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ABSTRACT  
The present paper presents a system used for performing design by making extended use of soft 

computing techniques. Throughout the paper the design of robotic grippers for flexible materials is 

used as a reference design case in both its conceptual and detailed design phases. The system contains 

three modules. The first module focuses on the conceptual design phase and is used for: a. the 

generation of a set of feasible solutions (concepts) of grippers for a set of pre-specified requirements 

which express the handling tasks that the gripper must accomplish and b. for the evaluation of the 

feasible solutions in order to find the best one according to the designers’ experience and some pre-

specified criteria. The evaluation process is based on a design index that includes several interacting 

criteria represented as relationships among fuzzy entities.  

The concept is then submitted to the second module called Case-DeSC (Case-based Design with Soft 

Computing). Case-DeSC is dedicated to the development of a detailed parametric design of the gripper 

concept by utilizing formal design case representation, fuzzy preferences on the design parameters and 

by searching for optimal solutions by deploying an evolutionary algorithm. The optimal solution 

passes over to a third module, capable of presenting a 3D visual representation of the parametric 

gripper concept via Virtual Reality Modelling Language (VRML). The proposed system has been 

developed in MATLAB.  
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INTRODUCTION 

Design has been a human activity for thousands of years. During the last decades it has been 

extensively studied in both its creative and routine forms for the establishment of general purpose and 

domain-independent scientific rules and methodologies. Finger et al. [1], in a review paper, survey the 

issues of design theory, design methodologies and design models. Another survey on the same topic is 

conducted by Evbuomwan et al. [2]. The two aforementioned articles summarize and review the 

developed design models and methodologies, investigate the nature and the characteristics of the 

design process and classify the design models into categories.  

Based on the existing literature, three general design models are identified: the descriptive, the 

prescriptive and the computer-based model [2]. The descriptive models tend to capture the processes, 

strategies and methods that designers use in order to address certain design problems. These models 

usually initialize the design process through the generation of a single solution concept, which is then 

submitted to further analysis, refinement, development and evaluation. Although descriptive models 

incorporate past experience, they still meet difficulties in capturing the collaborative activities among 

designers, especially in vague conceptual phases. On the other hand, the prescriptive models are well 

addressed in preliminary design stages and are used by the designers as valuable tools since they 

provide an intuitive sense to the design process. The underlying prescription may be deployed either 

for providing guidelines for the design process or for the determination of the attributes of the 

designed artefact. The prescriptive models are mainly algorithmic-based and this fact facilitates the 

deployment of several analytical activities before the generation of concept solutions. However, they 

present the following weaknesses: a. inefficiency in mapping the design requirements to the attributes 

of the artefact, and b. possible incompatibility with computer-based design methods if integration is 
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considered. Finally, the computer-based models enhance features from the two aforementioned 

categories and are capable of performing many different design activities. They may address decision-

making processes or analyze the design knowledge in order to provide a better understanding of the 

considered design problem. The computer-based models, however, perform optimally only for 

specific, well-defined classes of design problems.  

The above short reference to the three categories of design models reveals the necessity for unified 

computer-based design models that would include and could manipulate both quantitative and 

qualitative knowledge.  

The applicability of a design model (or design methodology) highly depends on the type of the 

problem under consideration. In the literature, three basic categories of design problems are identified: 

a. routine design problems characterized by the existence of predefined, explicit and well-structured 

design knowledge shared among identical or similar problems, b. redesign problems characterized by 

the need for adaptation of an existing problem representation and/or solution in order to meet some 

newly defined requirements, and c. non-routine or original design problems further classified in 

innovative and creative. In innovative design problems, although new variables, parameters or features 

are introduced, the resemblance with an existing design problem is preserved and the new solution is 

delivered through a synthesis process. On the other hand, in creative design, the newly introduced 

design entities differentiate the current design problem. The extracted solutions are not delivered via a 

predefined plan and they may be characterized as unique.  

Most design tasks and activities involve intense decision-making regarding issues such as function, 

structure, configuration, material and geometry of the designed artefact. The quantity and the quality 

of the available information and data in order to perform proper decision-making vary along the 

different design phases. At the preliminary or conceptual design phase, very little information is 

available. As design advances, more information is produced and the design knowledge is 

continuously enriched. During the very first phases, design may be enhanced by the collaboration of 

multiple designers or design teams on the basis of a communication and common decision-making 

framework. In a relevant paper, Wang et al. [3] discuss issues of collaborative conceptual design and 

they review the literature for relative approaches and applications. From this survey, it becomes 

evident that the ability to handle different types of uncertainty and vagueness – inherently 

characterizing the design process - is very important, thus making it necessary that systematic 

methodologies be established in order to model and manipulate them.  

 

Developments in the computer hardware in the last two decades have made it easier for the artificial 

intelligence techniques to grow into more complex and efficient frameworks. Moreover, it has been 

proven that several artificial intelligence techniques may be used as tools in problems where 

conventional approaches fail or perform poorly. An excellent example for demonstrating this 

potentiality is the field of engineering design due to its specific characteristics and requirements. The 

relevant research activity has been directed towards the development of architectures and ontologies 

for applying artificial intelligence in design, in order to assist the design activity and to apply 

automation to the more complex, conceptual and decision-making tasks [4].  It is also a fact that there 

is a parallelism among engineering design and artificial intelligence [5]. However, it is widely 

accepted that AI is still not widely used in CAD/CAM systems, which, nevertheless, incorporate 

developments from the domain of applied mathematics and information technology [6]. The reasons 

for this latter ascertainment are: a. the difficulty of deploying several AI techniques in a concurrent or 

collaborative framework, b. the increased demands in computational power and c. the need for 

addressing the issues of design knowledge conceptualization, visualization and representation.  

In the early 1990s, the concept of Soft Computing (SC) was introduced. Soft Computing is an 

evolving collection of artificial intelligence methodologies aiming to exploit the tolerance for 

imprecision and uncertainty that is inherent in human thinking and in real life problems, to deliver 

robust, efficient and optimal solutions and to further explore and capture the available design 

knowledge. Fuzzy Logic (FL), Artificial Neural Networks (ANN), and Genetic Algorithms (GAs) are 

the core methodologies of soft computing. SC yields rich knowledge representation (symbol and 

pattern), flexible knowledge acquisition (machine learning), and flexible knowledge processing 

(inference by interfacing between symbolic and pattern knowledge). Additionally, SC techniques may 

either be deployed as separate tools or be integrated in unified and hybrid architectures. The fusion of 

SC techniques causes a paradigm shift (breakthrough) in engineering and science fields (including 
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engineering design) by solving problems, which could not be solved with the conventional or stand-

alone computational tools.  

Research has been deployed in the direction of applying SC to engineering design in the context of 

replacing existing analytical models with approximated models or meta-models. Simpson et al. [7] 

investigated the potentiality of soft computing techniques by comparing them to the statistical 

techniques in meta-modelling and they provided some recommendations about their appropriate use. 

Except for meta-modelling, SC techniques may be combined with expert and knowledge-based 

systems.  The common path of expert systems (ES) and SC techniques was surveyed by Liao [8]. In 

another literature review, Rao et al. [9] change their focus to the new product development (NPD) 

activities. In their article, they categorize the applications in five discrete areas, in NPD stages and 

NPD core elements. The penetration of SC in activities that are strongly related with engineering 

design is also evident in the research work of Hsu et al. [10].  NPD is also the main research direction 

in this article, but this time in the context of deploying two SC techniques, namely ANN and FL, in an 

integrated framework. A general neuro-fuzzy model is suggested, while different formulations of 

neuro-fuzzy networking are discussed.  

The wide acceptance of SC techniques by the scientific community is also based on the potentiality of 

fusing SC with conventional hard computing techniques. Kamiya et al. [11] investigate this fusion and 

remark the possibilities of its application in large-scale plants. The advances of successfully applying 

SC in demanding domains like engineering design, has also promoted the use of SC techniques to a 

wide spectrum of industrial applications. Dote et al. [12] review a significant number of such SC-

based applications.  

The consideration that the art of designing still remains a special human activity, which is in most 

times an entertainment for the designer, is remarked by Cross [13]. Therefore, future advances in 

engineering design should perhaps be limited to the cognition of this human natural intelligence. 

Having confirmed the efficiency of deploying SC either in terms of stand-alone techniques or as 

supportive tools to other conventional design methodologies, many researchers have been 

investigating the possibility of enhancing the existing design methodologies by simulating the design 

process through SC techniques. Shakeri et al. [14] simulate the design process using a multi-agent 

system, with some of the agents being based on SC. These agents mimic the behaviour of a design 

team and a set of design methodologies is constructed by using learning techniques.  

Through the review of the existing literature, the following three different issues concerning the design 

process become distinguishable: a) the design knowledge representation (modelling), b) the search for 

optimal solutions and c) the retrieval of pre-existing design knowledge and the learning of new 

knowledge. These issues are related to design phases with different procedural steps and requirements, 

such as the conceptual and the detailed design phase. Research has been performed in utilizing 

knowledge-based systems in conceptual design by Moulianitis et al. [15] and several architectures of 

soft-computing has been proposed in detailed parametric design by Saridakis et al. [16]. Although 

there is a classification between conceptual and detailed parametric design, most of the real-life 

engineering problems integrate both concept development and detailed parametric solutions, in terms 

of a two-phases process. Considering that the designer requires the maximum support during these 

phases, this paper introduces a computational framework that provides tools in order to organize and 

manage the existing design knowledge, to extract the best conceptual and detailed solutions, while 

roughly visualizing the final design solutions. This integrated approach utilizes powerful 

characteristics of computational techniques originated from SC domain, such as fuzzy logic, genetic 

algorithms and artificial neural networks. The proposed architecture is applied to the design of robotic 

grippers for flexible materials in order to evaluate the underlying efficiency regarding the optimality of 

extracted solutions, the friendliness to the designer and its potential of addressing many different types 

of design problems. The following paragraphs describe three modules, which the proposed framework 

is based on, and further clarification on each focused subject is provided through the example case of 

electrostatic robotic grippers for handling fabrics. 

CONCEPTUAL DESIGN 

In this paper, design is conceived as a search for a suitable concept. According to Renner and Ekart 

[17] a search problem consists of a desired state, search space and a search process. In this work the 

desired state is a simple gripper concept or a synthesis of gripper concepts while the search space is a 

combinatorial synthesis of them. The search process is implemented using genetic algorithms. 
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According to Goldberg [18] the GA operators jives with some of the literature of invention and can be 

used in the conceptual design phase [19], [20].  

The first module’s user interface is shown in Figure 1. The user interface is separated in three panels: 

1. The upper left panel is used for input of design specifications. In this context as design 

specifications are considered: a. the handling tasks that the gripper concept must accomplish and 

b. the characteristics of both environment and material. The knowledge base that maps the 

inputs to the problem as well as the gripper concept has been presented in Moulianitis et al.[15]  

2. The lower left panel is used for the construction of the evaluation mechanism for the genetic 

process. 

3. The upper right panel is used for the GA parameters. 

In the following paragraphs the main components of the GA adopted in the current study are 

presented. 

 

Figure 1. The user interface for the conceptual design module. 

Representation mechanism  
The handling tasks that the gripper must accomplish may be one of the following or a combination of 

them: 

 Separation (see Figure 2.(a)), 

 Picking, 

 Placing, 

 Applying tension, 

 Assembling (for example the superposition of two panels). 

For example, a sewing process includes an assembly task and an applying tension task. In addition, the 

fabric’s characteristics and the space where the gripper will operate, constraint the design space. The 

gripper concept, which is the design goal of the conceptual design phase, is a simple one or a synthesis 

of the following [15]: 

 Pinching Grippers,  

 Clamping Grippers,  

 Air-Jets (see Figure 2.(b)),  

 Pin Grippers, 

 Brush Grippers (Velcro). 

 Vacuum/Pneumatic Grippers,  

 Electrostatic/Magnetic Grippers,  

 Adhesive Grippers,  

 Freezing Grippers. 



ICED’07/133 5 

 

 

(a) 

 
(b) 

Figure 2. (a) Separation of a single ply of fabric from a stack. (b). An air jet gripper. 

 

In the genetic algorithm, each gene represents a gripper concept and there are nine different concepts 

in the system. The length of the string depends on the number of tasks that the gripper concept must 

accomplish. In the worst case, the maximum length of the string is equal to the number of tasks.  

Evaluation mechanism 

Fitness function reflects the ability of an individual to survive and reproduce its structure in the 

population of the next generation. Fitness corresponds to the objective function to be optimized. The 

aim of this study is to maximize the objective function, so that the fitness function and objective 

function are the same.  

There are seven criteria that are used to find the best gripper concept. Flexibility, intelligence and 

complexity are the components of the mechatronics index and their calculation is presented in [21] 

while the calculation of the repeatability, reliability and cycle time is presented in [15]. The degree of 

confidence is calculated using fuzzy rules that map the degree of confidence of the grippers with the 

handling tasks and the material characteristics. There are over 100 fuzzy rules of the form: 

If handling task is … and material characteristic is … then the degree of confidence of gripper 

concept is… 

For example: 

IF handling task is separation and porosity of material is high THEN the degree of confidence 

of concept vacuum is low. 

The objective function is constructed in two ways: 

 Based on the mechatronics index with interacting criteria [22]. The objective function is 

calculated using the discrete Choquet integral [23]: 
 

1

1

:
n

i i

u j j j

j

C x x u A C u A C  (1) 

where, 1 2, ,..., nC C C C  is the set of criteria for constructing the objective function, 
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1 2, ,...,i i i i n

nx x x x  is the profile of a feasible solution, 
Cu F  are the fuzzy measures, 

CF  denotes the set of all fuzzy measures on C,  indicates a permutation of C such that 

...j nx x , ,...,j j nA C C C , 1nA C . 

 Custom objective function using a number of criteria as it is shown in Figure 3 [21]. An 

example of the objective function I  shown in Figure 3 is: 

321 ,min* CCCI  (2) 

where 1C  is the degree of confidence of the gripper concept for accomplishes the tasks, 2C  is the 

degree of the gripper intelligence and 
3C  is its reliability. 

 

 

Figure 3. Construction of custom objective functions. 

Genetic operators  
The following genetic operators that used are a one-point crossover operator and a mutation operator 

(shift mutation).  

 One-point crossover works as follows: a crossing point is randomly selected along the length of 

the first parent chromosome. The sub-section of the parent chromosome before this crossing 

point is copied into the offspring. The remaining places of the offspring are filled up by taking 

in order each legitimate gene from the second parent.  

 Shift mutation: A single job is selected randomly and inserted in a random position. 

Selection mechanism 
Selection of parent chromosomes is done based on a binary tournament strategy: a pair of 

chromosomes is randomly selected and the ‘stronger’, i.e., that with the highest fitness is selected for 

reproduction. 

Control parameters 
The determination of the suitable settings for the control parameters of any GA is a very difficult task. 

The variety of the control parameters included in the components of a GA as well as the many 

alternatives make the determination of the ‘perfect’ settings almost impossible. The setting of the 

control parameters used is a fixed population size of 100 chromosomes, a fixed crossover rate equal to 

0.8 and a fixed mutation probability of 0.01. The GA stops when a maximum number of 100 

generations has been surpassed. 

DETAILED PARAMETRIC DESIGN: CASE-DESC 

For each of the feasible concepts that are extracted from the module used for conceptual design, a 

specific case representation must be provided in order to proceed to detailed parametric design, which 

in the context of the current approach, is addressed by Case-DeSC module. This module has been 

developed within the Matlab platform [24] and integrates the potential capabilities of case-based 

design (CBD) with an approach that utilizes fuzzy preferences on the design parameters and searches 
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for optimal solutions by using a genetic algorithm (GA) [16]. Despite its many advantages, Case-

DeSC cannot be deployed (or can hardly be deployed) in design domains where the design knowledge 

(design requirements, design parameters and their associative relations) cannot be explicitly expressed. 

Therefore, Case-DeSC has been augmented with case-based reasoning techniques so as to become 

capable of addressing design problems by retrieving past solutions from a case-base through using a 

competitive neural network and k-means clustering [24], [25], [26]. Several other functionalities are 

provided in the proposed system where case-based design is combined with design based on soft 

computing in a variety of different architectures. For each of them, Case-DeSC provides a module that 

supports the underlying process. The module to be used depends on the design problem under 

consideration and may be chosen by the designer.  

Design parameters and performance variables 
In the following paragraphs, the case representation formalism utilized by Case-DeSC and used for the 

detailed design phase for the robot grippers is presented. All the design entities that are incorporated in 

a case are explicitly defined. As it is shown in Figure 4, the proposed case representation for the 

robotic gripper problem is based on twenty-nine (29) Design Parameters (DPs) (The numbered nodes 

correspond to DPs as they appear in the numbered list at the top left part of the figure). These are 

design entities that formally represent physical, functional or behavioural attributes of the designed 

artefact (robot gripper) and the different combination of their values distinguish the different 

(alternative) designs. Each design problem is stated in the context of DPs and associative relationships 

among them. In case that a design parameter is critical for the efficiency of the final outcome and its 

variation has to be closely examined then this design parameter is characterized as Performance 

Variable (PV) [27]. Usually the definition of the PVs depends on the designer’s preferences.  

A further classification of the design parameters leads to two basic categories, namely dependent and 

primary (independent) parameters (see Figure 4 for the different symbols used for the corresponding 

DPs for the present design case).  Furthermore, the primary design parameters of the design problem 

may be characterized as either fixed or variable. The fixed primary design parameters represent 

independent design parameters used as inputs for the design problems whose values stay invariable 

during the design cycles, while the values of the variable design parameters change independently 

during design process.  

The values of the dependent design parameters are fully determined by their children DPs through 

their associative relations. The solution search is deployed in the design space and is performed 

through the variation of variable primary DPs. The terms ‘dependent’ and ‘primary’ used for the 

classification of the design parameters are also retained for the PVs.  

Some of the aforementioned design entities (DPs and PVs) are more important than others. In order to 

model this relative importance, Case-DeSC uses weighting factors (denoted by the symbol w). 

Through their values, weighting factors determine the more important and critical design parameters 

(performance variables), as far as the design performance evaluation is concerned. In other words, 

weighting factors are used in order to determine quantitatively and subjectively the most important and 

critical performance variables according to the designer’s beliefs. 

The hierarchical levels in Figure 4 that represent the design case for the robotic gripper can be 

obtained if the design parameters and their dependencies are represented and manipulated in a design 

structure matrix (DSM) [16]. DSM may be considered as a binary square-matrix representation of the 

digraphs formed by DPs and their interrelations. After structuring the design knowledge, the fuzzy 

preferences must be applied by the designers on the design parameters that have been previously 

identified as performance variables (PVs). The fuzzy sets so-formed, represent the preferences of 

designers for concepts concerning the design goals that are mainly modelled in terms of specific 

values or value ranges. Specifying preferences on PVs relies on the designers’ knowledge and 

experience. An example of the application of fuzzy preferences on a performance variable is shown in 

Figure 5. Apart from the fuzzy preferences, weighting factors are also assigned to the performance 

variables and model their relative importance. This implies that every node of the hierarchical DP tree 

that is defined as PV is associated with fuzzy preferences and weighting factors.  

Fuzzy preferences 
The fuzzy preferences constitute an alternative way of modelling the objective criteria of design 

solution’s optimality through providing the possibility to the designer of expressing his/her direct 
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preferences values of specific design parameters in a way that depends on how loosely the objectives 

should be set. The fuzzy preference on a performance variable is a function taking as input the set the 

value set of the performance variable and resulting output a value within the set of (0,1]. Therefore, it 

becomes obvious that through fuzzy preferences, the modelling of design constraints can be 

performed, as well as intervals of values with underlying imprecision/vagueness (e.g. tolerances) and 

qualitative expressions of design objectives through fuzzy representations.  

 

 

Figure 4. Hierarchical tree of design parameters for the example of electrostatic robotic 

gripper. 

The designer’s fuzzy preferences μ(PV) are deployed on sets of values of the PVs. These preferences 

must be aggregated by a specific aggregation function that reflects a strategy about how competing 

attributes should be traded-off. The function P attempts to formalize the balance of conflicting design 

goals and constraints by preserving the design rationality. The evaluation of the design solutions is 

performed after the various individual preferences have been combined or aggregated. The overall 

preference ( )o PV


 is a function that combines all the preferences on the performance variables for a 

particular design case: 

μ (PV)=P μ(PV ),μ(PV ),...,μ(PV )o 1 2 j


                                                 (3) 

 In the above expression, the aggregation function P reflects the strategy that indicates how the 

competing attributes of the designs should be traded-off. The aggregation functions should be 

extracted from a list of available aggregation functions, judged as suitable for use in design problems. 

It is possible for the designer to select deliberatively different aggregation strategies for groups of 

performance variables. The selection of the trade-off strategy (min, weighted-means, etc) requires 

adequate knowledge of the design problem under consideration and specific knowledge on the relation 

between the aggregated parameters [27].   



ICED’07/133 9 

The optimal solution 
Having completed the assignment of values, fuzzy preferences and weights and determined the 

aggregation strategy, the next step is the extraction of the optimal solution according to the criterion of 

the maximum overall aggregated fuzzy preference. Case-DeSC provides several different options in 

order to search for solutions’ optimality. The simplest option is based on the deployment of a genetic 

algorithm, which through the variation of the values for some pre-defined design parameters (usually 

the input design parameters and the performance variables) results in the optimal solution, as it is 

shown in Figure 6 (the optimal solution is shown in the table in the lower part of the figure).  

Through the deployment of the genetic algorithm many sub-optimal solutions that are extracted 

through the genetic optimization can be recorded and stored in a case-base suitable for the specific 

design problem. Further capabilities are provided by Case-DeSC by enhancing the genetic algorithm 

with other optimization methods, or by using a case-based retrieval mechanism for restoring a number 

of past design cases that can be used in a variety of ways [16]. This retrieval mechanism is based on a 

competitive neural network that utilizes the assigned preferences and the case base records, in order to 

find the most similar cases (old solutions) to the current one.  

VISUALIZATION AND VRML MODULE 

The 3D model of the gripper carries all the parametric details that have been formed through the 

aforementioned two modules such as type, dimensions, etc. The solution that is produced by the 

second module is processed into the VRML module and a 3D model is produced. The 3D VRML 

models of the grippers that are produced may be viewed locally or over the Internet through any 

VRML capable Internet browser [28]. This capability gives the opportunity to present and exchange 

3D gripper representation via the Internet among multiple users allowing each one of them to examine 

and evaluate virtually the gripper model. In Figure 7, the 3D model of a SCARA robot and a 

cylindrical tool is illustrated. This model is viewed into the MS IE browser and can be examined, 

studied, rotated by anyone that has an Internet connection without the need of any kind of expensive 

3D CAD software.  

 

Figure 5. Assignment of values, fuzzy preferences, weights and aggregation strategy. 
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CONCLUSIONS 

In the present paper, the design process of a electrostatic gripper for handling fabrics is presented as a 

three-step process, namely concept generation and evaluation, extraction of detailed parametric 

solutions and draft visualization of the final solution. In order to realize this process, a system 

consisting of different modules was developed in Matlab, in order to provide the designer support in 

all the aforementioned steps. The system utilizes fuzzy logic for the design case and concepts 

representation and evaluation, genetic algorithms for the extraction of optimal solutions, artificial 

neural network for the retrieval of past design solutions and is supplemented by a VRML module for 

the visualization of the final solutions.  

 

 

Figure 6. Deployment of genetic algorithm for the extraction of optimal solution. 

 

Figure 7: VRML 3D model of a SCARA robot attached with the produced cylindrical tool  
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The system was tested on an application of the design of robotic grippers for flexible materials and 

succeeded in providing: a. a single concept – among nine different available concepts - that satisfies 

the posed design requirements, b. an optimal detailed solution based on that concept that complies 

absolutely with the preferences set by the designers and c. a graphical representation of the gripper 

that is available via the Internet to multiple users allowing each one of them to examine and evaluate 

virtually the gripper model.  

The proposed system provides both the generality for addressing a variety of design problems and the 

extendibility for integrating additional modules and other hybrid architectures. Future research work 

should focus on a. improving the efficiency and the interface of the existing modules b. on providing 

collaboration basis among multiple designers on each of the described modules, c. to enhance 

visualization in conceptual module and d. to create a web-based platform on which all the developed 

modules will be deployed, thus enhancing communication and knowledge availability. In addition, the 

development, test and comparison of different gripper designs will contribute towards the validation of 

the proposed system. 
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