
new state of AE.

↓PR4: deriving dh-structure scheme for the DPR
design.
↓D4=Borrowing and adaption the product dh-
structure for the part of DPR dh-structure scheme.

↓PR5: deriving dh-decomposition scheme for DPR
design.
↓D5=Borrowing and adaption the AE dh-structure.

↓PR6: getting dh-structure for the required product
design.
↓D6= Coupling the scheme elements with relevant
relation.
↓↑PR7: identification of dh-structure elements for
the product design (cf. section 4.3.).
↓↑D7=Employing the product DPC.
↑D6=q-hierarchy construction using the elements
of the product design dh-structure (Fig. 5).
↑PR6=↓PR6
↑D4=Using the product design dh-structure for the
role of DPR design dh-structure scheme.

↑PR4=↓PR4

↓PR8: deriving AE dh-structure.
↓D8=Borrowing and adaption OE dh-structure.
↓↑PR9: OE dh-structure derivation.
↓↑D9=Using of OE sh-structure (cf. section 4.4.).
↑D8=&-cube construction out of the elements
presenting AE dh-structure (Fig. 7).
↑PR8=↓PR8

↑D5=Taking AE dh-structure for the role of DPR
design dh-decomposition scheme. The nesting
relation between the incident intervals of &-cube
is called off.
↑PR5=↓PR5
↑D2=Substitution of terminals in DPR design dh-
structure scheme by the scheme of its dh-
decomposition.
↑PR2: DPR design dh-structure obtaining.

The received DPR design dh-structure is represented
by sixteen iteration of &-cube (Fig. 7): each of four
hyperperiods (affords a design goal – PRT, ITM,
COM or ART) consists of four periods (each period
affords a design subgoal – qSYS, SYS, qDES or
DES). Every period is represented by &-cube of
intervals separated into stages (along X-line), phases
(along Y-line) and tasks (along Z-line). DPR design
structure is borrowed and adapted for the role of AM
structure built for the product and AE designs.

↓PR10: method M1="next design ML synthesis"
compiling.
↓D10=Realization the concept of getting any
design state.
↓↑PR13: search for the concept of getting any
design state.
↓↑D13=Structure synthesis problem tackling
(resolving for SSP its conjugate problem –
determination the scheme of operation process
associated with the requred product [7]).
↑D10=Logical determination of M1: feedback
incremental synthesis.
↑PR10: M1 retention.

↓PR11: obtaining a new state for
AE={{Rq}∪{Cn}∪{Rs}}
↓D11=Modification the AE state for an increment.
↓↑PR12: increment deriving.
↓↑D12= The query to designer.
↑D11=Tradeoff the current AE state with an
increment.
↑PR11: deriving M2="AE state synthesis".

↑D3=Integration M1 and M2.
↑PR3=↓PR3
↑D1=Assigning the pair (M1, M2) to intervals of
DPR design dh-structure.
↑PR1: Completion of DPR design construction.

↑D∈DPR*=Traverse the intervals of DPR design
structure with implementation in each interval M1
and M2.
↑P∈DPR*=CH.

Design methods for practice 236

In that way, the downward "solution" of design
problem comes to the end. During the course of this
solution, the design of holistic design process was
obtained. Diachronic structure of DPR design has
been borrowed by approximate models constructed
for the product and AE designs. So, we came to the
regular and isomorphic presentations for three
entities: DPR design, AM for a product design and
AM for the design of adaptation envirinment.

Physical replay of DPR*, as DPR design
implementation, should give the same answer that
was required from initial DP – the desired product
design. Functions and architectural features of
D∈DPR* impart to it the status of special-purpose
OS intended for design support (OSD). The facilities
for physical replay of DPR*=(OSD, CH) are called
Design Machine (DM). Domain-independent DM
remains unchangeable for all types, aspects, stages
and objects of designing.

8. CONCLUSION

Analysis of paradigmant's states associated with
CAD paradigm had indicated that possibility to
receive holistic DPR is concerned with their directed
modification referred to as CAD reengineering. The
dominant bulk of this modification is related to the
four key paradigmants:

– design progress concept (DPC);
– action system (AS);
– the problem of design problem (DP);
– design goal presentation.

As a result of modification activity, the above
paradigmants have received the following
interpretation:

– DPC: evolutionary synthesis;
– AS: its basic unit is di-processor P IP

w where
the working and information processors use a
unified design language and may trade their
roles;

– DP: instead phantom DP, the conjugate
problem is under solution while the product
design creation;

– creative design goal presentation is associated
with the approximate model (AM) for a
product design – the series of design states
converging to an accepted one.

However, the completion of paradigmants correction
with consolidated DPR obtaining and unified design
machine construction did not imply yet the
generation of conjoint design system.
While resolving DP in the downward mode,
supporting computer urged design (CUD) and
pretending for the part of invariant domain-
independent core of various design systems, DM,
nevertheless, is oriented to a greater extent to the
system design problems support and to a lesser
extent to deal with a great many of applied design

problems, the experience and resolving aids for
which are gathered in CAD.

So, we can safely assume that synergy of the
downward and upward modes of design problem
resolvind should be of sound benefit to design
automation. Alike, the holistic design system should
be compilled through cooperation of CUD and CAD
facilities as two shoulders for one yoke of design
computerization.

Thus, the attempt to reengineer the CAD paradigm
with the aim of receiving holistic design process has
revealed the outlines of another design paradigm,
absorbing CAD as a constituent. It has got already
the name – CUD. The rest is the subject for further
research.

References
[1] Tomiyama, T. Engineering design research in

Japan, Proceedings of the ASME Design
Theory and Methodology Conference
DTM'90. ASME, New York, pp. 219-224.

[2] Nauman, T., Vajna, S., Adaptive system
management, Proceedings of the TMCE 2004.
Millpress, Rotterdam, 2004, pp. 1183-1184.

[3] Sedenkov, V., Evolutionary Design of
Complex Objects, Belarus State Polytechnic
Academy, Minsk, 1997 (in Russian).

[4] Polya, G. Mathematical Discovery, New York
– London, J. Wiley&Sons, inc., 1965.

[5] Linde, H., Hill, B. Erfolgreich Erfinden-
Widershruchsorientierte Innovationsstrategie
fur Entwickler und Konstrukteure,
Hoppenstedt Technik und Tabellen Verlag
Darmstadt, 1993.

[6] Clement, S., Vajna, S., Mack, P. Autogenetic
Design Theory – a Contribution to an
Extended Design Theory, Proceedings of
TMCE 2002, pp.373-380.

[7] Sedenkov, V. Product Structuring and
Synthesis in Evolutionary Design, Proceedings
of the TMCE 2000, pp. 183-196.

[8] Andreasen, M. M., The role of artefact
theories in design, Proceedings of the Work
shop Universal Design Theory, Shaker
Verlag, Karlsruhe, Germany, 1998, pp. 57-72.

[9] Restrepo, J., Christiaans, H. Problem
Structuring and Information Access in Design,
The Journal of Design Research, Vol. 4, Issue
No.2, 2004.

[10] Rittel, H., Webber, M. Dilemmas in a General
Theory of Planning, Policy Science, 4, 1979,
pp. 155-169.

[11] Meijers, A.W. The relational Ontology of
Technical Artifacts. In P. Kroes & A. Meijers
(Eds.), The Empirical Turn in the Philosophy
Technology. Amsterdam: Elsevier, 2000.

PART II Specific methods and related topics 237

[12] Dorst, K. On the Problem of the Design
Problems – problem solving and
designexpertise, The Journal of Design
Research, Vol. 4, Issue No.2, 2004.

[13] Lawson, B. How designers think: the design
process demystified (2nd ed), Butterworth,
London, 1990.

