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ABSTRACT 
 
Design Processes are highly complex and fundamentally iterative. The increasing knowledge about the 
product, while designing, manifests in design changes of previously accomplished activities. Such 
iterations are considered as a major source of increased product development lead-time and cost. 
Planning the Design Process is challenging, and requires simulation tools. The Design Structure 
Matrix (DSM) is a known method for process planning. Since the DSM itself does not express all the 
required information for defining the process logic, process logic interpretation is required. “Business 
Rules”, being logic interpretation options that are applicable in different business cases, can guide 
automatic translation of the DSM to valid iterative process plans. There is a gap in the literature 
between DSM-based process planning, and process modelling literature concerning the verification of 
processes. A consistent method of transformation from a DSM model to a logically correct, concurrent 
process model, in the case of iterative activities, is lacking. Such consistent interpretation of DSM plan 
to a valid process scheme is proposed in this study. The applicable logic interpretation options are 
expressed by “Business Rules” that convey different business cases, and can guide automatic 
translation of the DSM. The proposed framework subsumes logic interpretation types found in the 
DSM literature. 

Keywords: product design process, process planning, process scheme, workflow, design structure 
matrix, process verification  

1 INTRODUCTION 
Product Development Process (PDP) can be defined as the entire set of activities required to 
converting a new concept (market opportunity) into a marketed product. The Design Process (DP), 
within PDP, reflects the specific design requirements, objectives, and constraints applicable to the 
product; and is fundamentally iterative. When decisions are made early on, they are based on 
approximations and uncertain information. As design progresses and knowledge about the product 
increases, changes emerge. Changes in the design of one component may result in changing the design 
of other components, thus require iterations. Since iterations are considered as major source of 
increased product development lead-time and cost  [8], [9], [14], [33], performing project activities in an 
appropriate sequence is critical for minimizing rework due the information interdependencies  [21]. 
The Design Structure Matrix (DSM)  [30] is utilized to capture the required product knowledge, and 
can be used for planning various aspects of the design process  [5]. DSM can guide the process 
planning; yet, trying to model concurrent process logic using DSM is not obvious and may have 
several interpretations  [11], [8]. Furthermore, the DSM does not represent the logic information of the 
linkages and the presented information is insufficient for implementing process simulations  [34], [11]. 
Karniel and Reich  [16] surveyed various simulation process structures and process progress types, 
with Deterministic, Markov chain, or Monte Carlo methods. The survey analyzed the translation of 
DSM-based process plan into process simulation in various studies, classified the approaches used, 
and discussed their strengths and limitations along problems related to process modelling verification.  
A gap was identified between the literature concerning the activities sequencing plan based on DSM 
and the process modelling literature on processes verification. While the need for process verification 
is emphasizes in the workflow literature  [21], [26], [2], in the DSM literature, process logic is defined, 
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but not verified. Verification check becomes essential for automatic translation of DSM to concurrent 
process plan model. Such automatic translation is necessary when the product knowledge underlying 
the DSM has changed or for large-scale processes.  
DSM interpretation is non-unique; moreover, different interpretations may be applicable for describing 
different business processes. However, a consistent method of transformation from a DSM model to a 
correct concurrent process model, in the case of iterative activities is lacking  [16]. 
The current article focuses on the translation step from DSM-based activity sequencing to a concurrent 
process plan model denoted as the Process Scheme. The interpretation options are define as Business 
Rules. The business rules may derive the Process Scheme or manifest in the actual Run Time process. 
The systematic translation presented, bridges the identified gap between the DSM-based activity 
sequencing plan phase, and the process structure planning, which is required for actual implementation 
of design processes. The comprehensive interpretation method presented, explicitly addresses the 
various business cases previously defined, and some new cases.    
The Process Scheme is modelled as an activity net, the DSM net. In  [17], It is proved that the DSM net 
can be converted to a workflow net (WF-net)  [1], which is a specific class of Petri nets  [3], [22].  

2. LITERATURE SURVEY  

2.1. Ontology 
The term Activity is used to describe a logic step within a process  [32]. Activities have pre and post 
conditions; additionally, they may accept inputs and share outcomes during their performance  [11]. In 
this article, we use the term Design activity for indicating performance of design operations (or tasks) 
in the context of a product component. Typically, these operations are not fully defined. Iteration of a 
design activity means that design operations are done again in the same context, but not necessarily 
the same design operations. The term Process Scheme, is used to describe the process structure, i.e., 
the model of linkages between activities, their precedence, concurrency, and logic relations  [16]. For 
describing the process scheme we use DSM net, which is an activity net (with activities as nodes). The 
term Run Time process is used to describe the process progress according to the Process Scheme.  
A limited set of process constructs are being used to define the Input logic of an activity (pre-
conditions) and its Output logic (post conditions). Construct definitions (Workflow patterns) are 
elaborated in  [4]. The constructs utilized in this study are1: Serial link {1}; Split-And {2}, sending a 
termination signal through all output links; Split-Or {6}, sending termination signal to some of the 
output links; Split-Xor {4}, sending to only one of the output links; Join-And {3}, wait for all input 
signals; Join-Or {8}, wait for first to come, execute multiple times; and Join-Xor {5}. 

2.2. Process planning using DSM 
The commonly used GANTT and Pert charts are inadequate for planning design processes as they do 
not effectively model design activities interdependencies and process iterations  [20], [9]. The DSM 
representation can be used for various applications  [5]; it provides the means to identify serial, parallel 
and iterative design flows; and model and manipulate iterations and multidirectional information flows  
 [13]. DSM is a square matrix that uses off-diagonal entries to signify the dependency of one element 
on another. When modelling processes, the lower diagonal portion represents a precedent activity 
relationship (downstream activities); i.e., a marking in cell {j,k} (row j, column k, j>k) indicates that 
activity k should follow activity j. For each activity, its row shows its inputs and its column shows its 
outputs. The upper diagonal portion of the DSM matrix denotes an iterative process (a link to an 
upstream activity). The outcome of a particular activity can influence a previously performed activity, 
which should be performed again, i.e., rework. 
Parallel or concurrent activities have no relation linkages; see Figure 1(a). Serial activities are linked 
by forward link, Figure 1(b). Coupled activities have forward and feedback links, Figure 1(c). 
Additional relation type, Overlap activities can be considered as a Parallel relation  [34], [33]. In  [10] 
two overlapping activities were modelled as parallel activities with additional lead time and a 

                                                      
1 The numbers in bracket indicate the definitions in  [4], using the terms: Sequence {1}; Parallel split {2}; 
Multiple choice {6}; Exclusive choice {4}; Synchronization {3}; Multiple merge {8}, and Simple merge {5}. 
Synchronizing Merge {7} is not used in the current study. 
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constraint preventing completion of the latter activity before the first activity. Coupled activities form 
an activity loop (cycle). When the cycle includes three activities (and more), the cycle may have many 
forms in the DSM representation  [16].  
 

              
(a) Parallel  (b) Serial  (c) Coupled 

Figure 1: Activity relations 

Different DSM markings are used. Binary DSM uses tick-marks (‘x’) to represent precedence relations 
 [31] (e.g., Figure 1). Numeric DSM represents a measure of the degree of relation or its importance 
ranking. In Probability DSM  [29], linkage probabilities are assigned directly or result from 
transformation of Numeric (or Binary) DSM  [28], [34]. The reordering algorithms: Partitioning, 
Sequencing (i.e., Partitioning and Tearing), and Clustering typically do not utilize diagonal values 
 [15], [21]. The diagonal values are typically left empty or used for describing activity properties (e.g., 
Duration). In this study, the diagonal values are used for conveying self-iteration probabilities.  
DSM-based process planning has several shortcomings: (1) Reordering algorithms that use only the 
DSM structure are criticized as inadequate indicating that simulation-based optimization is required 
 [5], [8]. (2) The information represented by the DSM (i.e., activity dependencies) is insufficient for 
simulation, e.g., activity duration, duration due to iteration (learning), cost, and resources are missing. 
Such information should be specified in addition to the DSM data. (3) As shown in  [16], and in the 
following examples, the DSM information could be interpreted to process logic in several ways. 

2.3. Process verification 
Process correctness verification is profoundly discussed in the workflow literature  [23], [26]. An 
established formal languages model for process specification is Petri net  [22], which is a bipartite 
directed graph with two node types called places and transitions, connected by directed edges (arcs). 
Places can contain tokens. A transition may ‘fire’, i.e., consume tokens from its input places and add 
tokens to its output places according to ‘firing rules’. Process activities are modelled by transitions; 
places correspond to conditions. Marking, representing the process state, is the distribution of tokens 
over the places. Petri nets can be used as diagrammatic tool for modelling and analyzing distributed 
system behaviour including sequential, conditional, parallel, and iterative routing  [2]. WF nets 
(workflow nets)  [1] form a sub-class of Petri nets, used for specifying the control of workflow 
processes with defined starting and ending. Using the formal definitions of a WF net one can set the 
required conditions for proper process specification (Process Scheme) using a correctness criteria 
named ‘Soundness’. 
WF net properties are  [1]: 1) A WF net has starting place and final place. 2) All the activities and 
places are on a path from the starting place to the final place (i.e., no activities or conditions that do 
not contribute to process progress).  
Proper process, defined according to the soundness criteria has the following properties. 1) From every 
process state, which is reachable from the initial state, there is a ‘firing sequence’ that leads to 
termination state. The process should terminate eventually. 2) Once the terminal state was reached, 
there are no open issues; formally: there are no tokens in places other than the termination state. 3) 
There are no inactive activities that could not execute due to unmet pre-conditions 

3. METHOD DESCRIPTION  
The planning the design process has two major sub procedures: Creation of the Probability DSM and 
its reordering; and conversion of the reordered DSM to a process scheme. The Probability DSM 
creation procedure resembles commonly used procedures (e.g.,  [28], [35]). The main differences are: 
the reordering step which is done using the method described in  [15]; the use of diagonal elements that 
indicate self-iteration probability; and the setting of deterministic links (with probability value one), 
such as link from design activity to testing activity.        
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3.1 Creating an ordered Probability DSM  
The following steps create an ordered probability DSM: 

1. Define the design activities. 
2. For each design activity, define the parameters influencing other design activities. 
3. For each parameter, assign the influence value it may have on design changes and set 

the influence direction  [28]. 
4. For each link (influence direction), sum the influence values (Impact DSM)  [28].  
5. Apply DSM reordering (partitioning, clustering and tearing) algorithm in  [15].  
6. Scale the values to probabilities, linearly  [35]. 
7. Add self-iteration probabilities. 
8. Assign deterministic links (i.e., p=1). 

The first three steps are used by all DSM based procedures, where the value one is assigned in Binary 
DSM. The assignment of other values is done using various considerations  [8], [10], [12]. At step four, 
instead of summing the values, other function could have been used; yet, summation is an appropriate 
approach, since the resulting values are linearly scaled to probabilities in step six, thus the impact of 
changing a value is easily traced. In step five, almost any reordering procedure could be used, as long 
as it keeps the property that a feedback link is necessarily representing an activity cycle. This property 
is guaranteed for Partitioning  [17], and actually for any minimum feedback procedure (otherwise a 
better DSM reordering could be found, i.e., which minimizes the number of feedback links). Step six 
could be done before reordering. Linear scaling was demonstrated in  [35] to appropriately represent 
the iteration probabilities. Self-iteration probabilities, is step seven, do not affect the reordering 
procedure; thus this step could be done earlier as well. Self-iteration imply that the work done was not 
approved, e.g., some aspect of the design was not approved by the reviewer or a piece of software 
code did not pass its unit test (e.g., in Extreme Programming (XP)  [6]). Step eight of assigning 
deterministic probabilities must be done both after scaling (otherwise the probability will change) and 
after reordering, since probability p=1 cannot be assigned to a feedback link (otherwise the activities 
will always iterate). The last step, deterministic assignment might be required for activities that have a 
specific order, i.e., testing should always follow a design activity though it may cause iteration  [20]. 

3.2 Process Validity requirements 
Some process validity requirements are derived from the WF nets  [1]; additional requirements are 
specific to design activities. The basic validity requirements for the DSM based process scheme are: 

1. The PDP has project characteristics, i.e., should have a defined start and defined end. 
2. From any given state, the process should be able to reach the termination state.  
3. Reaching the termination state (outcome of executing the End activity) should imply: 

a. all the Design Activities (and all their iterations) have completed; and 
b. each Design activity has been performed at least once. 

4. The process should be traceable.  
5. Despite the iterative nature of the process, which enables infinite loops, the process should be 

enforced to complete in a finite time. 
Requirements 1, 2, and 3(a), echo the WF net requirements. Requirement 3(b) implies the 
completeness of the design process, assuming that all the design activities in the DSM are required. 
This assumption implies a relation of what should be done (assign design activity to product 
component), rather than specific design operations (i.e., how should the design be done). If the process 
planning was accounting for specific operational tasks, the design activity may have multiple parallel 
options to choose between (i.e., many ways of performing the design); and then requirement 3(b) 
could not be justified. The benefit of using 3(b) (with the applicable assumption) is the ability to set a 
strict simulation termination criterion that can be easily checked. Requirement 4 establishes the need 
of process records; and may have regulatory implications (e.g., Sarbanes Oxley Act  [27]). The last 
requirement is practical: it is required for simulation, and it follows practical behaviour. In practice, no 
project has unlimited duration (unlimited resources), thus at some point the process will be enforced to 
complete or be cancelled.   

3.3 Translating ordered DSM into a Process scheme:  
Translating an ordered DSM into a Process scheme has the following steps (cf. Figure 2):  
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1. Translating the DSM into a Design Process Matrix (DPM) by adding logic activities; and 
defining the logic assigned to the logic activities according to business rules. 

2. Converting DPM into an equivalent DSM net, the Current process scheme (C-Process).  
3. Using C-Process for simulating a Run Time process scheme (RT-process).   

 
 
 

 X 
X P  

 
  

(a) DSM (b) DPM (c) C-Process (d) RT-process 

Figure 2: Full process description 

The Logic activities added in Step 1 consist of Process Begin and End activities; and Input and Output 
Logic activities according to Implementation Rules. The interpretation from DPM to the C-Process is 
structurally straightforward since the process logic is not detailed in the DPM nor in the resulting 
process scheme (DSM net). Unlike Petri nets, the logic is an additional layer. The benefit of such 
separation is the ability to change the logic during the RT-process according to the process status (e.g., 
number of iterations performed). Iteration of design activity is presented as a new activity in the RT-
process (i.e., may have different properties than a previous execution). Due to the iterative nature of 
the activities, many RT-processes could be derived from a single C-process scheme. 

4. IMPLEMENTATION RULES: 
The interpretation of the DSM to a process scheme is not unique, i.e., the presented linkages between 
activities require additional interpretation for translating the DSM into a valid executable process, 
which can be simulated. Implementation Rules are used for interpretation. The Implementation Rules 
(IR) may have sub options defined as Business Rules (BR), i.e., they should be chosen according to 
the business environment and business constraints considerations (e.g., Time versus Resources).  

4.1 Single design activity  
A design activity X has duration property and it may iterate. The activity duration, duration(X), is not 
described by the DSM matrix. The self-iteration probability is p=Px, on the DSM diagonal. 
Translating a single activity DSM to a DPM implies adding the logic activities: Begin, End, Input 
logic (IL), and Output logic (OL).  
The following Implementation Rules (IR) apply: 
(IR 1): Logic activity duration is zero; it does not have self-iterations.  
(IR 2): Design activity has one forward input links (from IL) and one forward output link (to OL).  
(IR 3): Logic activities may have multiple input or multiple output links, but at least one forward input 
link and one forward output link.  
The case of one activity is depicted in Figure 2. The DSM (a) is translated to DPM (b). Logic activities 
are added: Begin (B), End (E), Input Logic (IL), and Output logic (OL). The marking 1 in the DPM 
represents a link with probability p=1. The self-iteration feedback probability p=P, indicates the 
iteration of X, and is set between the Output logic activity and the Input logic activity. The logic 
applied in the Input logic activity (IL) is Join–Or, i.e., signal from Begin or a feedback signal from the 
Output logic activity. Respectively, the logic applied to the Output logic activity (decision procedure) 
is Split-Xor; either sending a feedback signal or a signal to the End activity.  
The resulting Current process, in Figure 2(c), is directly inferred from the DPM. Each off-diagonal 
element becomes a link. Input logic (i) and Output logic (o) are explicitly indicated (they will be 
implicitly assumed in following figures). Due to the possible iterations, the Run Time process in 
Figure 2(d) has potentially infinite number of configurations, according to the number of repetitions. 
Having at least one input forward link and one output forward link (IR3) satisfy requirement 2, i.e., the 
process can always complete. Rule (IR3) implies that all activities are on a route from Begin to End, 
thus finally (after iterations) the process will terminate. A formal explanation is presented in  [17]. The 
number of iterations is practically limited by a threshold on the feedback probability. Setting Pmin as 
threshold derives the maximal number of iterations, ( ) ( )( )PPN log/logceil minmax = ; where ceil is the 
nearest greater integer. These limitations satisfy requirement 5.   
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4.2 Parallel independent activities 
Two activities may be parallel independent, serial, or coupled. Parallel independent activities process 
has many similarities to one activity. The X and Y activities can iterate repeatedly, according to the 
Current process. Figure 3(c) represents the short description version of the process scheme (without 
indication of In/Out Logic). Results of having one iteration at most, are presented in Figure 3(d).  
 

 

(a) DSM (b) DPM (c) C-Process (d) RT-process 

Figure 3: Parallel independent activities 

The parallel independent case requires clear definition of the logic assigned to Begin and End 
activities, as their logic become more functional. The following IRs were introduced as a procedure 
that handles multiple parallel initiation and parallel termination of multiple paths simulation  [16].  
(IR 4): The logic of Begin activity is Split-And.  
(IR 5): The logic of End activity is Join-And.  
(IR 6): If an activity has no previous source (in link), it should be linked from the Begin activity. 
(IR 7): If an activity has no target (out link), it should be linked to the End activity. 
Both activities accept links from the Begin activity (to IL), having Split-And logic they start in 
parallel. Both activities are linked to the End activity (from OL), having Join-End logic the End 
activity will be enabled once both activities have completed performing iterations.  
For formulation of the logic being assigned to logic activities, the following symbols are defined:   
Logic indication: Join (⇐) for Input logic; Split (⇒) for Output logic.  
Logic operations: + (OR); • (AND); ⊕ (XOR, Exclusive-Or).  
The Join operation implies waiting for signals through the input links, and is equivalent to Boolean 
logic equation. However, Split operation implies a decision procedure, indicating the activities to 
which signals should be sent. Split-Xor is an ordered choice procedure, e.g., A ⇒ B ⊕ C, means first 
check sending signal to B, if signal was not sent to B, then send signal to C. Join-Xor: is not in use in 
the current work, since the required behaviour is always Join-Or.  
The short form of multi-variable logic operations: Multiple-Or ( ) 1 2i nA A A A= + + +∑ L ; Multiple-And 

( ) 1 2i nA A A A= • • •∏ L ; and Multiple-Xor ( ) 1 2i nA A A A⊗ = ⊕ ⊕ ⊕L , where Ai represents a link signal, 
which can be a forward link Fi or Iteration (feedback) link Ii.. Using the above symbols, the following 
formulation is presented for the implementation of Begin and End: 

Begin ⇒ ( )iF∏  (1)  

End ⇐ ( )iF∏  (2)  

Forward links and feedback (iteration) links may have distinct logic operands; the following basic 
rules are defined for both IL and OL. 
(IR 8): Forward links to design activities (lower part of the matrix) have AND logic, on first iteration. 
(IR 9): Forward link to the End activity, have XOR (Exclusive OR) logic with the other links.  
(IR 10): Feedback (iteration) links have OR logic. 
In simple cases, the Input logic defines accepting signal from all forward links (Join-And), i.e., the 
activity starts once all its precedent activities have completed; or a signal from any of the feedback 
links is available; or both, (cf. Equation 3). The Out logic procedure may send signals to any feedback 
link, or (exclusively) send signals to all forward links, but not both (cf. Equation 4).  

( )( ) ( )( )  i iIL F I⇐ + ∑∏  (3)  

( )( ) ( )( )  i iOL I F⇒ ⊕∑ ∏  (4)  
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4.3 Serial activities 
Serial activities in a design process might be the result of standardization  [28], e.g., while the design of 
a standard part A may influence the design of B, changes in the design of B will not affect the design 
of A (otherwise it is not standard). Figure 4 describes an example of translation stages from DSM to 
RT-process. The link from activity X to activity Y has probability Pxy at Figure 4(a). It is translated to 
a link from Out Logic activity (OL) of X to Input Logic activity (IL) of Y at Figure 4(b). 
 

 

(a) DSM (b) DPM (c) C-Process (d) RT-process 

Figure 4: Serial activities 

The validity requirement 3b (Section 3), indicating one activity execution at least, imposes different 
logic requirements on the first execution of the design activity versus further iterations. For example 
on its first execution, the activity cannot send forward signal to End activity; sending a forward signal 
to the next serial activity is required, otherwise the next activity will not be performed. Sending signals 
to both (next activity and End activity) hinders IR 9, and was shown in  [16] to cause invalid processes.  
The interpretation of the forward link with probability Pxy in case of iterations is not unique. The 
issues to be considered: If X iterates, can Y start in parallel, or should it wait until X completes all its 
iterations. The interpretation may be one of the following Business Rules: 
(IR 11): Output logic options: sending completion signal(s) to following serial design activities may 
follow one of the business rules: 
(BR 11.1): Sending only once the activity has completed all its iterations. 
(BR 11.2): Sending once the activity has completed its first execution (i.e., early start of next activity); 
yet, sending a signal to End activity can be done only once all iterations have completed (i.e., IR 9). 
The first case (business rule BR 11.1) is a serial process with self- iterations, depicted in Figure 4(c). 
Since activity Y may start only after the completion of all iterations of activity X, and iterations are 
serial, the whole process is serial, Figure 4(d). In this case, the probability p=Pxy has no simulative 
meaning. It only indicates a forward process link, thus it could be translated to probability p=1. This 
rule is the default rule and it complies with the basic Out-logic rule presented in Equation (4). 

4.4 Serial activities with parallel execution 
In the latter case (BR 11.2), there might be iterations of the previous activity X that are executed in 
parallel to activity Y. The implementation of this case requires additional rules, which are useful for 
other parallel cases as well. Such possibility is not studied in existing literature. 
(IR 12): Output logic: signal to End Activity. Second (or later) execution of an activity (e.g., X), may 
send signal to End Activity, while the following serial activities (e.g., Y) have started execution (or 
have completed):  
(BR 12.1): On second (or later) execution, the activity must be followed by its next serial activities.  
(BR 12.2): On second (or later) execution of the activity, the next activities may follow, or the End 
activity may follow (not both, subject to IR 9).  
Four business rule combinations change the Output logic, and are manifested in the DPM. The first 
was the case of BR 11.1 and BR 12.1, already described by Equation (4). The combination BR 11.1 
and BR 12.2 is formulated in Equation (5); BR 11.2 and BR 12.1 in Equation (6); and BR 11.2 with 
BR 12.1 in Equation (7). See appendix A 

OL ⇒ (Σ (Ii) ⊕ Σ (Fi)) ⊕ End (5)  

OL ⇒ (Σ(Ii) + Π(Fi)) ⊕ End (6)  

OL ⇒ (Σ(Ii) + Σ Fi)) ⊕ End (7)  
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Allowing early start option (BR 11.2), is deriving Run Time options (IR 13), which are not described 
by the PDM. These options can be addressed only in the RT-process scheme.  
(IR 13): Iterations of same activity cannot occur in parallel: 
(BR 13.1): While the activity is executing, input link signals are directed to this activity (i.e., to its 
input Logic activity).  
(BR 13.2): While the activity is executing, input link signals are directed to the next iteration of the 
activity, (next iteration cannot start until current iteration has completed).  
 
Rule (IR 13) has validation implications; avoiding activities proliferation in simulation. In general, it is 
assumed the same resource is doing additional iterations of the same design activity (this assumption 
can be used do decrease the duration of iterative activities, due to learning). If two resources perform 
the design of the same component (e.g., developing several concepts in parallel), then these activities 
should be defined distinctly (i.e., not iterations of same activity). In the context of administrative 
processes, the options described above were defined as Lack of Synchronization conflict  [25]; i.e., 
multiple requests for same activity. The first option (BR 13.1) entails defining the consequences of the 
additional iteration rework. Typically, the activity duration will just increase. Recalculating the 
activity duration is similar to the overlapping  [10], and can be addressed by the same approaches. 
  

 
(a) RT: BR 13.1 ( ) ( )ydxd ⋅< 5.0  (b) RT: BR 13.2, ( ) ( )ydxd ⋅< 5.0  

  
(c) RT: BR 13.1, ( ) ( )ydxd >  (d) RT: BR 13.2, ( ) ( )ydxd >  

Figure 5: Serial activities Serial Activities RT-process BR 11.2 + BR 12.1 

The implications of applying the rules are dependent on the activities relative duration. The case 
, yields similar Run Time processes for both business rules, Figure 5(c) and 

(d), respectively. The more interesting case  is depicted in Figure 5(a) 
and (b). The relative length of the activity box, graphically presents the relative duration. This 
presentation is not precise, since Logic activities duration is zero. Yet, the Run Time process is 
presented as if it was sketched over time axis. The exhibited difference in Run Time process, for self-
iterations, due to differences in activities duration, is a new result, not mentioned in the literature. 
 

(a) DPM    (b) C-Process  (c) RT-Process   

Figure 6: Serial activities BR 11.2 + BR 12.2  

The DPM structure and the Current process scheme, after adding the link to the End activity, (at 
second execution or later), are depicted in Figure 6(a) and (b), respectively. The main structural 
difference is the additional link from OL (Out Logic) activity following X to the End activity 
(applicable only to the second iteration of X activity). The dashed line in the C-process indicates, 
respectively, that the logic is applicable in the second execution (or later). The process cannot end 
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after the first execution of X without performing activity Y (validation rule 3(b)). This option is always 
economic in terms of time; yet, quality may degrade, since the implications of the change (in X design 
activity on Y design activity) are not re-checked. This option is more general than previous one, as all 
the RT-processes generated in the previous case (BR 11.2 and BR 12.1) could be generated by this 
case, but not vice versa. An example of a different Run Time process is depicted in Figure 6(c). 

4.5 Coupled activities  
The coupled activities case may have serialization requirements (e.g., testing activity should serially 
follow design activities).  
(IR 14): Coupled activity execution start: 
(BR 14.1) (serialization): coupled activity may start, after its previous activity (according to DSM) has 
completed at least once. 
(BR 14.2) (parallel): coupled activity may start in parallel to all the other activities in the same activity 
loop.  
Serialization (BR 14.1) logic is described by the same four logic cases (See appendix A). The link Pyx 
is assigned from the OL of Y activity to the IL of X activity in the DPM Figure 7(b). Serialization is 
defined by setting Pxy=1, i.e., Y must follow X. The case of applying BR 12.2 (ability to send signal to 
End after second execution, or to next activities) is depicted in Figure 7(b) and (c). 
 

 

(a) DSM (b) DPM  BR 14.1 (c) C-Process BR 12.2 

Figure 7: Serialized Coupled activities, BR 14.1 

Starting coupled activities concurrently (BR 14.2) results in processes whose Output logic is similar to 
the case of BR 11.2 (parallelization of the iterations of serial activities); but with different Input logic. 
The Input logic for BR 14.2 is formulated in Equations (8), (replacing equation (3)).  

IL ⇐ Begin + Σ(Ii) + Σ(Fi) in loop + Π (other forward links) (8)  

The difference in implemented by setting a link with probability p=1 from Begin, Figure 8(a). 
  

 
(a) DPM BR 14.2 + BR 15.2 (b) C-Process BR 15.2   (c) C-Process BR 15.1 

Figure 8: Parallel Coupled activities, BR 14.2 

The options described in IR 12, are respectively replaced by the options of IR 15.  
(IR 15): Sending signal on completion of a coupled design activity is done according to one of the 
following business rules: 
(BR 15.1): A coupled design activity should link to the next activity on its completion.  
(BR 15.2): A coupled design activity may link to the End activity on its completion.  
The DPM in Figure 8(a) was assigned with rule BR 15.2, i.e., there is a link from OL of X to End 
(after second execution), and the resulting C-process is depicted in (b). If BR 15.1 was used, the latter 
link was not included and the resulting C-process would be as in (c). Additional implications of  
utilizing self-iterations were further studied in  [19] and provided additional insight to iterative 
processes modelling. 
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4.6 Logic verification issues 
The DSM (and DPM) does not fully define the process logic, and can not represent both input logic 
and output logic in the general case  [16]. Setting logic as additional information, by using additional 
matrices, using rules, or using logic formulation, is not trivial. Not any set of rules may apply. The 
latter assertion is demonstrated by the following examples that provide more insight to iterative 
processes simulation logic and implementation. Note: the input and output logic activities are implicit 
(not presented), before and after the design activities X and Y, respectively. 
 

case DPM Valid Logic Invalid Logic examples 
(a)   B X Y E 

B 0      
X  1 0.1     
Y  1  0.1   
E    1  1 0  

B  ⇒  X•Y ;  
E   ⇐  X•Y ; 
X  ⇒  X⊕E ; 
Y  ⇒  Y⊕E ; 
 

B  ⇒  X+Y ; B  ⇒  X⊕Y ;   
E   ⇐  X+Y ;  
X  ⇒  X+E ; X  ⇒  X•E ; 
Y  ⇒  Y+E ; Y  ⇒  Y•E ; 

(b)   B X Y E 
B 0      
X 1 0.0    
Y 1  1 0.0   
E     1 0  

B  ⇒  X•Y ;   
Y   ⇐  B•X ; 
 

Y   ⇐  B+X ;  

(c)   B X Y E 
B 0      
X 1 0.1    
Y 1  1 0.1   
E     1 0  

X  ⇒  X⊕Y ;   
X  ⇒  X+Y ;   
(E   ⇐ X•Y) 

 

(d)   B X Y E 
B 0      
X 1 0.1 0.1   
Y 1  1 0.1   
E   1  1 0  

X ⇐  B+Y ;  
X ⇒  X⊕Y ;   
X2 ⇒ X⊕Y⊕E ; 
X2 ⇒  (X+Y) ⊕E; 
Y ⇐  B+X+Y ;  
Y ⇒  (X+Y)⊕E ;   

X  ⇒  (X⊕Y)+E ;  
X  ⇒  X+Y+E ;  
X  ⇒  Y•E ; 
and more 

Figure 9: Process logic examples  

Parallel activities example is depicted in Figure 9(a). The option of using Split-Or logic for Begin and 
Join-Or logic for End, (B⇒X+Y and E⇐X+Y) respectively, is legitimate in a general process. However, 
in the context of Design process it is invalid, since we assume that every activity must be performed at 
least once. The logic B⇒X⊕Y will always cause one of the activities not to start. In general, the output 
logic of forward links, being performed first time, should always be Split-And (to ensure that next 
activities execute at least once). Having self-iterations prevents using output logic other than Split-Xor 
between the link to End and other links, as otherwise the process might terminate before all design 
activity iterations have completed. A serial case without self-iterations is depicted in Figure 9(b). The 
link from Begin to Y is not required according to the DPM generation rules; and is added to 
demonstrate the input logic of Y. The input logic must be Join-And of all forward links (i.e., Y should 
wait to all previous activities to complete), as it is serial.  
The output logic of X is considered once adding self-iterations; depicted in (c). There are two options: 
either all X iterations should complete (X⇒X⊕Y), or Y might start in parallel to an iteration of X (Note: 
the case X⇒X•Y is a sub-option, i.e., Y must start with every iteration of X). Since all iterations should 
terminate the End activity should wait for all X iterations to complete, though there is no indication of 
a link from X to End. Without such logic the process may end once Y completes, while X is still 
iterating (and may cause additional iterations of Y). The analysis is quiet similar to the examples given 
in  [3]. Yet, waiting for activity iteration with no indication of link to End activity, will be regarded as 
flawed situation in a simple Petri net; and can be solved in high level Petri net by adding a data link. 
The case of coupled activities with parallel start and early termination is depicted in (d). The input 
logic of X is (typically) defined as Join-Or of forward and feedback links. In this case, Xor and And 
options are also applicable since Y starts in parallel (otherwise, Join-And would cause a deadlock). 
Similarly, the input logic of Y is Join-Or (having multiple activities, the forward links would have 
Join-And logic, equation 8). The output logic of X does not allow link to End at first execution, but 
only after iterations (i.e., from second execution X2).  
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5. DISCUSSION AND CONCLUSIONS  
The transformation of a DSM plan to a process scheme is not unique, and could easily lead to 
inapplicable process logic options that yield invalid processes. Therefore, business rules are required 
for choosing between the applicable options, particularly if the transformation to process plan is to be 
done automatically or in a changing knowledge environment. This article presented the application of 
a basic set of business rules for transforming an ordered DSM to DPM. The application of 
implementation rules IR 1 to IR 7, which are used for this transformation, results in a net that satisfies 
basic process validation requirements (formal proof are presented in  [17]). The application of IR 11 to 
IR 15 business rule options can be predefined; or monitored by applying additional business rules, 
according to the process state, due dates, or other considerations. Process logic and other process 
parameters (e.g., cost and resources) that complement DSM information have to be represented 
outside the DSM; together they provide the foundation for process planning based on simulations. The 
current study provides support for establishing a dynamically changing process planning mechanism, 
entitled Dynamic Product Development Process  [18].  

APPENDIX A 
The relations between Implementation Rules, Business Rules, Input and Output Logic equations, are 
shown in Figure 10. Input logic is described by equations 3 (for serial or serialized) and 8 (coupled 
activities), respectively. The Output logic of the various cases is formulated in equations 4 to 7. 

 

Figure 10: Relations between implementation and business rules 
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