

EMBEDDED SOFTWARE DEVELOPMENT WITHIN A PRODUCT
DEFINITION - BENEFITS AND FRAMEWORK

M. Jenko

Laboratory for Electrical Engineering and Digital Systems
University of Ljubljana, Slovenia

marjan.jenko@fs.uni-lj.si

Keywords: concurrent modeling and design, cross-platform software development, embedded
software reuse, software components, virtual prototyping

Abstract: This paper contributes to paradigms on embedded software design in a market niche
where a) application complexity is relatively low (compared to modern high-end mobile phones,
for example) and b) the product can not bear the expense of a superfluous microcomputer with a
built-in operating system but c) embedded software does run the product. Most modern consumer
appliances adhere to these conditions.
The presented paradigm enforces the development of a functional model of a new product. The
model is built in an early phase of product design. It is specifically structured for the purpose of a)
being used and refined in discussions on the functionality of the product and b) having most of its
internals reused in the production of embedded software that will run the actual product. The new
paradigm has built-in mechanisms that ensure quality, shorten design time, give way to cross-
platform software production and support team work in potentially remote locations.
The presented paradigm is demonstrated in a case study – the design of an industrial kitchen
appliance.

1. INTRODUCTION
Objective of the 5th seminar on Engineering Design
in Integrated Product Development (EDIProD'2006)
is strengthening design methods aimed at both
quality of the product and of the production process.
This paper contributes to the quality of the product
and to the quality of the product development
process.

The paper establishes a relation between two phases
of a new product development that were historically
understood as non correlated activities. These phases
are product definition and design of embedded
software that governs the new product.

The issues in embedded software development are
steadily entering the picture of modern product
development since most present products, from
fighter jets, space shuttles down to cars, intelligent
housing and even further down to piezo-toothbrush
or heated skiing shoes get lots of their functionality
from the built-in software code.

Competitive engineering is a carefully balanced mix
of different fields – mechanical engineering,
physics, electronics and embedded software. This

paper presents usage of a software development
process as a component of a product definition
phase. The new approach adds a working model to
the product definition phase, and it boosts efficiency
and quality of "software manufacturing". This is
where this paper touches the quality of production
process, the second objective of the 5th EDIProD
seminar.

Numerous analyses report that about eighty percent
of embedded software projects do not finish on
schedule, and about forty percent of such projects
failed for different reasons in the previous decade
(Stewart, 2004). A breakthrough in technology had
to be engineered to get to new generations of
feature-rich but reliable products. Like for
workstations, an Operating System (OS) had to be
developed for embedded applications that can
tolerate associated costs.

There is still the unanswered question of how to
improve quality and yield (percent of successful
designs) in the design of embedded software when a
dedicated OS does not exist and the new product can
not bear the expenses and time associated with
development of a dedicated OS by a specialized
company. This paper gives insight into this problem

Design methods for practice

50

and offers systematics for better practice in the
design process.

2. SURVEY OF PRACTICES FOR
EMBEDDED SOFTWARE DESIGN

Different companies have different internal practices
for embedded software production. Such practices
depend on complexity of the product that the
company produces or develops for another producer,
and on the types of development culture that evolve
in companies over the years.

2.1. Small system practice
The design of the Egg Cooker in Figure 1, a new
apparatus on the industrial kitchen appliances
market (Jenko, 2005) that we released some months
ago, represents a typical example of a small
embedded system. The apparatus makes pasteurized
soft-boiled eggs, which is a novelty on the market.
Boiling eggs soft implies a low process temperature
while pasteurization implies a high process
temperature. There is a very narrow temperature
window where both processes coexist.

Source code consists of about 7000 ANSI C
program lines. The whole design project, from a
vaguely stated specification to the start of
production, took us 1.5 years. This is theoretically
quite a long time span for a small system design, but
constraints on precise temperature regulation (+-
0.10 C for twenty liters of water and up to thirty
submerged eggs) made the project non-trivial.

The essentials of small system practice, based on a
representative experience, Figure 1, and on previous
work, are:

a) There is not much parallel work in the design
process even though the paradigms of design address

and favor parallel work in concurrent engineering.
Activities unfold sequentially, and short delays in
the development chain just get longer down the
development path.

Planning for mechanics, hardware and software
design are parallel activities. Later on, mechanics
and electronics hardware design do proceed in
parallel, but the majority of software development
needs a stable hardware platform as a precondition.
Where project constraints are difficult to achieve
(compared to the level of the developers' expertise),
problems start showing in the integration phase,
which is already too late. Such a scenario must be
anticipated in advance so the project can progress as
fast as possible to the next optimized iteration
instead of being cancelled.

b) The project definition phase must not evolve as an
open-ended process. Customers in a branch of small
embedded systems are not familiar with the
particulars of the profession, namely that most late
functional changes imply a redesign (another
hardware/software loop) rather than a small fix.

c) It is due to ubiquitous spread of PCs that cross
platform development1 is now practically the only
way of development. In the early days of embedded
programming, a dedicated autonomous
Microcontroller Development System (MDS) had to
be purchased for work with a particular
microprocessor. That has changed – now a modern
MDS usually performs as a PC extension card and
just as another installable set of applications.

d) It would not be a productive course of action to
master assembler language for a particular
microcontroller and use it for programming of say,
time or footprint-critical functions. Such an
approach can easily lead to serious delays and
associated expenses. ANSI C is a modern choice of
language for embedded programming, since it is
designed from the start to be flexible (including both
powerful and bitwise operations), since compilers
from ANSI C to practically any assembly language
exist, and since one can learn ANSI C once and then
use it for all subsequent occasions.

2.2. Practice in complex system design
The design of a wireless router for internet traffic,
Figure 2, for instance, can represent a typical
example of a complex embedded system.

Embedded software (hereinafter referred to simply
as “software”) for complex applications is produced
in collaboration with different teams and individuals
in remote locations. That adds to the complexity of
project organization and management but makes the
whole project feasible.

From an economic point of view, a new product
must get to market in the shortest possible time. This

1 The software is developed on one platform and used on
another.

Figure 1. Egg cooker, a small system design project

PART I General approaches to the design process

51

implies purchasing of subcomponents that already
exist on the market, development of new
components and integration of new and pre-existing
components into a new whole, i.e., a new product.
This approach may be least desirable from the point
of view of the designer as "artist", but most effective
for the marketing department in terms of fastest time
to market. Such a product is intended to be fully
functional in most of its behavioral aspects. As sales
progress, the design department can elaborate on
optimized versions. Internals of such versions are
then structured by the nature of the application,
rather than the availability of existing
subcomponents. New versions refine current
functionality and add new functionality; reliability
gets built into the product and production costs get
minimized in the optimization process.

Specialized technical journals (Kaven, 2005; Wu
2004) report on development of the product in
Figure 2.. We learn that it was incrementally
developed through eleven production versions (!).
First one included an off-the-shelf PCMCIA card
that performed the wireless communication and
three off-the-shelf microcontrollers that performed
routing of inter- and intranet packets. In eleventh,
optimized version only two custom microcontrollers
do all the work. Radio frequency (RF) wireless and
routing functionality are seamlessly integrated in the
optimized version. It is marketing department’s
decision that the product should keep the same
appearance through all versions.

The incremental approach to hardware design as
outlined in this example implies a more incremental
approach to software design. The manufacturer’s
official web pages show as many as twenty-three
sequential releases of the embedded software
(Linksys, 2005) for this product.

At first glance, such an intense versioning scheme
implies non-optimized usage of engineering
resources. Besides, it implies sloppy design work to
the uneducated observer. These seem to be logical
claims need a short elaboration.

Hardware versioning decreased the street price of
this product by thirty percent (from 130 USD to 90
USD). A short calculation confirms that it is worth
spending some engineer-years of effort for such
optimization if production volume amounts to some
ten thousand units. As soon as optimizations involve
customization of integrated circuits, then the months
start passing by. Where that is the case, an
alternative solution (if available) is used in the mean
time.

Software versioning resolved some 77 functionality
issues and added some 35 incremental contributions
to the basic functionality (Linksys a, 2005). These
numbers look significant and this, superficially at
least, suggests cutting corners in the first designs.

It helps being somewhat familiar with complexity of
internet routing and wireless communication to give
respect to the designers who created and maintain
this product. To illustrate, a current platform for the
state of an art wireless router runs at a 200 MHz
clock speed, with 32 MB of built-in RAM and 8MB
of flash memory. These are the parameters of a
personal computer built some seven years ago! Since
the application of internet routing and of wireless
communication is far from trivial (in the current
technical sense) the designers decided to build the
aggregate as a combination of a custom application
and a standard OS. They chose the Linux OS as a
software platform. They built most of the needed
functionality in the form of a custom application that
runs in the OS environment. Complete source code
consists of about 4800 C files with about 30
functional lines on average for the OS and about
1800 C files with about 20 functional lines on
average, that all amounts to about 180000 lines of
code in C language.

Judging from the tangible properties of such a
product, price (about one hundred USD),
functionality (routing of wirelessly transmitted
internet packets) and an appearance of a mass-
produced device, it would be difficult to estimate the
amount of work and the level of state-of-the-art
technology that went into such an artifact. It is the
aspect of mass production, where huge quantities of
produced items compensate for enormous efforts
and associated costs of development, that gives rise
to such modern products of high complexity.

2.3. Most important decisions when
shaping practice for a design
of intermediate complexity

The two examples above illustrate design practices
for moderate and highly complex products whose
functionality stems from the operation of embedded
software. The level of complexity is the most
influential factor when shaping practice for a
particular design. The most relevant decisions are
taken in the following two areas:

Figure 2. Wireless internet router, a complex system
design project

Design methods for practice

52

Project management.

The level of application complexity influences
decisions on project management to the greatest
extent. Complexity implies long-term design efforts
with associated expenses. Time wise, long-term
designs are not favored in industry. To make the
design process shorter, more engineers need to
collaborate on the project. Issues of human
collaboration and structuring the project for parallel
development add further complications. It is a matter
of overall project optimization to decide which
measures to take to come to a successful design
within some realistically estimated time span. Before
the onset of the project, decisions are to be made
about the amount of resources for research into
feasibility issues, outsourcing to specialized
companies, load balancing among existing
specialists, temporary hires of focused specialists,
project milestones and frequency of design reviews.
Thorough and frequent design reviews (Trader,
2004) are critical in keeping non-trivial projects on
track.

The actual design flow is to be worked out for each
specific project. Large projects require teamwork
and managers, and the project organization needs to
enforce collaboration of different specialists for
design and testing. Small projects can be most
efficiently executed by a small group of specialists,
even by one (Jenko, 2005).

Design with an OS or without it?

Complex applications cry out for the inclusion of an
OS and for an associated powerful hardware
platform. Less complex applications are designed
faster, more simply and more cost-effectively
without a built-in OS. It is a matter of optimization
to decide whether to develop and code the
application in its entirety or to decide on a platform
where the OS yields elementary functionality and
the application builds from there further on. The
decision for a synergetic functionality of an OS and
a lean application has advantages and disadvantages.
The advantage is that the OS takes care of the basics.
It schedules and runs processes, performs input-
output (IO) functions and provides a rich set of
ready-to-use functions on a high level, a so-called
“application programming interface (API)”. As a
general principle, usage of a platform with a built-in
OS leads to shortening design time. Application
portability gets simpler since the OS API is the
application interface to hardware and not the actual
hardware registers.

One disadvantage of OS usage is associated cost.
Royalties for OS usage are to be paid for each item
in production. When that presents a significant issue,
a public domain OS can be used, such as a version
of Linux, as in the example above. Such an approach
is in favor of costs but calls for a higher level of
expertise on the part of the developers. Usage of
public software, or "as is" software, needs skillful
developers with long-term conceptual and practical

experience. Such developers do not exist in large
numbers and they do not come cheap.

When designing with an OS, developers essentially
need to master the microcontroller and the OS. In
the other case, only mastering the microcontroller is
involved.

A decision to design with an OS also implies usage
of a more powerful platform.

2.4. Current evolution of design practices
and design processes

The current level of maturity in structuring design
practice is relatively high. As such, it implies space
for mostly incremental progress only. Current
practice suffices to successfully bring any feasible
project to a successful end in a given period of time
while incurring a certain cost. Incremental progress,
i.e., evolution, takes place in different directions:

a) Practices like Extreme Programming (XP)
(Grenning 2004) that systematically enforce
teamwork, diffusion of knowledge from experts to
less experienced but ambitious engineers, remote
collaboration, critical design reviews, an open work
space, coding standards, customers as design team
members and others.

b) build-up and enforcement of practices for
software portability and reuse (Stolper, 2004).
Portability implies running non-modified code on
different platforms. Software reuse implies usage of
non-modified code in different applications.

c) Making a simpler coding process. Attempts are
made to exchange some coding for visual
programming and programming by patterns
(Douglass, 2004), as is the case with modern tools
for programming in workstation environments and
networks.

d) better visualization and comprehension of
behavioral functionality that needs to materialize.
Universal modeling language (UML) visual tools
and compilers from UML to C (and then further on
to binaries) are appearing on a market (Skrtic, 2004).

e) better comprehension and better solutions for
problems from the field of control systems theory.
Continuing new releases of a tandem Matlab
Simulink present a state-of-the-art tool for
visualization, comprehension and achievement of
solutions in control systems problems. The most
tangible results, the work which a Matlab Simulink
set-up can produce, are ready to use C coded
functions that encapsulate just-developed and
simulation-verified control algorithms.

3. DESIGN AND CODING OF
EMBEDDED SOFTWARE WITHIN
A PROJECT DEFINITION

Traditionally, the process of embedded software
design for new products unfolds as follows: Phases

PART I General approaches to the design process

53

of product definition, software design and coding,
and product testing make the process. A written
functionality specification ends the product
definition phase. Then, hardware and software
designers are supposed to work in parallel. Usually,
there is a gap between software design and software
coding since the electronics and mechanical parts
need to be produced before the onset of coding.
Ideally, there should be no iterations involved in the
design and test phases. As the coding progresses, the
hardware is simultaneously tested and, if the design
is not too ambitious for the engineers at hand, the
efforts gradually converge to a working prototype.

The objective is to determine the final behavioral
properties of a new product at the end of the product
definition phase, and to have working prototypes at
the end of the product design phase.

The presented approach starts with designing and
coding a fully functional model of a new product in
the early stage of the product definition phase. The
model evolves concurrently with product definition.
The model serves at this early stage of the product
life cycle as an effective discussion tool. Various
potential features are easily demonstrated. Then,
decisions on feature implementation are made and
tested for acceptance in a functional model. A fully
functional model is available at the end of the
product definition phase. It is important that all
parties involved in the new product definition have
this executable model at hand to explore its
functionality and to propose changes. The functional
model defines the future product at the end of the
product definition phase and at the onset of the
product design phase. Internals of the fully
functional model are built in such a structured way
that they are reused as part of the actual embedded
software that governs the actual product. The rest of
the embedded software is built by well-established
practice as the hardware becomes available.
Integration of mechanics, electronics and software,
and holistic testing of the whole, completes the
software development effort.

We propose an internal structure of the functional
model that permits reuse of most of the model’s
internals further on in the actual product
development. Software reuse helps in adjusting the
time of embedded software development to times
that are needed to develop mechanical and electronic
sub-systems. The essential points of the presented
approach are:

• Conceptualization of concurrent development of
a behavioral simulator and embedded software.

• Establishment of a framework for its realization.

• Design of a behavioral simulator, and of
embedded software within the proposed
framework.

• Implementation, i.e., coding.

• Integration of the embedded system.

4. CONCEPTUALIZATION
It is difficult for anybody to just sit down and write a
detailed specification of a new product behavior in
such a way that it would not be changed by someone
at some moment within the design process. To
address these boundary conditions of new product
design and to get productivity of project
collaborators to the next level, we suggest a new
paradigm of embedded software design.

The requirements are: thorough product definition in
the form of a behavioral simulator, short
development time, effective budget usage, software
reusability, platform independence of most of the
software and concurrent development of software,
electronics and mechanics.

In a project for a new product release we first
introduce a visual behavioral simulator of a new
product, which is used for discussions. Second, we
structure the simulator internals into areas of simple
functionality i.e., into components with simple and
well-defined interfaces. Structuring is such that most
of these components gets reused in the embedded
software that controls the final product.

A component, Figure 3, is defined as a part of an
application that is developed and tested
independently and integrated into the application
later through simple communication.

Mandatory component parts are:

• Input ports. There is no component data input
except through component input ports.

• Output ports. There is no component data output
except through component output ports.

• Configuration ports. Component configuration
can be achieved through configuration ports
only. Components can be configured during
run-time or when compiled.

• Internal functions.

Figure 3. Typical software component

Design methods for practice

54

• Internal data structures.

• Processes. One process usually suffices, but
more processes per component are not to be
excluded from the component framework.

Based on functionality, we classify software
components into a class of application-dependent
components and a class of hardware-dependent
components.

Software development is to be performed on a
generic platform, i.e., on a well loaded workstation.
The reason is that mechanics, electronics and
software must be defined concurrently, and they
must be designed concurrently to achieve a short
development time. A target platform does not exist
during most of the software development time. It is
also a matter of convenience to work on an efficient
and powerful generic cost-effective platform
(compared to development system for target
platform).

Implementation details for device drivers2 have to be
thought out while developing software on a generic
platform. However, in this phase of software design
the device drivers exist only on an abstract level
since the hardware does not yet exist. Here, we
borrow a principle of abstraction3 from object-
oriented languages (Stroustrup, 2000). Abstraction
allows actual device drivers to be substituted for a
functional equivalent that is feasible to produce in a
behavioral model of the actual product. A class of
hardware-dependent components exists for this
purpose.

Adhering to this approach results in the following
benefits:

• The help of a behavioral simulator is available
through most of product definition phase.

• Most of embedded software is platform-
independent. Porting functional components
from the behavioral simulator to embedded
software that controls the product is a matter of
using different compilers. Switching from one
microcontroller to another later in the product
life cycle mostly implies usage of a new
compiler.

• The organized methodology of designing and
coding the behavioral model at an abstract level
and then only having to re-code the hardware
details is very efficient from a code reliability
point of view.

• Last but not least, embedded software is
reusable. When applied to a new target system

2 Device drivers directly address hardware registers that
define particulars of the hardware functionality.
3 Abstraction: we can implement a component in
several ways. It is important that a user doesn't need
to know how we do it. As long as we keep the
interface unchanged, a user is not affected by the
component internals.

(a new microcontroller), most of software is to
be recompiled only.

5. FRAMEWORK
The framework consists of conventions for building
platform-independent software components on a
generic platform4.

What these software components have in common
with Object Oriented Programming (OOP) is that the
functionality is enclosed (encapsulated) in a shell,
i.e., in a component or object with well defined
interfaces.

Regarding encapsulation, this is the most important
part of the OOP paradigm, and it is built into tools
for OOP. Encapsulation in component software is
achieved by means of self-discipline only.
Compilers for OOP in embedded system
programming are more an exception than a rule.
Component software is coded in strict ANSI C,
which is a common ground among different
compilers for different platforms.

Programming of software components does not rely
on inheritance and polymorphism, which are
essential concepts of OOP.

The presented framework proposes a generic
platform usage not only for design and coding, but
also for building a fully functional model for product
definition and for code verification.

Besides, and this is new, we propose such an internal
structure of the functional model that gives reuse of
most of simulator’s internals further on in the actual
product development.

This approach was so beneficial for successful
design in our projects that it ought to become a
common practice in many designs after it gains full
recognition.

5.1. Design
A typical appliance needs to handle the following
functionalities:

• apparatus appearance, i.e., user interface
(buttons and displays),

• control of the process that the appliance
performs,

• process variables monitoring,

• governing the actuators, and

• self-monitoring for alarm conditions.

4 A platform is the specification of an execution
environment for a set of models. Examples of platforms
include operating systems like Linux, Solaris and
Windows, the Java platform, specific real-time platforms
and hardware platforms without an OS, where application
software is the only software in the system.

PART I General approaches to the design process

55

These functionalities are encapsulated in different
components in a case study – the design of the
industrial kitchen fryer in Figure 4. Application-
dependent components (ADC) always reflect the
nature of the actual application. It is about frying
food in the application in Figure 4. Were it about a
more complex application, there would be other
components and more components where
interrelations and interfaces were of higher
complexity. The hardware-dependent components
(HDC) in Figure 4 have nearly similar interfaces and
functionality in any application. They are designed
for simple interfaces that represent different
microcontroller ports and sub-systems on an abstract
level. The interfaces are simple by design, to ease
the exchange of model HDCs for the HDCs of a
target system.

5.2. Coding
Macros are defined for the purpose of working in the
same integrated design environment (IDE) while
programming the model and the target application.

#ifdef _MODEL

#define FUNCTION() MFunction() // a model
function

#else /* __TARGET__ */

#define FUNCTION() Function() // target system
function

Then, macros are called only:

FUNCTION();

Switching between the target and generic platform
project is a matter of _MODEL definition only.

Coding of a visual model starts near the onset of the
project feasibility study. The model’s internal
structure, consisting of interfaces and components, is
less than perfectly enforced in the first model
version. Weak structuring is not an issue at this stage
since the model is mainly used in discussions. As
product definition grows to a mature level, the
model has lived yet through most of its functional
and visual modifications. At this stage, internal

Figure 4. Component structure of the model and of software for the product

Design methods for practice

56

structuring becomes important since the level of
future modifications is supposed to remain low.

Coding of hardware specific components starts as
soon as the hardware is built. Hardware-dependent
components are coded and verified sequentially in
small stand-alone projects. This way, a low-end
MDS with limited source-level debugging
capabilities suffices for development. This is
important from the project budget perspective.
Practically, different microcontrollers need different
MDSs, and the fixed costs of a design firm just add
up.

Component-based software design enables thorough
verification at each step of the implementation, i.e.,
at each step of the coding process. Each component
is thoroughly tested. Simple test environments are
written for this purpose.

Component verification is fast, since components are
self-contained, and their interfaces are well defined.

The difference between application and component
verification is subtle. The smallest parts of
components are code lines. The smallest parts of
application are components, i.e. complex code lines,
already tested and verified. Such, per partes
verification, is more reliable than verification of a
whole at once. Additionally, it is also simpler.

5.3. Work with an MDS

Only the hardware-dependent components need to
be tested and verified on an MDS. The same is true
at the end for the whole application. The approach
minimizes work with MDS.

5.4. Integration

At the onset of the integration phase, components
are verified to be functional.

The gist of integration is enforcement of a thorough
abstraction for interfaces of hardware-dependent
components. As both flavors (model and target) of

these components start performing identically then
the application runs in the target environment in
exactly the same way as in the model. This is a
criterion of successful integration.

5.5. Verification and testing

Verification is a process that confirms that the
embedded system performs in accordance with
expectations. A well thought out verification
scenario is a basis for verification procedures. It is
our experience that it is the best for small and
medium complexity of an embedded system, when
the designer himself works out the verification
scenario.

Testing is about verification of each product on a
production line. It is the same software that runs all
product instances. As the software gets verified for
proper functionality it does need individual testing
on each product. Testing needs to confirm that the
hardware performs properly. Hardware testing is less
complex than software verification.

6. CASE STUDY
Figure 4 shows the internal structure of the case
study. It consists of about 8000 lines of ANSI C
code encapsulated into three application-dependent
and five hardware-dependent components. Figure 5
shows a corresponding functional model of the
product. Figure 6 shows the final product. The
reader will notice that the user interface of the
product and the model are of the same form. They
have identical functionality. The same is true for the
whole product and for the whole model. The model
and its condensed users’ manual are available for
readers' evaluation (see a link in the Appendices).

7. RESULTS

Figure 5. Visual behavioral simulator of the product

Figure 6. Finished product

PART I General approaches to the design process

57

About 60 percent of the code (application-dependent
components) for the final product were designed and
written within a week when starting with a solid
project definition. The amount of effort spent on the
remaining 40 percent of the code depends mostly on
a previous experience with a particular
microcontroller. Speculating for state-of-the-art
familiarity with a particular microcontroller,
hardware-dependent components were coded and
verified within two weeks. The presented design and
coding procedures result in a simple integration of
application- and hardware-dependent components
into a final embedded system.

8. DISCUSSION
Simulation and modeling are key tools in product
development, particularly in control system
development. They provide the means for problem
understanding and performance evaluation.
Simulation is part of the development process at
many points. It has been used for a long time in
different techniques and problem areas such as finite
element analysis for mechanical systems, circuit
analysis for electrical systems and discrete event
type analysis for optimizations in manufacturing.
Behavioral modeling of the entire product adds to
already existing simulations.

Two factors lead us to the presented software design
by behavioral modeling: one is conceptual and one
is sociological.

- The conceptual factor is the power of abstraction.
One of the most creative ways to approach the
distillation of application concepts is through a
strategic use of abstraction. The elegance of
abstraction is that it distills the application to its root
concepts while isolating it from the details of system
implementation.

Decoupling things into their separate specific
identities builds quality into a design process.
Physical interfaces are abstracted to logical
interfaces. This makes the exchange of hardware-
dependant components from a model to a target
platform straightforward.

- The sociological factor is the need for an additional
communication domain that helps different parties in
the project definition phase come to closure. Non-
engineers are not supposed to like programming
jargon; they don't have to be enthusiastic about
discussing UML models. Instead, they discuss and
judge a functional model. Sociology professionals
claim that functional models are more geared toward
communicating with people than with machines.
This way, a functional model serves both worlds,
since its internals constitute pure machinery, made
by design to be reused in the actual product without
modifications to the greatest possible extent.

Hardware modeling in the functional model is very
compact since it is based on a visual components
library, which is an essential part of any modern

visual set of tools for workstation applications. Most
of the functionality of the visible final objects is
inherited from the visual components library.
Inheritance, one of the three foundations of object
programming (along with encapsulation and
polymorphism) gives us practically for free what
could take months when coding model visual objects
from scratch. The presented approach to embedded
system design would be unrealistic without modern
libraries of visual objects – the most essential part of
any modern workstation programming tool.

9. CONCLUSIONS
A new concept of concurrent development using a
component-based visual behavioral simulator, and of
component-based embedded software is presented.
This concept contributes to embedded software
design and to product definition.

Contributions to embedded software design are:

• Structuring an application into components
enforces precise interfaces that are a
precondition for ease of debugging,
maintenance and upgrading.

• Software is designed in a luxurious graphical
workstation environment. Most of it is portable
without modifications to the target environment.

• If a need for a different microcontroller arises
within a product’s lifetime, software portability
is not straightforward, but simplified to the
greatest possible extent.

• Project costs are kept as low as possible. Design
tools consist only of a capable workstation
packed with visual tools and non-ambitious
MDSs for different microcontrollers. The
classical alternative was an ambitious MDS for
each project with a different microcontroller.

Benefits to the product definition are:

• A visual behavioral simulator of a new product
becomes available in the early stage of product
definition. The visual behavioral simulator is an
essential part of developer / management /
marketing / customer relationships. Unclear
issues are settled on the behavioral model, and
not on the iterated product design.

• A fully functional visual behavioral model
crisply defines the interface between product
definition and product design.

• More than half of the control software is written
in the product definition phase while designing
and coding the functional model. This yields
precious time that is later used in the product
design phase for unanticipated activities that are
not known in advance.

• Programming progress at the onset of the
project is more rapid than the customer might
expect. This tends to make the customer

Design methods for practice

58

confident about the project’s success and more
open to discussion and mutual work on the
design spec. Being able to contribute to the
specification can later simplify its
implementation.

ACKNOWLEDGMENTS

This work was performed within the program of the
"Virtual Research Lab for a Knowledge Community
in Production (VRL KCiP)" Network of Excellence,
Contract Number NMP2-CT-2004-507487, within
the EU 6th Framework Program.

APPENDICES

The functional model for the case study and its one-
page users’ manual can be downloaded and
evaluated from http://www2.arnes.si/~supmjenk.

References
[1] Douglass B, Architecting systems with

patterns, Spring embedded systems conference,
San Francisco, CA, 2004

[2] Grenning J., Extreme programming and
embedded software development, Spring
embedded systems conference, San Francisco,
CA, 2004

[3] Jenko M., Statistical evaluation of variables in
precise process control. Case study: MSP430
based apparatus for pasteurization of soft
boiled eggs, accepted for Texas Instruments
advanced technical conference, Landshut,
December 6-8, 2005

[4] Kaven O, Linksys sweeps all three categories,
PC Magazine, issue of June 7th 2005

[5] Linksys, www.linksys.com, wrt54gs, wrt45g,
firmware download pages

[6] Skrtic M., State machine graphical design for
embedded systems, Technology news, Industry
articles about state machines, 2004,
www.iar.com

[7] Stewart D. B., The Twenty- Five Most
Common Mistakes with Real-Time Software
Development, Proc. Embedded Systems
Conference, San Francisco, CA, 2004

[8] Stolper S. A., Designing portable software,
Spring embedded systems conference, San
Francisco, CA, 2004

[9] Stroustrup B., The C++ programming
language, special edition, AT&T, 2000, p. 30

[10] Trader M. T., Embedded software inspection
overview, Spring embedded systems
conference, San Francisco, CA, 2004

[11] Wu X. M., Linksys WRT54GS wireless G
broadband router, CNET, issue of March 1st
2004

