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Abstract: This paper contributes to paradigms on embedded software design in a market niche 
where a) application complexity is relatively low (compared to modern high-end mobile phones, 
for example) and b) the product can not bear the expense of a superfluous microcomputer with a 
built-in operating system  but c) embedded software does run the product. Most modern consumer 
appliances adhere to these conditions. 
The presented paradigm enforces the development of a functional model of a new product. The 
model is built in an early phase of product design. It is specifically structured for the purpose of a) 
being used and refined in discussions on the functionality of the product and b) having most of its 
internals reused in the production of embedded software that will run the actual product. The new 
paradigm has built-in mechanisms that ensure quality, shorten design time, give way to cross-
platform software production and support team work in potentially remote locations. 
The presented paradigm is demonstrated in a case study – the design of an industrial kitchen 
appliance. 

1. INTRODUCTION 
Objective of the 5th seminar on Engineering Design 
in Integrated Product Development (EDIProD'2006) 
is strengthening design methods aimed at both 
quality of the product and of the production process. 
This paper contributes to the quality of the product 
and to the quality of the product development 
process.  

The paper establishes a relation between two phases 
of a new product development that were historically 
understood as non correlated activities. These phases 
are product definition and design of embedded 
software that governs the new product.  

The issues in embedded software development are 
steadily entering the picture of modern product 
development since most present products, from 
fighter jets, space shuttles down to cars, intelligent 
housing and even further down to piezo-toothbrush 
or heated skiing shoes get lots of their functionality 
from the built-in software code. 

Competitive engineering is a carefully balanced mix 
of different fields – mechanical engineering, 
physics, electronics and embedded software. This 

paper presents usage of a software development 
process as a component of  a product definition 
phase. The new approach adds a working model to 
the product definition phase, and it boosts efficiency 
and quality of "software manufacturing". This is 
where this paper touches the quality of production 
process, the second objective of the 5th EDIProD 
seminar.  

Numerous analyses report that about eighty percent 
of embedded software projects do not finish on 
schedule, and about forty percent of such projects 
failed for different reasons in the previous decade 
(Stewart, 2004). A breakthrough in technology had 
to be engineered to get to new generations of 
feature-rich but reliable products. Like for 
workstations, an Operating System (OS) had to be 
developed for embedded applications that can 
tolerate associated costs.  

There is still the unanswered question of how to 
improve quality and yield (percent of successful 
designs) in the design of embedded software when a 
dedicated OS does not exist and the new product can 
not bear the expenses and time associated with 
development of a dedicated OS by a specialized 
company. This paper gives insight into this problem 
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and offers systematics for better practice in the 
design process. 

2. SURVEY OF PRACTICES FOR 
EMBEDDED SOFTWARE DESIGN 

Different companies have different internal practices 
for embedded software production. Such practices 
depend on complexity of the product that the 
company produces or develops for another producer, 
and on the types of development culture that evolve 
in companies over the years. 

2.1. Small system practice 
The design of the Egg Cooker in Figure 1, a new 
apparatus on the industrial kitchen appliances 
market (Jenko, 2005) that we released some months 
ago, represents a typical example of a small 
embedded system. The apparatus makes pasteurized 
soft-boiled eggs, which is a novelty on the market. 
Boiling eggs soft implies a low process temperature 
while pasteurization implies a high process 
temperature. There is a very narrow temperature 
window where both processes coexist. 

Source code consists of about 7000 ANSI C 
program lines. The whole design project, from a 
vaguely stated specification to the start of 
production, took us 1.5 years. This is theoretically 
quite a long time span for a small system design, but 
constraints on precise temperature regulation (+- 
0.10 C for twenty liters of water and up to thirty 
submerged eggs) made the project non-trivial. 

The essentials of small system practice, based on a 
representative experience, Figure 1, and on previous 
work, are: 

a) There is not much parallel work in the design 
process even though the paradigms of design address 

and favor parallel work in concurrent engineering. 
Activities unfold sequentially, and short delays in 
the development chain just get longer down the 
development path.  

Planning for mechanics, hardware and software 
design are parallel activities. Later on, mechanics 
and electronics hardware design do proceed in 
parallel, but the majority of software development 
needs a stable hardware platform as a precondition. 
Where project constraints are difficult to achieve 
(compared to the level of the developers' expertise), 
problems start showing in the integration phase, 
which is already too late. Such a scenario must be 
anticipated in advance so the project can progress as 
fast as possible to the next optimized iteration 
instead of being cancelled. 

b) The project definition phase must not evolve as an 
open-ended process. Customers in a branch of small 
embedded systems are not familiar with the 
particulars of the profession, namely that most late 
functional changes imply a redesign (another 
hardware/software loop) rather than a small fix. 

c) It is due to ubiquitous spread of PCs that cross 
platform  development1 is now practically the only 
way of development. In the early days of embedded 
programming, a dedicated autonomous 
Microcontroller Development System (MDS) had to 
be purchased for work with a particular 
microprocessor. That has changed – now a modern 
MDS usually performs as a PC extension card and 
just as another installable set of applications. 

d) It would not be a productive course of action to 
master assembler language for a particular 
microcontroller and use it for programming of say, 
time or footprint-critical functions. Such an 
approach can easily lead to serious delays and 
associated expenses. ANSI C is a modern choice of 
language for embedded programming, since it is 
designed from the start to be flexible (including both 
powerful and bitwise operations), since compilers 
from ANSI C to practically any assembly language 
exist, and since one can learn ANSI C once and then 
use it for all subsequent occasions. 

2.2. Practice in complex system design 
The design of a wireless router for internet traffic, 
Figure 2, for instance, can represent a typical 
example of a complex embedded system. 

Embedded software (hereinafter referred to simply 
as “software”) for complex applications is produced 
in collaboration with different teams and individuals 
in remote locations. That adds to the complexity of 
project organization and management but makes the 
whole project feasible. 

From an economic point of view, a new product 
must get to market in the shortest possible time. This 

                                                           
1 The software is developed on one platform and used on 
another. 

 

Figure 1. Egg cooker, a small system design project 
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implies purchasing of subcomponents that already 
exist on the market, development of new 
components and integration of new and pre-existing 
components into a new whole, i.e., a new product. 
This approach may be least desirable from the point 
of view of the designer as "artist", but most effective 
for the marketing department in terms of fastest time 
to market. Such a product is intended to be fully 
functional in most of its behavioral aspects. As sales 
progress, the design department can elaborate on 
optimized versions. Internals of such versions are 
then structured by the nature of the application, 
rather than the availability of existing 
subcomponents. New versions refine current 
functionality and add new functionality; reliability 
gets built into the product and production costs get 
minimized in the optimization process. 

Specialized technical journals (Kaven, 2005; Wu 
2004) report on development of the product in 
Figure 2.. We learn that it was incrementally 
developed through eleven production versions (!). 
First one included an off-the-shelf PCMCIA card 
that performed the wireless communication and 
three off-the-shelf microcontrollers that performed 
routing of inter- and intranet packets. In eleventh, 
optimized version only two custom microcontrollers 
do all the work. Radio frequency (RF) wireless and 
routing functionality are seamlessly integrated in the 
optimized version. It is marketing department’s 
decision that the product should keep the same 
appearance through all versions. 

The incremental approach to hardware design as 
outlined in this example implies a more incremental 
approach to software design. The manufacturer’s 
official web pages show as many as twenty-three 
sequential releases of the embedded software 
(Linksys, 2005) for this product. 

At first glance, such an intense versioning scheme 
implies non-optimized usage of engineering 
resources. Besides, it implies sloppy design work to 
the uneducated observer. These seem to be logical 
claims need a short elaboration. 

Hardware versioning decreased the street price of 
this product by thirty percent (from 130 USD to 90 
USD). A short calculation confirms that it is worth 
spending some engineer-years of effort for such 
optimization if production volume amounts to some 
ten thousand units. As soon as optimizations involve 
customization of integrated circuits, then the months 
start passing by. Where that is the case, an 
alternative solution (if available) is used in the mean 
time. 

Software versioning resolved some 77 functionality 
issues and added some 35 incremental contributions 
to the basic functionality (Linksys a, 2005). These 
numbers look significant and this, superficially at 
least, suggests cutting corners in the first designs. 

It helps being somewhat familiar with complexity of 
internet routing and wireless communication to give 
respect to the designers who created and maintain 
this product. To illustrate, a current platform for the 
state of an art wireless router runs at a 200 MHz 
clock speed, with 32 MB of built-in RAM and 8MB 
of flash memory. These are the parameters of a 
personal computer built some seven years ago! Since 
the application of internet routing and of wireless 
communication is far from trivial (in the current 
technical sense) the designers decided to build the 
aggregate as a combination of a custom application 
and a standard OS. They chose the Linux OS as a 
software platform. They built most of the needed 
functionality in the form of a custom application that 
runs in the OS environment. Complete source code 
consists of about 4800 C files with about 30 
functional lines on average for the OS and about 
1800 C files with about 20 functional lines on 
average, that all amounts to about 180000 lines of 
code in C language. 

Judging from the tangible properties of such a 
product, price (about one hundred USD), 
functionality (routing of wirelessly transmitted 
internet packets) and an appearance of a mass-
produced device, it would be difficult to estimate the 
amount of work and the level of state-of-the-art 
technology that went into such an artifact. It is the 
aspect of mass production, where huge quantities of 
produced items compensate for enormous efforts 
and associated costs of development, that gives rise 
to such modern products of high complexity. 

2.3. Most important decisions when 
shaping practice for a design 
of intermediate complexity 

The two examples above illustrate design practices 
for moderate and highly complex products whose 
functionality stems from the operation of embedded 
software. The level of complexity is the most 
influential factor when shaping practice for a 
particular design. The most relevant decisions are 
taken in the following two areas: 

 

Figure 2. Wireless internet router, a complex system 
design project 
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Project management. 

The level of application complexity influences 
decisions on project management to the greatest 
extent. Complexity implies long-term design efforts 
with associated expenses. Time wise, long-term 
designs are not favored in industry. To make the 
design process shorter, more engineers need to 
collaborate on the project. Issues of human 
collaboration and structuring the project for parallel 
development add further complications. It is a matter 
of overall project optimization to decide which 
measures to take to come to a successful design 
within some realistically estimated time span. Before 
the onset of the project, decisions are to be made 
about the amount of resources for research into 
feasibility issues, outsourcing to specialized 
companies, load balancing among existing 
specialists, temporary hires of focused specialists, 
project milestones and frequency of design reviews. 
Thorough and frequent design reviews (Trader, 
2004) are critical in keeping non-trivial projects on 
track. 

The actual design flow is to be worked out for each 
specific project. Large projects require teamwork 
and managers, and the project organization needs to 
enforce collaboration of different specialists for 
design and testing. Small projects can be most 
efficiently executed by a small group of specialists, 
even by one (Jenko, 2005). 

Design with an OS or without it? 

Complex applications cry out for the inclusion of an 
OS and for an associated powerful hardware 
platform. Less complex applications are designed 
faster, more simply and more cost-effectively 
without a built-in OS. It is a matter of optimization 
to decide whether to develop and code the 
application in its entirety or to decide on a platform 
where the OS yields elementary functionality and 
the application builds from there further on. The 
decision for a synergetic functionality of an OS and 
a lean application has advantages and disadvantages. 
The advantage is that the OS takes care of the basics. 
It schedules and runs processes, performs input-
output (IO) functions and provides a rich set of 
ready-to-use functions on a high level, a so-called 
“application programming interface (API)”. As a 
general principle, usage of a platform with a built-in 
OS leads to shortening design time. Application 
portability gets simpler since the OS API is the 
application interface to hardware and not the actual 
hardware registers. 

One disadvantage of OS usage is associated cost. 
Royalties for OS usage are to be paid for each item 
in production. When that presents a significant issue, 
a public domain OS can be used, such as a version 
of Linux, as in the example above. Such an approach 
is in favor of costs but calls for a higher level of 
expertise on the part of the developers. Usage of 
public software, or "as is" software, needs skillful 
developers with long-term conceptual and practical 

experience. Such developers do not exist in large 
numbers and they do not come cheap. 

When designing with an OS, developers essentially 
need to master the microcontroller and the OS. In 
the other case, only mastering the microcontroller is 
involved. 

A decision to design with an OS also implies usage 
of a more powerful platform. 

2.4. Current evolution of design practices 
and design processes 

The current level of maturity in structuring design 
practice is relatively high. As such, it implies space 
for mostly incremental progress only. Current 
practice suffices to successfully bring any feasible 
project to a successful end in a given period of time 
while incurring a certain cost. Incremental progress, 
i.e., evolution, takes place in different directions: 

a) Practices like Extreme Programming (XP) 
(Grenning 2004) that systematically enforce 
teamwork, diffusion of knowledge from experts to 
less experienced but ambitious engineers, remote 
collaboration, critical design reviews, an open work 
space, coding standards, customers as design team 
members and others. 

b) build-up and enforcement of practices for 
software portability and reuse (Stolper, 2004). 
Portability implies running non-modified code on 
different platforms. Software reuse implies usage of 
non-modified code in different applications. 

c) Making a simpler coding process. Attempts are 
made to exchange some coding for visual 
programming and programming by patterns 
(Douglass, 2004), as is the case with modern tools 
for programming in workstation environments and 
networks. 

d) better visualization and comprehension of 
behavioral functionality that needs to materialize. 
Universal modeling language (UML) visual tools 
and compilers from UML to C (and then further on 
to binaries) are appearing on a market (Skrtic, 2004). 

e) better comprehension and better solutions for 
problems from the field of control systems theory. 
Continuing new releases of a tandem Matlab 
Simulink present a state-of-the-art tool for 
visualization, comprehension and achievement of 
solutions in control systems problems. The most 
tangible results, the work which a Matlab Simulink 
set-up can produce, are ready to use C coded 
functions that encapsulate just-developed and 
simulation-verified control algorithms. 

3. DESIGN AND CODING OF 
EMBEDDED SOFTWARE WITHIN 
A PROJECT DEFINITION 

Traditionally, the process of embedded software 
design for new products unfolds as follows: Phases 
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of product definition, software design and coding, 
and product testing make the process. A written 
functionality specification ends the product 
definition phase. Then, hardware and software 
designers are supposed to work in parallel. Usually, 
there is a gap between software design and software 
coding since the electronics and mechanical parts 
need to be produced before the onset of coding. 
Ideally, there should be no iterations involved in the 
design and test phases. As the coding progresses, the 
hardware is simultaneously tested and, if the design 
is not too ambitious for the engineers at hand, the 
efforts gradually converge to a working prototype. 

The objective is to determine the final behavioral 
properties of a new product at the end of the product 
definition phase, and to have working prototypes at 
the end of the product design phase. 

The presented approach starts with designing and 
coding a fully functional model of a new product in 
the early stage of the product definition phase. The 
model evolves concurrently with product definition. 
The model serves at this early stage of the product 
life cycle as an effective discussion tool. Various 
potential features are easily demonstrated. Then, 
decisions on feature implementation are made and 
tested for acceptance in a functional model. A fully 
functional model is available at the end of the 
product definition phase. It is important that all 
parties involved in the new product definition have 
this executable model at hand to explore its 
functionality and to propose changes. The functional 
model defines the future product at the end of the 
product definition phase and at the onset of the 
product design phase. Internals of the fully 
functional model are built in such a structured way 
that they are reused as part of the actual embedded 
software that governs the actual product. The rest of 
the embedded software is built by well-established 
practice as the hardware becomes available. 
Integration of mechanics, electronics and software, 
and holistic testing of the whole, completes the 
software development effort. 

We propose an internal structure of the functional 
model that permits reuse of most of the model’s 
internals further on in the actual product 
development. Software reuse helps in adjusting the 
time of embedded software development to times 
that are needed to develop mechanical and electronic 
sub-systems. The essential points of the presented 
approach are: 

• Conceptualization of concurrent development of 
a behavioral simulator and embedded software. 

• Establishment of a framework for its realization. 

• Design of a behavioral simulator, and of 
embedded software within the proposed 
framework. 

• Implementation, i.e., coding. 

• Integration of the embedded system. 

4. CONCEPTUALIZATION 
It is difficult for anybody to just sit down and write a 
detailed specification of a new product behavior in 
such a way that it would not be changed by someone 
at some moment within the design process. To 
address these boundary conditions of new product 
design and to get productivity of project 
collaborators to the next level, we suggest a new 
paradigm of embedded software design. 

The requirements are: thorough product definition in 
the form of a behavioral simulator, short 
development time, effective budget usage, software 
reusability, platform independence of most of the 
software and concurrent development of software, 
electronics and mechanics.  

In a project for a new product release we first 
introduce a visual behavioral simulator of a new 
product, which is used for discussions. Second, we 
structure the simulator internals into areas of simple 
functionality i.e., into components with simple and 
well-defined interfaces. Structuring is such that most 
of these components gets reused in the embedded 
software that controls the final product. 

A component, Figure 3, is defined as a part of an 
application that is developed and tested 
independently and integrated into the application 
later through simple communication. 

Mandatory component parts are: 

• Input ports. There is no component data input 
except through component input ports. 

• Output ports. There is no component data output 
except through component output ports. 

• Configuration ports. Component configuration 
can be achieved through configuration ports 
only. Components can be configured during 
run-time or when compiled. 

• Internal functions. 

 

Figure 3. Typical software component 
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• Internal data structures. 

• Processes. One process usually suffices, but 
more processes per component are not to be 
excluded from the component framework. 

Based on functionality, we classify software 
components into a class of application-dependent 
components and a class of hardware-dependent 
components. 

Software development is to be performed on a 
generic platform, i.e., on a well loaded workstation. 
The reason is that mechanics, electronics and 
software must be defined concurrently, and they 
must be designed concurrently to achieve a short 
development time. A target platform does not exist 
during most of the software development time. It is 
also a matter of convenience to work on an efficient 
and powerful generic cost-effective platform 
(compared to development system for target 
platform).  

Implementation details for device drivers2 have to be 
thought out while developing software on a generic 
platform. However, in this phase of software design 
the device drivers exist only on an abstract level 
since the hardware does not yet exist. Here, we 
borrow a principle of abstraction3 from object-
oriented languages (Stroustrup, 2000). Abstraction 
allows actual device drivers to be substituted for a 
functional equivalent that is feasible to produce in a 
behavioral model of the actual product. A class of 
hardware-dependent components exists for this 
purpose. 

Adhering to this approach results in the following 
benefits: 

• The help of a behavioral simulator is available 
through most of product definition phase. 

• Most of embedded software is platform-
independent. Porting functional components 
from the behavioral simulator to embedded 
software that controls the product is a matter of 
using different compilers. Switching from one 
microcontroller to another later in the product 
life cycle mostly implies usage of a new 
compiler. 

• The organized methodology of designing and 
coding the behavioral model at an abstract level 
and then only having to re-code the hardware 
details is very efficient from a code reliability 
point of view. 

• Last but not least, embedded software is 
reusable. When applied to a new target system 

                                                           
2 Device drivers directly address hardware registers that 
define particulars of the hardware functionality. 
3 Abstraction: we can implement a component in 
several ways. It is important that a user doesn't need 
to know how we do it. As long as we keep the 
interface unchanged, a user is not affected by the 
component internals. 

(a new microcontroller), most of software is to 
be recompiled only. 

5. FRAMEWORK 
The framework consists of conventions for building 
platform-independent software components on a 
generic platform4. 

What these software components have in common 
with Object Oriented Programming (OOP) is that the 
functionality is enclosed (encapsulated) in a shell, 
i.e., in a component or object with well defined 
interfaces. 

Regarding encapsulation, this is the most important 
part of the OOP paradigm, and it is built into tools 
for OOP. Encapsulation in component software is 
achieved by means of self-discipline only. 
Compilers for OOP in embedded system 
programming are more an exception than a rule. 
Component software is coded in strict ANSI C, 
which is a common ground among different 
compilers for different platforms. 

Programming of software components does not rely 
on inheritance and polymorphism, which are 
essential concepts of OOP. 

The presented framework proposes a generic 
platform usage not only for design and coding, but 
also for building a fully functional model for product 
definition and for code verification. 

Besides, and this is new, we propose such an internal 
structure of the functional model that gives reuse of 
most of simulator’s internals further on in the actual 
product development. 

This approach was so beneficial for successful 
design in our projects that it ought to become a 
common practice in many designs after it gains full 
recognition. 

5.1. Design 
A typical appliance needs to handle the following 
functionalities: 

• apparatus appearance, i.e., user interface 
(buttons and displays), 

• control of the process that the appliance 
performs, 

• process variables monitoring, 

• governing the actuators, and 

• self-monitoring for alarm conditions. 

                                                           
4 A platform is the specification of an execution 
environment for a set of models. Examples of platforms 
include operating systems like Linux, Solaris and 
Windows, the Java platform, specific real-time platforms 
and hardware platforms without an OS, where application 
software is the only software in the system. 
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These functionalities are encapsulated in different 
components in a case study – the design of the 
industrial kitchen fryer in Figure 4. Application-
dependent components (ADC) always reflect the 
nature of the actual application. It is about frying 
food in the application in Figure 4. Were it about a 
more complex application, there would be other 
components and more components where 
interrelations and interfaces were of higher 
complexity. The hardware-dependent components 
(HDC) in Figure 4 have nearly similar interfaces and 
functionality in any application. They are designed 
for simple interfaces that represent different 
microcontroller ports and sub-systems on an abstract 
level. The interfaces are simple by design, to ease 
the exchange of model HDCs for the HDCs of a 
target system. 

5.2. Coding 
Macros are defined for the purpose of working in the 
same integrated design environment (IDE) while 
programming the model and the target application. 

#ifdef _MODEL 

#define FUNCTION() MFunction() // a model 
function 

#else    /* __TARGET__ */ 

#define FUNCTION() Function() // target system 
function 

Then, macros are called only: 

FUNCTION(); 

Switching between the target and generic platform 
project is a matter of _MODEL definition only. 

Coding of a visual model starts near the onset of the 
project feasibility study. The model’s internal 
structure, consisting of interfaces and components, is 
less than perfectly enforced in the first model 
version. Weak structuring is not an issue at this stage 
since the model is mainly used in discussions. As 
product definition grows to a mature level, the 
model has lived yet through most of its functional 
and visual modifications. At this stage, internal 

 

Figure 4. Component structure of the model and of software for the product 
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structuring becomes important since the level of 
future modifications is supposed to remain low. 

Coding of hardware specific components starts as 
soon as the hardware is built. Hardware-dependent 
components are coded and verified sequentially in 
small stand-alone projects. This way, a low-end 
MDS with limited source-level debugging 
capabilities suffices for development. This is 
important from the project budget perspective. 
Practically, different microcontrollers need different 
MDSs, and the fixed costs of a design firm just add 
up. 

Component-based software design enables thorough 
verification at each step of the implementation, i.e., 
at each step of the coding process. Each component 
is thoroughly tested. Simple test environments are 
written for this purpose. 

Component verification is fast, since components are 
self-contained, and their interfaces are well defined. 

The difference between application and component 
verification is subtle. The smallest parts of 
components are code lines. The smallest parts of 
application are components, i.e. complex code lines, 
already tested and verified. Such, per partes 
verification, is more reliable than verification of a 
whole at once. Additionally, it is also simpler. 

5.3. Work with an MDS 

Only the hardware-dependent components need to 
be tested and verified on an MDS. The same is true 
at the end for the whole application. The approach 
minimizes work with MDS. 

5.4. Integration 

At the onset of the integration phase, components 
are verified to be functional. 

The gist of integration is enforcement of a thorough 
abstraction for interfaces of hardware-dependent 
components. As both flavors (model and target) of 

these components start performing identically then 
the application runs in the target environment in 
exactly the same way as in the model. This is a 
criterion of successful integration. 

5.5. Verification and testing 

Verification is a process that confirms that the 
embedded system performs in accordance with 
expectations. A well thought out verification 
scenario is a basis for verification procedures. It is 
our experience that it is the best for small and 
medium complexity of an embedded system, when 
the designer himself works out the verification 
scenario. 

Testing is about verification of each product on a 
production line. It is the same software that runs all 
product instances. As the software gets verified for 
proper functionality it does need individual testing 
on each product. Testing needs to confirm that the 
hardware performs properly. Hardware testing is less 
complex than software verification. 

6. CASE STUDY 
Figure 4 shows the internal structure of the case 
study. It consists of about 8000 lines of ANSI C 
code encapsulated into three application-dependent 
and five hardware-dependent components. Figure 5 
shows a corresponding functional model of the 
product. Figure 6 shows the final product. The 
reader will notice that the user interface of the 
product and the model are of the same form. They 
have identical functionality. The same is true for the 
whole product and for the whole model. The model 
and its condensed users’ manual are available for 
readers' evaluation (see a link in the Appendices). 

7. RESULTS 

 

Figure 5. Visual behavioral simulator of the product 

 

Figure 6. Finished product 
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About 60 percent of the code (application-dependent 
components) for the final product were designed and 
written within a week when starting with a solid 
project definition. The amount of effort spent on the 
remaining 40 percent of the code depends mostly on 
a previous experience with a particular 
microcontroller. Speculating for state-of-the-art 
familiarity with a particular microcontroller, 
hardware-dependent components were coded and 
verified within two weeks. The presented design and 
coding procedures result in a simple integration of 
application- and hardware-dependent components 
into a final embedded system. 

8. DISCUSSION 
Simulation and modeling are key tools in product 
development, particularly in control system 
development. They provide the means for problem 
understanding and performance evaluation. 
Simulation is part of the development process at 
many points. It has been used for a long time in 
different techniques and problem areas such as finite 
element analysis for mechanical systems, circuit 
analysis for electrical systems and discrete event 
type analysis for optimizations in manufacturing. 
Behavioral modeling of the entire product adds to 
already existing simulations. 

Two factors lead us to the presented software design 
by behavioral modeling: one is conceptual and one 
is sociological. 

- The conceptual factor is the power of abstraction. 
One of the most creative ways to approach the 
distillation of application concepts is through a 
strategic use of abstraction. The elegance of 
abstraction is that it distills the application to its root 
concepts while isolating it from the details of system 
implementation. 

Decoupling things into their separate specific 
identities builds quality into a design process. 
Physical interfaces are abstracted to logical 
interfaces. This makes the exchange of hardware- 
dependant components from a model to a target 
platform straightforward. 

- The sociological factor is the need for an additional 
communication domain that helps different parties in 
the project definition phase come to closure. Non-
engineers are not supposed to like programming 
jargon; they don't have to be enthusiastic about 
discussing UML models. Instead, they discuss and 
judge a functional model. Sociology professionals 
claim that functional models are more geared toward 
communicating with people than with machines. 
This way, a functional model serves both worlds, 
since its internals constitute pure machinery, made 
by design to be reused in the actual product without 
modifications to the greatest possible extent. 

Hardware modeling in the functional model is very 
compact since it is based on a visual components 
library, which is an essential part of any modern 

visual set of tools for workstation applications. Most 
of the functionality of the visible final objects is 
inherited from the visual components library. 
Inheritance, one of the three foundations of object 
programming (along with encapsulation and 
polymorphism) gives us practically for free what 
could take months when coding model visual objects 
from scratch. The presented approach to embedded 
system design would be unrealistic without modern 
libraries of visual objects – the most essential part of 
any modern workstation programming tool. 

9. CONCLUSIONS 
A new concept of concurrent development using a 
component-based visual behavioral simulator, and of 
component-based embedded software is presented. 
This concept contributes to embedded software 
design and to product definition.  

Contributions to embedded software design are: 

• Structuring an application into components 
enforces precise interfaces that are a 
precondition for ease of debugging, 
maintenance and upgrading. 

• Software is designed in a luxurious graphical 
workstation environment. Most of it is portable 
without modifications to the target environment. 

• If a need for a different microcontroller arises 
within a product’s lifetime, software portability 
is not straightforward, but simplified to the 
greatest possible extent. 

• Project costs are kept as low as possible. Design 
tools consist only of a capable workstation 
packed with visual tools and non-ambitious 
MDSs for different microcontrollers. The 
classical alternative was an ambitious MDS for 
each project with a different microcontroller. 

Benefits to the product definition are: 

• A visual behavioral simulator of a new product 
becomes available in the early stage of product 
definition. The visual behavioral simulator is an 
essential part of developer / management / 
marketing / customer relationships. Unclear 
issues are settled on the behavioral model, and 
not on the iterated product design. 

• A fully functional visual behavioral model 
crisply defines the interface between product 
definition and product design. 

• More than half of the control software is written 
in the product definition phase while designing 
and coding the functional model. This yields 
precious time that is later used in the product 
design phase for unanticipated activities that are 
not known in advance. 

• Programming progress at the onset of the 
project is more rapid than the customer might 
expect. This tends to make the customer 
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confident about the project’s success and more 
open to discussion and mutual work on the 
design spec. Being able to contribute to the 
specification can later simplify its 
implementation.  
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APPENDICES 

The functional model for the case study and its one- 
page users’ manual can be downloaded and 
evaluated from http://www2.arnes.si/~supmjenk. 
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