INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07
28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

AN ONTOLOGY BASED APPROACH TO A FLEXIBLE
AID FOR MECHANICAL CONCEPTUAL DESIGN

Yang Liu and Anton H. Basson
Stellenbosch University, South Africa

ABSTRACT

Small and medium sized engineering companies imeblin product development are under
considerable pressure, due to globalization, tocgegroduct development cost and time. Since such
small companies typically cannot afford customidedign support tools, but employ a wide range of
design styles, there is a need for "flexible" (easily adaptable) design support tools. Flexibilit

this context indicates that the same software ¢aal be adapted to a wide spectrum of design styles
without requiring changes to the software's sowwde. The approach presented here to achieve
flexibility for distributed design support systemsses the notion of an ontology, combined with
elements and relations in conceptual graphs fod#tabase and user interface. This paper presents t
implementation of these aspects in a design suppstem called DiDeas Il_(Blributed_Dsign
Assistant). It is aimed at the pre-detail design peaand aims to allow design teams to manage their
design information according to various design md#) to decrease time-delays and to improve
communication between team members. The main fottse paper is the practical implementation
of an ontology based design support system, DiDledmit the results of preliminary evaluation in
laboratory case studies are also reported.

Keywords: Distributed design; ontology; conceptiges

1 INTRODUCTION

During design process, the designer has to colgggnise and filter information. Because of the
variety of types of products, he/she would workhwifferent kinds of information in order to
accomplish his/her design work. Furthermore, du¢ottay's competitive market where technology
progresses at a very fast pace, product desigetiing more and more complicated and requires that
the development time should be as short as possitheut losing product quality. The early design
phase plays an important role in the design proaedsstudies have shown that although the cost of
design is usually less than 20% of the total cost product life cycle, up to 80% of the total cisst
determined during the design stage [1]. To manhgedesign information in an organized way is
therefore very important for producing a good deslgalso decreases the time that the designer has
to spend on searching for or exchanging informataomd this time can be used more productively to
develop creative ideas for the design of the produc

Different design methodologies are applied in ddfé companies and the design process is mainly
determined by the company resources, the team meh#xperience, the project type and the project
scope. Bassoat al [2] outlined the diversity in design processesemms of scope, models, methods
and procedures. There is nho common design methgyglato fulfil the different requirements from
different companies, with the result that there meny design methods, such as those presented by
Blanchard and Fabrycky [3], Pahl and Beitz [4],ralih, [5], Ulrich and Eppinger [6] and Nigel [7].

A number of tools are available to support teanrindithe early design phases (such as [8], [9]],[10
and [11]). Wang et al. [12] summarise concept desgpport tools developed in recent years.
However, there is still an need for greater fldkipiin these systems, providing the opportunity fo
teams to alternate between different design metbgiis for different design resources and projects.
Ontology based approaches are widely applied wteerse information has to be handled. When
combined with the notions of elements and relatibas conceptual graphs, it has the potential for
high flexibility. This paper presents an ontologgsbd approach implemented in an internet-based
design support system, DiDeas Il, which is a dguekent of DiDeas | [13]. DiDeas Il is intended for

ICED’07/337 1

distributed teams doing mechanical design in tleedatail design phases, and aims to allow design
teams to manage their design information accortliingarious design methods (according to their
company's design style), to decrease time-delayb tanimprove communication between team
members. The research is aimed at application aill ¢mmedium sized engineering companies where
the cost of customised software for design supogrohibitive. An objective for DiDeas Il was
therefore that users should be able to custom{gegt by changing the design terminology or preges
without having to change the software's source .code

2 COMMONALITY AND DIVERSITY IN DESIGN PROCESSES

2.1 Commonality in Design Procedures

Even though one of the objectives for DiDeas Hléibility, it must still be identifiable as a dgs
support system, as distinct from other informatizanagement systems. The elements that are present
in virtually all design procedures should be bislto DiDeas Il. To determine these elements, a
functional analysis of a general design processawaslucted (Figure 1). The design process can be
described as a map with instructions on how tofigenh the identification of a need for a specific
object to the final product [5]. It can be saidttliais process transforms available information,
knowledge and expertise in order to construct ansiéa get from an expressed need to a solution. An
expression of a need as a starting point is clearéyof the elements found in all design procedures
From the view of systems engineering [3], therasgally the need to decompose the target (system)
into sub-targets (subsystems) to find solutionshwhe result that decomposition, or subdivision of
the design task, is a necessary element in a desjgoort system. Baselines play the central role in
this regard, in that a baseline is a common smatifin for the subsystems derived from it. The
baseline must be such that if all the subsystettisfysall the baseline's requirements (which can be
expressed as functions and performance measuhes),the system will perform the function(s)
required of it. DiDeas Il must therefore provide gubdivision of the design task and for managing
the associated baselines.

Another aspect of subdivision, seen particularlycomplex design tasks, is that the same design
process is repeated on each hierarchical leveh®fdecomposition, except at the last level where
detail design and/or purchasing decisions haveetméade. DiDeas Il should therefore be applicable at
any level of the hierarchy.

An aspect similar in some ways to subdivision i ¢gieneration of alternatives (design concepts) to
choose from. From an information management pointiew, concepts primarily differ from
subsystems in that concepts represent alternatitelg all subsystems are required.

Another common notion in design procedures is fi@maand a design support system must allow
frequent changes to previously entered information.

The above notions are captured in the general mgsigcess depicted in Figure 1. The overall
functions of the system being designed are the alopoint of departure. From it, the overall
objectives are formulated, followed by the generabf alternative concepts. Each of these altereati
concepts can be decomposed into sub-concepts/seimsysvhere the design process will be repeated
(the dashed line block on the left hand side ofiitngre). The baseline ("Refine objective" in Figuk)

is pivotal in handling subdivision of systems antsy/stems. The decomposition is continued until the
sub-concept/subsystem level is reached where pgethécontract/detail design decisions can be
made (the central, right hand side of the figufdiree typical design activities in sub-concept ifleta
design are shown in Figure 1, i.e. component desigalysis using tools and layout design, but there
can be many other design activities depending emésign project and design resources.

2.2 Ontology as a Strategy to Handle Diversity

In contrast to the common aspects addressed athare, are various aspects of design processes that
differ from one team to the next or even from ongqxt to the next. This section considers how to
handle this diversity in DiDeas II.

One aspect of design diversity is the range ofgle#rminologies, with the same word being used for
different notions and different words used for &minotions [2]. This results in communication
problems between designers that have different gvagkds, or confusion when using a design
information system that employs terminology that tisam is unfamiliar with. Each company typically
has its own design terminology and design proceduresmall and medium sized enterprises cannot

ICED’07/337 2

afford to have customised design support tools Idpeel. DiDeas Il is therefore aimed at allowing a
company to easily adapt it to its own design stghel ontology is the key to achieving this
adaptability.

Refine/ modify .| Identify overall
overall function d functions

v

Formulate
objectives <
(system baseline)

Revise
objective

Generate concept
alternatives

!
{ ! l

Alternative Alternative Alternative
concept 1 concept i concept n

¥ Y__.
" Yes No .
" Decompose? .

Refine objectives
(baseline for subsystem)

»
)

Purchase/ Yes

Subcontract?
| [U A N
. | : : Detail design :
LN : Y :
| Y : :
: | Tnherit : : A 4
| C : : -
objective : : h |
.| Component || Analysis Lay-out | : Search suppliers
\ 4 : design tools design | :
Evaluation & :
Selection
Request for quotation

Supplier
selected?

Whole system fail Evaluation & Part of the system fail

Review system

OK

Procure:
Purchase
Subcontract
Manufacturing

Figure 1. General Design Process

"Ontology" refers to the branch of philosophy deglivith the modelling of the reality. The use of
ontology is becoming more and more popular in diffié research fields. There are many definitions
of ontology [14], but the following general defiom given by Nechegt al [15] is useful in the
present context: "An ontology defines the basiemgeand relations comprising the vocabulary of a
topic area as well as the rules of combining temnsl relations to define extensions to the
vocabulary”. The meaning of the ontology in thip@acan be regarded as the conceptualization of
design pattern according different design methaglebapplied in different companies.

Conceptual graphs can be combined with an ontot@gped approach to create a database structure.
Sowa [16] gave the following definition of conceagltigraph: "A conceptual graph is an abstract
representation for logic with nodes called conceptid conceptual relations, linked together with
arcs." In DiDeas I, all design information is st#fied either as an element or a relation. Thmelds

ICED’07/337 3

are only linked to relations, and vice versa (apprty of a conceptual graph). The set of available
types of elements and relationships constitutetitelogy.

Two of the main databases in DiDeas Il are (Fig)réhe Ontology Database, in which the element
and relation types are stored, and the Projectdaat in which the design project's information is
held. Each piece of project information is clagsifas an element or relation of a type in the @qgiol
Database. Changes in the design process or teoginale implemented in the databases by adding to
the Ontology Database, but the database structoes dot change. This is the most significant
difference between the approach implemented in B¥DH and the typical relational database
structure applied in DiDeas |, or even object daéed database approaches, which require prior
knowledge of the design process to set up the dsgabin the latter cases, customising a design
support tool typically requires changing the dasgbstructure, which significantly reduces flexiili

Project database Ontology database Ontology editor
& »

% Elements ‘ Element types ‘ ‘ Relation types [”| Edit ontology
o\ A

E) User interface ontology

> Relations R A
o Interface element Interface relation | » Project edit
» A A types types ~ > interface

Project management Design module

[} " X : \ R

° Project meta information < Project data

%) image

)

c A

o Project team assignment < v

o L Project edit

interface
involved company information «

Figure 2: DiDeas Il Architecture

3 DIDEAS | AND I

3.1 DiDeas |

DiDeas | [13][17] is an Internet-based system Hilws simultaneous multi-user collaboration in the
early design phases. In DiDeas | a relational detalfimplemented in Access) is located on a central
web server and stores all design information edtar® the system. The user interface was realised
the form of a collection of Microsoft Active ServBages (ASP), which can be accessed platform-
independently via a standard web browser.

Case studies showed that DiDeas | provides a $mitabntext for information exchange in
synchronous and asynchronous collaboration scenarlowever, the use of HTML for the user
interface severely restricted its flexibility artdd complex to adapt the relational database large
variety of design styles.

3.2 DiDeas I

Several programming languages were considerechédévelopment of DiDeas I, and Visual C++
with .NET was chosen since it imposed the fewasitditions. DiDeas Il has two separate programs,
i.e. one running on the server side and one owlibet side (Figure 2). Each designer will run hés/
own client side programme.

ICED’07/337 4

3.2.1 User Roles

As shown in Figure 2, there are different databas&iDeas Il. Three roles can be identified foe th
maintenance of the information in these databdsesthe normal design team member, the project
manager and an "Ontology editor" who can be a ptajanager, systems engineer and/or chief
designer. The ontology editor sets up the ontoltgfabase, thereby determining the design procedure
and associated terminology that will be used. Thelogy editor does this by maintaining the
"Element types", "Relation types" and "User integf@ntology" in the "Ontology database". Once this
has been done, the normal design team membersta@rusing the system to record and retrieve
project information in the "Project database" tlylouhe "Design module" which reflects the design
procedure and terminology set up by the "Ontoladjyoe’. The project manager maintains the overall
project information and the team member allocatibnis information is also kept in the "Project
database".

The following sections describe the typical useéerface screens through which the persons fuldllin
the respective roles maintain the data in the vartables.

3.2.2 Server Side

The server side maintains the Ontology Databaseten@roject Database, as proposed by Basson
al [2]. The Ontology Editor module also runs on teever side and is used to create, edit and delete
ontology elements and relations, as well as thgeBrrdedit user interface. The client side cannot
change the Ontology Database.

Figure 3 shows the user interface for editing theology element types and relation types. Each
element type is assigned a unique ID, while the uae specify the element name and description.
The relations types also each have a unique IDdasdription, but also a type classification (used i
for the Project Edit user interface), the pareetr@nt type's ID and the child element type's ID.

Figure 4 shows the server side interface througltiwthe user interface of the client side (which
depends on the ontology element and relation tyipesgt up. Its use is described in the next sectio

Ontology Editor, @@@
Ontology Element Ontology Relaions

D Element Mame Element Description { Ontology Relation Setup

_ Interface the loaded interface of the Dileas system Relation 10 Type 1D Relation DE scription Farent Element 1D Childe Element ID~ #

Treeview the tree view section in the interface _ ORShowlD | Description

Tab section the DiDveas right side window tabs f interface has the Treeviaw_...

Meta information tab name title - Meta infarmation in the information interface has the right winda

Meeds Development tab name title - needs analysiz | right _side window _has_ Proiec._..
Specification Development tab name title - Specification Develapment] right side window has Need... I
Concept Evaluation tab name - Concept evaluation
Project Design review text ar link of the design review T ————

gpztem [top naote] Tree view node - top node Meeds development tab incl...

subsystem Tree view node - subsystern Concent E valuation tab incl...

0

1

2

3

1

right side window has Speci.. | 5
: - - B
7

1

2

o

a

f
t
t
t
t right side window has Conc...
t
t
t
3

Alternative subzystem Tree view node - alternative subsystem .systam node iz Iinked in tree. ..

Vbt i il A i sk

Al o~ m e = O

Setup Project Editor Interface

Figure 3: User Interface to Edit Ontology "Element Types" and "Relation Types"

3.2.3 Client Side Project Edit User Interface

The client side user interface allows the desigmtenember to view and edit project informations It
customisable (an important element of flexibilitilyough the ontology defined on the server side. In
the following discussion, the basic structure a&f ®roject Edit user interface is first described an
then the user interface on the server side usedsimmise it.

As mention above, an objective for DiDeas |l weet the users can customise it (e.g. changing design
terminology or process on the client side) withclinging the software's source code. A balance had
to be struck between giving the users the freedonshiange the Project Edit user interface and
keeping the process of changing the user intedaople enough so that people without programming

ICED’07/337 5

experience could do it. After considering the vasidormats in which data can be displayed, the
authors selected the following underlying userrfiaiee structure (illustrated in Figure 5):

On the left hand side of Figure 5, a tree view shawreak down of the system into subsystems and
concepts. This information is common to virtually design processes and was fixed in the source
code. It is used as the means to navigate thrdwegtddsign information since all other informati@mc

be naturally related to one of the tree nodes.tdpaiode always represents the project itself.

The decomposition is dominantly of a one-to-mayrabier and the tree view is an intuitive way of
presenting the information. However, in many prtgeg certain subsystem can be found in different
parent subsystems. Provision is therefore mada farbsystem to appear more than once in the tree.
The information that shared by more than one subsysis highlighted in certain colour, and also a
warning message is displayed when it is editee@maimd the user that it occurs more than once in the
tree. The detailed format of the display (cololirge types, etc) is customisable using the "Intfa
Style" tab shown near the top of Figure 4. Colozar also be used to distinguish concepts from
subsystems.

Project Edit Interface Setup
Load Save

Intertace Setup | |nterface Style |

set up the table and note in dofferent tabs

Dezign interface table zet up
table componert list

Tab Setup Table zetup

Exist tab
. —_New tab name

Design Stages Tables in Tab

Table name [Metanfomation Table Mame
Meeds Development

Description
Specification Development | Me nfarmatior table table - Meta Project Information

heading1heading2

Sub Tabs Table Heading

[heta Froject Informatior = - ot
iTa mber e . Table Heading lIji_egc_l_ln_g“D?sclr_lpy?nl
| Imvalved Comparny | nformation Heading - Prejectriarme
ztart date Heading - the planed project st..
end date Heading - the planed projecte...

project dezcription Heading - the zhort description ..

Figure 4: User Interface to Edit "User Interface Ontology"

The right hand side of the Project Edit user istegfis built up out of nested tabbed pages congini
tables that show information about the item setkatethe tree (e.g. "Frame" in Figure 5), as well a
its parent in the tree ("Support System" is theeptof "Frame" in Figure 5). The titles of the taisl
sub-tabs can be set using the "Tab Setup” boxésgure 4. The tabs are referred to as "Design
stages" since they will normally represent the sega of steps in the company's design procedure.
Each sub-tab can contain one or more tables, wdrierset up using the right hand side of Figure 4.
Each column in the table and the ontology elemgmed that must be displayed in that column are
also set in the "Table setup" section of Figure 4.

The information described above constitutes theefliigerface ontology" in Figure 2. Figure 5 shows
a typical setup for the Project Edit user interfdné all of the headings on the right-hand side the
information displayed can be customised throughufeéigd. The tabbed pages give an implied
sequence with two hierarchical levels, but withéarcing the design to follow the sequence. The
company's normal design procedure can hence beegedwithout forcing it upon the designer. The
tables are suitable for displaying many-to-manwtrehs, but all of the information showed in the

ICED’07/337 6

tables on the right hand side of Figure 5 is relatethe concept or subsystem selected in theoinee
the left hand side (a one-to-many relationship).

Tree Tak Suk-tak Proaress b Table:

M project Editor EEE

power transfer system Support System Function Analysis

Driving section TR T
splash guard {

Desasdfthcion Lopec Funcion
Support sys desired fun.. | support sys need be do..

— Brake Systern Ca[?-pewkf@ { .
| I ontrol Svatem Can mave with human power suppoer sys basic func... Esum:uort ayz desired fun...
| Attachment e lpdiis,
Can be easily to biake

Drive safely

Cany people/caigo

Can move with human power

Can easy to drive

Can I.:.e easiy to blake

Drive safely

Desied Funcion content |

Reable

E asily to maintain

Easy canmy

Have an on board computert,., |

blaus s banl how | ¥

| Shared Wik Space

Figure 5: Client Side Project Edit User Interface

3.3.4 Other Client Side Aspects

When the client side software is first started, uker has to select a project. Only one projectbgan
accessed at a time in the current version of Dileas

Figure 6 summarises the data management proceismed by the client side. The client side
maintains a TCP/IP connection with the server sa@&xchange data with the server side Project
Database. The client side maintains a local imdgée project data to ensure rapid response of the
user interface. Any information created or modifledthe designer is saved in the image, but also
immediately sent to the server. The server savesetithanges in the server side database so that all
the designers simultaneously working on the saropegirhave access to the newest information. The
client side programme periodically polls the serf@r updates generated by other designers. The
"Update Status" progress bar in the Project Edit irderface (Figure 5) shows how much of the delay
period before the next update, has passed.

Other user functions provided on the client sidiictv cannot be described in this paper due to kengt
restrictions, are a QFD-style relationship wind@aproject management window (to manage project
time scales, client company information and teanmbrer allocation), a shared workspace for
uploading files to or retrieving files from the ger, and a design review facility to manage design
review records.

ICED'07/337 7

Get user interface ontology data from server

Go through elements and relations in ontology
data, and find number of design stages and
design steps

Build tabs and sub-tabs according to
number and name of the design stages
or design steps

‘ Let user select project ‘

‘ Get project data from server F—

Build system tree from project elements
and relations

Display design information for
selected concept or subsystem

v

Send user edits to server

Has updating interval
been reached?

‘ Wait for further operation ‘

Figure 6: Flow Chart of the Data Management Process for Project Edit Interface

4 CASE STUDIES

Three preliminary case studies were conducted firstaevaluation of DiDeas Il. Since these case
studies were limited in scope and conducted in @demic environment, their results have a large
margin of uncertainty, but they could still be usedjive an indication of the success of the apgroa
implemented in DiDeas II.

4.1 Case Studies One and Two

The first two cases studies were performed by siisdeorking in teams of three using an ontology
created earlier by the first author. This ontologffects the design procedure taught in the mechani
engineering programme. The students were from skomar to masters-level in mechanical
engineering that all had a similar education inigleprocedures, as well as two master's studemons fr
Process Engineering that had no mechanical desigosare. The teams were given projects such as
the specification development for a coin sortingchaism for a vending machine and the
specification development of a bottle and can sdparfor a recycling plant. The students were all
volunteers and spent a Saturday morning or aftervearking on the assigned projects. The team
members worked in separate offices and could conwatenonly using DiDeas Il and chat-software,
except in the cases in the second case study derdo-face teamwork was specifically employed.
After the project they had to fill in questionnairand informal interviews were conducted by thst fir
author to elicit their responses.

In the first case study, the ability of DiDeasdldonvey design information to persons that wette no
involved in creating that information, was evalght&his scenario simulates where a new team
member joins the design team halfway through tlogept, or where one team develops a design up to
a point and another team takes it further or desela follow-up project. It also indicates to what
extent DiDeas Il will aid communication betweenneaembers when the work asynchronously. The
first part of this case study was for one teameteup the specifications of a new project in DiD#as
and to start with a subsystem breakdown. They v@lewed up in the second part by a different
team that had to continue with the same project.

ICED’07/337 8

By reading through the information that was recdrifethe Project Database, the second team could
quickly get a clear view of the system structuretli®e tree view. Also the requirements and
specifications entered by the preceding team am$eah example of what is required since they were
linked to the different levels of the system-sulsystree. Observations during the teams' work and
the information obtained from the questionnaired aterviews, clearly showed that the second team
could easily continue the project. This case stiindyefore showed that, in spite of the limitations
imposed on the user interface structure (as desttiib section 3.2.3), the design teams found the
system intuitive to use and could easily understafarmation entered by other team members or
even previous teams. The context-rich structure thedability of DiDeas Il to reflect the design
process and terminology that the team membersaandidr with, is considered to be the key to the
users' favourable response.
Some of the participants in the first case studyewsecond year students who had just had been
introduced to the design process in a course theg doing in the semester that the case studies wer
conducted. They commented that using DiDeas lldeehem to understand the design process and
how to apply it. This indicates that using DiDehsnla company can help newly appointed design
engineers to more easily adopt the company's owigiistyle.
In the second case study, a comparison was donedetdistributed teams supported by DiDeas I
and co-located teams working in a face-to-faceasitn. To reduce correlation effects in the case
study, one team had to first use DiDeas Il and thethe co-located work, while another team did the
reverse. A significant difference observed betwé®n two teams is that the team that first used
DiDeas I, used the procedure and terminology they learned there in the face-to-face project and
worked more effectively and produced clearer docuat®n. The team that worked face-to-face
before using DiDeas Il produced fewer specificagi@md concepts in the face-to-face meeting than
when they used DiDeas Il, as well as the teamdfaated by using DiDeas II. Both teams commented
at the end of the case study that they worked raffeetively using DiDeas Il than without it. One
important reason for this is that it was easiendadle hierarchical information using DiDeas lirtha
using paper and pencil. When using DiDeas I, databe added at any level of the system-subsystem
tree. It was found from the questionnaires thapaiticipants were satisfied that the tree view eniad
easy for them to access design information thatliméed to particular system or subsystem. All of
them agreed that the Project Edit interface coaladke the information and could save and show the
data in any subsystem.
The time spent by the team leader in each tearotim the first and second case studies was recorded
and then classified into four categories (Figure 7)
« Communication: e.g. when the team leader assapks to different people tasks, or general non-
project related communication with designers.
« Process information: reading and editing the gtegnformation such as creating or editing tree
nodes (subsystems).
* Negotiation: e.g. explaining how and why one namle specification is created, problem
identification and problem solving.
» Download/upload file: e.g. some sketch filesdsist in negotiations.

100 -+
90 +
80
X
o 70 .
= - - O Communication
o 60 — . .
£ 50 B Process information
©] 0O Negotiation
E 40 9 _
? O Download/upload file
c 30
o
© 20
10] [. ﬂ
(! —1 " | _l
1 2 3 4
Session

Figure 7: Analysis of Team Leader's Time

ICED’07/337 9

Sessions 1 and 2 in Figure 7 refer to the firsé cigdy, while sessions 3 and 4 refer to when DéDea
Il was used in the second case study.

The results in Figure 7 were compared to a prevaase study's results, where a team of six fourth
year mechanical engineering students were obsenvadsystem design project that they performed
co-located, but without any design support softWasd. This showed that when using DiDeas I, the
team leader required significantly less time foroti@nunication” and could spend a significantly
larger proportion of his/her time on "Negotiatio@€ommunication time using DiDeas |l was reduced
since the design information is clearly presentadl seasy for a designer to understand.
Communication was found to be mainly concerned vd#tta updating (due to different update
intervals) and confirming file downloads. One aspgcCommunication between team members, i.e.
informing each other of the work done since thé taseting, consumed about 25% of meeting time in
the previous case study, while when using DiDeawdry little to no time was required for this
activity. Negotiation was the major activity whesing DiDeas II. This indicates that DiDeas Il will
help a team to spend less time on peripheral aspecd to spend more time considering concepts and
thereby reaching a better result. This benefit, time would expect to have with most design support
systems, was retained in spite of the restrictmmshe used interface imposed by keeping DiDeas I
flexible.

4.2 Case Study Three

The third case study was aimed at evaluating tot wktent DiDeas Il can be customised in real
industrial contexts. This case study was conduet@fi the assistance of three engineers from
different small engineering companies.

The first engineer was from a small company deaigaind manufacturing cooking equipment for the
canning industry. These devices are relatively Bmppom the design and process planning
perspective. He reviewed DiDeas Il with the ontgldigat was set up for the first two cases studies,
but did not have the opportunity to actually addagt ontology due to time constraints. However, he
did conclude that DiDeas Il can be adapted to bispany's design style and that its use would be
attractive for them since they currently have digant problems with design reuse, e.g. having to
repeat much of the design process for modificatiminsurrent products because they do not have
sufficient historical information just to considdae modifications, particularly when a one desigser
doing a modification based on another designerl&kwi where the previous design was done a long
time ago. These problems could be solved by usisgséem such as DiDeas Il. Further, due to its
customisation properties, he even expected to ket@lise DiDeas Il as an aid in process planning.
The second and third engineers each worked in coipdhat do detail design and development of
subsystems for other companies. Their companiesadado manufacturing in-house, but in some
projects subcontract the manufacturing, while imeotprojects their designs are returned to thatlie
for manufacturing. The two engineers independergljiewed DiDeas Il, as it was set up for the
previous case studies. From their comments, thewwlg conclusions were drawn: Both engineers
found the system-subsystem tree useful for plathegsubsystem that they would typically work on,
in its context. The both also indicated that thiitglio customise DiDeas Il to their companieylst

of working, will make it a useful tool. The useseyhsaw for DiDeas Il included aiding in
communication directly between the design engineerd the project manager or client, since
currently this communication has to be passed v&ystem engineer, which takes additional time.
Even though it would take time for the design eeginto enter the relevant data into DiDeas I, both
engineers indicated that it would be worth it iftdén reduce the amount of time spent in meetings
aimed specifically at reporting progress. In thideras communication channel, the ability to
customise DiDeas Il to reflect the design stylettod particular company, client or project, was
considered to be very important. One of the engmeaéso saw advantages in using DiDeas Il as a
training tool for novice designers.

Unfortunately, constraints on the availability b&tdesign engineers in this case study, did nahiper
adapting DiDeas Il according to their preferenced having them evaluate the changes. However,
DiDeas Il was adapted after the interviews to ipooate their comments, as shown in Figure 8.

ICED’07/337 10

B Project Editor
_ Mita istomnation | Protlem Identfication| Problem Bnsbsis Brobdem Sohiion
:—B-| SUppart Systam Update Slalee T
| Prainliem Clas sific aliar i
8] paweer transter system | seificslian | Prabiom Analys |

Braks Systam Save

Control System Problem Clagsiication

B Attachment gacﬁ.nzl:lp-uaﬁun Panpls Opsiatin o

biske foeca naed be mploved | deer deacton resd bo e aasly lor dlleenl sz of paople | gaa box have probien:

Shaved 'work, Space

Figure 8: Project Edit Interface Revised after Case Study 3

5 CONCLUSIONS

The need exists for flexible (easily adaptable)igtesupport tools for small and medium sized
engineering companies. Flexibility in this contexdicates that a given software tool can be adapted
to a wide spectrum of design styles without reqgisource code changes. DiDeas Il, a design support
system presented in this paper, which employs &olagy-based approach combined with the notions
of elements and relations from conceptual graphms at satisfying this need. DiDeas Il allows
changes to design terminology and procedures tinpkemented by users of the software, without
having to change the underlying source code.

DiDeas Il is composed of two programs, one runminghe server side and one running at each client
(typically a member of the design team) respectiwehich communicate using a TCP/IP connection.
The server program contains the ontology editori¢lvisets the design style) and the database which
manages the project data and the ontology datacligre side program provides a user interfaceto |
users perform their design work by entering oriegdithe project's information. This user interface
uses a tree view of the system-subsystem struetsirthe main means of navigating through the
information. Tabbed pages are used to convey afieichfout not enforced) design procedure, and
tables to manipulate many-to-many relationship. 9dtsst of the particulars of the user interface can
be adapted by the ontology editor to suit the degigpcess and terminology that the design team
employs.

In the form used in the case studies presentedhign gaper, DiDeas Il can handle specification
development on different levels of the project sgssubsystem structure, thereby helping to manage
baselines. By using the tree view, tabs and taliesdesign information in the early design phases
can be displayed in a systematic and understandzdteer.

This paper shows that an ontology-based approatheaised to create a design support tool that can
be adapted for different design procedures andinefogies, without having to change the source
code. The case studies presented here show thiatasualesign support tool has the potential to
significantly improve communication between teanmhbers, reduce time required for information
exchange, facilitate distributed and asynchronowskwand promote design re-use. They also
confirmed that DiDeas II's ability to be adaptedthe companies' or projects' design styles, is of
critical importance in small enterprises.

The limited scope of the case studies precludesdwnclusions. They do, however, indicate thag it i
worth investing in the further development of DiBdato the stage where industries evaluate it in
practical situations. The inclusion of functionabdysis diagrams with hierarchies, loops and brasch

in an ontology-based approach is of particularaegeinterest.

ICED’07/337 11

REFERENCES

[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

O'Grady, P., Pamers, D. & Bolsen, J., 1988, Aitfintelligence Constraint Nets Applied to
Design for Economic Manufactur€omputer Integrated Manufacturinyol. 1, pp. 204-210
Basson, A.H., Bonnema, G.M. & Liu, Y., 2003, A Flge Design Information Syster2003
International CIRP Design Seminar Laboratoire, &enoble, France, May 12-14.
Blanchard, B.S. en Fabrycky, W.J. "Systems Engingamd Analysis", % ed, Prentice Hall,
London, 1998.

Pahl, G. & Beitz, W., 199Fngineering Design — A System Apprgadid ed., Springer,
London.

Uliman, G.D., 2003The Mechanical Design Processhapmané& Hall, New York.

Ulrich, K.T. & Eppinger, S.D., 199%Rroduct Design and DevelopmemMcGraw-Hill, Inc.,
New York, U.S.

Nigel, C., 1996Engineering Design Method2nd ed, John Wiley & Sons, Chichester.
Vinney, J.E., Blount, G.N. & Noroozi, S., 1999 Conceptual Design ASsitant CODAS
Proceeding of the 1999 CIRP International Desigm®ar, Enschede, the Netherlands, 24-26,
March.

Varma, A., Dong, A., Chidambaram, B., Agogino, AV&ood, W., 2003, Web-based Tool by
Engineering Desigrnlournal of Integrated Design and Process ScieN@. 7, No. 3, pp. 95-
108.

Curry, A. & Stancich, L., 2000, The Intranet — airihsic Natural Component of Strategic
Information Managementtternational Journal of Information Manageme¥l. 20, pp. 249-
268.

Babu M. Joglekar N. Ganiji A. Ramani K., 20@83exible Software Framework for
Collaboration Systems, Collaborative Design Totiidnternational CIRP Design Seminar
Grenoble, France, May 12-14.

Wang, L.H., Shen, W.M., Xie, H., Neelamkavil, JP&rdasani, A., 2002, Collaborative
Conceptual Design — State of the Art and FuturedseComputer-Aided DesigWol. 34, pp.
981-996.

Schueller, A., 2001Aspects of Distributed Conceptual Design SupgmtD. Thesis,
Stellenbosch University.

Oscar, S., Mariano F. L.& Asuncién G. P., Methodi#s, tools and language for building
ontology. Where is their meeting poirdata & Knowledge Engineering. 2003 P41 - 46
Neches, R., Fikes, R.E., Finin, T., Gruber, T.Rn&or, T. & Swartout, W.R., 1991, Enabling
Technology for Knowledge Sharing| Magazinel2 No.3 pp. 36-56.

Sowa, J.F., 199Z onceptual graphs summary, Conceptual StructimeNagle, T.E., Nagle,
J.A., Gerholz, L.L. & Eklund, P.W (Ed.), Current$®arch and Practice, Ellis Horwood Ltd.,
Chichester.

Schueller, A. & Basson, A.H., 200A,Framework for Distributed Conceptual Design, [esi
Management - Process and Information Isstre®roceedings of the 13th International
Conference on Engineering Design ICEDGasgow, U.K., pp. 385-391

Liu, Y, 2007,A Flexible Distributed Design Assistance Tool farlig Design Phase$hD
Dissertation, Stellenbosch University, South Africa

Contact: AH. Basson

Department of Mechanical and Mechatronic Engineering
Stellenbosch University

Private Bag X1

Matieland 7602

Stellenbosch

South Africa

Phone: +27 (021) 808-4250

Fax: +27 (021) 808-4958

e-mail: ahb@sun.ac.za

ICED’07/337 12

