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ABSTRACT  
Sequential sampling refers to a set of design of experiment (DOE) methods where the next sample 
point is determined by information from previous experiments. This paper introduces a qualitative and 
quantitative sequential sampling (Q2S2) technique, in which optimization and user knowledge is used 
to guide the efficient choice of sample points. This method combines information from multiple 
fidelity sources including computer simulation models of the product, first principals involved in 
design, and designer's qualitative intuitions about the design. Both quantitative and qualitative 
information from different sources are merged together to arrive at a new sampling strategy. This is 
accomplished by introducing the concept of a confidence function, C, which is represented as a field 
that is a function of the decision variables, x, and the performance parameter, f. We compare the 
sampling plans generated by Q2S2 to previously known sample plans on two test functions using 
various metrics. In each case, the performance of Q2S2 is highly encouraging.   
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1 INTRODUCTION 
The field of study, sometimes referred to "Design of Experiments" (or DOE) deals with what efficient 
set of experiments should be run to best understand a given phenomena [1-9]. DOE is a structured, 
organized approach for effectively and efficiently exploring the cause-and-effect relationship between 
numerous impact variables (the x’s) and the resulting performance variable (the f). DOE and in 
particular Metamodeling [10-16] comprise a group of statistical techniques for empirical model 
building and analysis. Design of experiments research is pertinent to not only engineering sciences, 
but also to any physical or natural sciences seeking to better understand a specific phenomenon [17, 
18]. Several surveys of DOE and metamodeling approaches have been conducted [11, 19, 20] with 
respect to their suitability for various applications. 
In recent years, there has been a major advance in DoE in the form of sequential sampling. The basic 
gist of sequential sampling is to determine experimental points based on previous experiments as 
opposed to traditional approaches which determine all experiments prior to any known results [21-27]. 
In this paper, we improve sequential sampling by drawing not only on the results of previous 
experiments but also on the qualitative knowledge that the user knows about the phenomenon under 
study. Furthermore, the concepts introduced in the paper, can be used to merge data returned from 
results of varying fidelity, for example, results from detailed experiments, results from computer 
simulations, or results from approximations specified by the user. 
Prior information from earlier related experiments, observational studies, or subjective beliefs from 
personal observations, can be valuable in deciding how to allocate experiments efficiently, leading to 
more informative experiments. Because information is usually available prior to experimentation and, 
indeed, often motivates doing the experiment, Bayesian methods are suited to contribute to 
experimental design. The Bayesian approach to experimental design provides a formal way to 
incorporate such prior information into the design process. Lindley [28] presented a two-part decision 
theoretic approach to experimental design, which provides a unifying theory for most work in 
Bayesian experimental design today. Lindley's approach involves specification of a suitable utility 
function reflecting the purpose and costs of the experiment; the best design is selected to maximize 
expected utility.  The reader is refered to a detailed review of Bayesian experimental design by 
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Chaloner and Verdinelli [29] for additional details on these criteria, references, and relationships of 
other Bayesian utility functions to standard optimality criteria. Bayesian experimental design has 
gained popularity in the past two decades. But also like many areas of Bayesian statistics, application 
to actual experiments still lag behind the theory [29]. Chaloner and Verdinelli [29] report that apart 
from Flournoy [30] there are no true “case studies” where Bayesian ideas have been formerly applied 
to the design of an actual scientific experiment before it is done. This paper presents a deterministic 
approach to integrate apriori knowledge into DoE. 
Since information in engineering problems can be both quantitative (QT) and qualitative (QL) in 
nature, combining both types of information can be more beneficial in solving real world design 
problems. Even though QT models are useful in providing detailed information about a design 
problem, they can be ineffective in situations where the mathematical formulation of design is not 
available or is partially defined. In such cases QL information can provide a valuable access to the 
design problem by taking advantages of human approximate reasoning to improve the complex design 
problem representation. However, all the sequential sampling approaches reported in the literature are 
purely quantitative in nature and thus not conducive to process information in such a mixed 
environment. In much of the research on sequential sampling, QT measures (such as Mean Squared 
Error or Maximum Likelihood Estimation) are used as criterion for selecting the next sample point[24, 
25]. These sequential sampling methods have following drawbacks: 

• Existing techniques are unable to merge information from different sources such as actual 
physical experiment (Non-deterministic and QT), and computer simulations (Deterministic 
and QT). In fact, most techniques proposed work well only for design and analysis of 
computer experiment (deterministic experiments). 

• Sampling strategies are dependent upon the properties of the metamodel which is used to fit 
the model for the data. 

• For most design problems, there exists qualitative information in the form of user guesses, 
first principles, monotonicity information and sensitivity information. No technique in the 
literature exploits this readily available and useful source of information about the design 
problem. 

These drawbacks can be attributed to the fact that there exists no method to assimilate QT and QL 
information coming from various sources. This necessitates the development of a method that can 
easily handle, merge and manipulate both QT and QL information. Secondly, the method developed 
should be independent or decoupled of the properties of the metamodel. This paper proposes a 
mathematically rigorous methodology for handling integrated QT and QL information to suitably 
represent and explore search space in real world design problems. To the best of our knowledge this is 
the first attempt to merge qualitative information via deterministic approach in DOE process. An 
important distinction is often made between DOE procedures that seek to maximize/minimize 
response value, and those geared toward gaining information about the problem. This paper is 
motivated toward information gathering process.  
The remainder of the paper is organized as follows. Section 2 briefly presents an illustrative example 
to elucidate the scenario where our methodology could be useful. Section 2 also presents basic 
definitions pertaining to this paper. We then describe the concept of confidence and mathematical 
models that captures both quantitative and qualitative data in section 3. Section 4 describes the 
qualitative and quantitative sequential sampling (Q2S2) methodology in which optimization and user 
knowledge is used to guide the efficient choice of sample points. The measures of the efficiency are 
presented in section 5. The applicability of Q2S2 to real problems is also demonstrated in Section 5 for 
four example problems where the structure of response model is not known apriori and is constructed 
by the methodology. Section 6 concludes the paper. 

2 ILLUSTRATIVE EXAMPLE  
The illustrative example is founded on a simple projectile problem available in standard undergraduate 
physics book. This 2-D test problem models the distance traversed by a projectile. Consider a 
projectile thrown at some elevation angle ϕ and initial velocity v0. The goal of the problem is to 
determine the flight distance d of the projectile in terms of these inputs. Ignoring air resistance and 
assuming the start and the landing position of the projectile are at the same ground level, the flight 
distance is given by d = 2v0

2 sin ϕ cosϕ/g. Qualitatively, a greater initial velocity of the projectile 
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results in a longer flight distance. However, flight distance also depends on the elevation angle. The 
maximal flight distance is achieved by throwing the projectile at elevation angle ϕ = π/4 (45degrees). 
Qualitatively, flight distance monotonically increases with elevation angle if ϕ < π/4, and decreases 
with elevation angle if ϕ > π/4. In both cases, flight distance monotonically increases with initial 
velocity. Thus, we have two piecewise monotonicities with respect to variable ϕ and one full range 
monotonicity with respect to the variable v0 (for ϕ the range considered is only between 0 and 90 
degrees). It is “easy” to guess that with initial velocity equal to 0, the distance traversed by the 
projectile will be 0. Furthermore, it is also “easy” to guess that with elevation ϕ being equal to 0 or 
π/2 (90 degrees) i.e., if you throw a projectile directly upward or downward, the distance traversed by 
the projectile will be 0. As one can notice that this information about the problem is qualitative in 
nature and is readily available even before any black box or actual experimentation based approach is 
applied to fit a metamodel for the problem. Generally, for any problem in hand, and especially design 
problems we have qualitative information of this nature at our disposal. We believe that using these 
qualitative information in conjunction with quantitative information available from existing sequential 
sampling techniques will lead to better and effective sequential sampling techniques. 
In the next section we present the concept of confidence that captures both quantitative and qualitative 
data. Section 3 also presents mathematical models and their properties which help us to capture 
information from different sources such as actual physical experiment, computer simulation and user 
guesses. 

3    CONFIDENCE AS A FUNCTION OF X AND F 
The basis for this method is a qualitative measure called confidence that ranges from -1 and 1. As an 
illustrative example, we have run a single experiment in the testing of a heat sink design (Figure 1) 
where a design variable is set to a length of 0.4 in. The result of the experiment shows a resulting 
surface temperature of 600°F. Given this information, one has a better sense of how other values of 
length will perform. Qualitatively, our confidence about values near 0.4 in. is likely to be higher than 
values far from 0.4 in. As a method to capture this notion, a confidence function is developed that 
starts at one at l=0.4 in. and diminishes exponentially to zero as we move away from that value (in the 
a–a direction of Figure 1). Furthermore, if we consider moving vertically along the temperature 
direction (in the b–b direction of Figure 1), we would be surprised if the true value deviated 
significantly from the experimental value of 600°F. This is captured in the confidence function as an 
exponential decay to negative one. It is not that we lose confidence in the prediction but rather that we 

600°F 

length 

temperature 

0.4 in. 

a a 

b 

b 

Figure 1: A single experiment in the design of a heat sink shows an experiment run at l = 4 in. yields a 
surface temperature of 600°F 
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become confident that such a value is incorrect (unless, of course, the experiment was greatly flawed). 
For example, running a replicate experiment at l=0.4in. would likely produce temperatures around 
600°F, and unlikely to produce values at, say 10°F or 1000°F. The newly defined parameter of 
Confidence, or C, is a function of both the decision variables, x, and the phenomenon in question f. 
The values of C range from -1 to 1, where: 
C[f0 : x0] = 1 corresponds to absolute certainty that the value of x0 does produce the value of f0, 
C[f0 : x0] = -1 corresponds to absolute certainty that the value of x0 does not produce the value of f0, 
C[f0 : x0] = 0 corresponds to absolute uncertainty in whether the value of x0 can produce the value 
of f0.  
 
Adding this Confidence field affords more benefits than the harm introduced by adding this new 
dimension. For example, one can now include information of varying degrees of fidelity. We can 
update the C-field to include information about detailed experiments (Figure 2a) or monotonicity 
information (Figure 2b). The equation for the C-field of actual experiment for a one variable design 
problem presented in Figure 2a is:  
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where, xinf or xinfluence is similar to the � in Kriging, and the ftol or ftolerance is the expected error 
or standard deviation in the experiment due to the fidelty aspect of the information source. By varying 
the values of ftol value we can integrate the information from different sources while taking into 
account the fidelty issue. Typically, the ftol value will be higher for a user guess, than a computer 
simulation followed by an actual physical experiment in that order (i.e, 
ftol_userguess>ftol_simulation>ftol_actualexperiment). Since, confidence is a newly defined 
qualitative value; other formulations may be pursued (for example, algebraic or trigonometric 
expressions as opposed to this exponential one).  For actual experiments, simulation or user guesses 
the equation for the C-field as a function of both xr  and f and can be written in the convolution form as 
follows: 
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where the subscript e denotes that the c-field is for actual experiment or user guess. The function can 
be written as follows: 

(2) 

(3) 

Table 1. Different functions for representing C fields. 
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More specifically, there could be 8 different functional choices for R(d) as presented in Table 1. For 
one objective function and  3 variables if R(d) is same for all and is of Gaussian form then the C-field 
equation for a given experiment or user guess can be written as follows; 
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where df and di are given by equation 5.  
The actual C function could be formulated by using any of the 8 mentioned form of d for f and any 

ixr . Different forms of R(d) can be used in the same problem as well. For example, for 2 variables and 
1 objective function, the 1st variable can have a Gaussian form whereas the second variable can have 
spline form for d. The f can also have any of the eight forms. 
In Figure 2b, a plot is shown for monotonicity information. The equation for the C-field shown in the 
Figure 2b is inspired by fuzzy-set theory [31], where a 1-dimensional sigmoid function is used to 
“black out” regions that are impossible to reach. 
This monotonicity information can be provided through user queries. For example in the heat sink 
problem, a user may claim that the temperature decreases with longer lengths. Given a single 
experiment at length equal to 0.4 in. (x0 = .4) and temperature at 6000C (f = 600), the C-field can be 
adjusted at that point to eliminate the areas that are impossible due to this monotonicity. The equation 
for the C-field for one variable monotonicity information is shown in Figure 2b and is represented by 
the following equation: 
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We consider two types of monotonicity information i.e., positive monotonicity and negative 
monotonicity. The C-field value for monotonicity information ranges from 0 to -1.  We use sigmoid 
function from the mathematical literature to represent the monotonicity information. For the 
convenience purpose let us define following: 
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Figure 2: a) the C-field created by introducing the results of a single experiment; b) the C-field that results 
from including monotonicity information 
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Then equation for representing C-fields of negative monotonicity in terms of sigmoid function can be 
written as follows: 
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And the equation for representing C-fields of positive monotonicity in terms of sigmoid function can 
be written as follows: 
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Where df and di  are defined by equation 5. 
The C-field values of monotonicity function always have a range [-1 0]. This is because the 
monotonicity function just gives us the appropriate information where the solution can not lie (or the 
space that need not be searched) but it does not provide any information about the space where the 
solution lies.  
In the next section we present our (Q2S2) methodology which uses the models of C fields information 
presented in this section for sequential sampling purposes. Different facets of the methodology are 
elaborated and present with a mathematical rigor where necessary. 

4 QUALITATIVE AND QUANTITATIVE SEQUENTIAL SAMPLING 
The methodology begins by taking inputs from the user about number of variables and objective 
functions (Step 1 Figure 3). Then it interacts with user by querying for specific qualitative information 
(Step 2 Figure 3). Our current implementation includes the following interactions with the user: 
Interval Information: The program begins by asking about the ranges of x and f it needs to consider. 
Once the user provides the ranges of x and f (or the ranges they think are relevant to the problem at 
hand) the program proceeds to ask further questions. 
Monotonicity Information: Once the interval information is inputted, the program asks the user 
whether he/she has monotonicity information. If the user has any monotonicity information the 
program represents this information as a C-field described in equation 2. The monotonicity 
information handled by the program can be for any number of decision variables. For example, if a 
user knows that the problem at hand is monotonic with respect to only one x in a three variable 
problem but not with respect to the other two variables, the program can still capture and use this 
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Figure 3: The Q2S2 process is cycle of six main steps. 
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information. The process asks user to explicitly input the type of monotonicity (positive or negative). 
The code written can also capture piecewise monotonicity (if any) for each x. 
Actual experiment or simulation data: The program also asks about the values of x and f for which 
an actual experiment or simulation was performed. The distinction between the simulation and actual 
experiment is captured by the ftol values of equation 1. The tolerance value for computational 
simulations may be kept relatively high, whereas the tolerance value for actual experiment is kept 
small to account for experimental variations. The program asks for the tolerance values if the data is 
from actual experiment. 
Approximation or user guess: The program then proceeds to ask user whether they know of any 
approximate values at the current stage. Any approximations, no matter how imprecise can improve 
the model in location where no information currently exists. 
It is important to note that experiments exist only at values of x. and not at values of both x and f. 
Therefore, in Step 3 (of Figure 3), the methodology integrates C-field along the f dimension for each x 
to produce a new value of confidence as a simpler function of just x: 

∫=′
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):()( 0

f

f

dfxfCxC vv .        (12) 

Then the methodology progresses to step 4 (details in Subsection 4.1), where it merges all the 
information at hand to create a single overall C’-f-x function for the problem. In Step 5, the 
methodology mirrors the value of the constructed C’-f-x function. Since C’ ranges from -1 to 1, the 
mirroring functions reflects the negative C’ values to positive values, thus making it now range from 0 
to 1. This is done to identify where values are closest to zero since zero corresponds with no 
knowledge about the model. This mirroring, represents one of the main advantage in creating 
confidence as a field ranging from -1 to 1. Not only can this range represent whether a relationship 
exists or not, but it can also be normalized to identify where the least (and most) information is known 
(details in Subsection 4.2). Based on this new refined C′, Step 6 performs an optimization using simple 
gradient based search techniques to identify the minimizer of C′ as the subsequent sample point. This 
sampling point is then integrated into the previous metamodel (which may be Kriging or B-splines). 
The Steps 2-8 are repeated till we exhaust the number of sampling points we can expend or when there 
is no more information available. The output of the process is both the resulting C-field and the 
associated metamodel.  
The Q2S2 was implemented using MATLAB® R12. The optimization toolbox in MATLAB® was used 
for the search process. In next subsections we discuss mathematical details pertaining to various steps 
of Q2S2 methodology. The next section presents example problems. The optimization space appears 
to become multimodal relatively quickly thus complicating the search for the global optimum. It is 
important to note that the minimization of the co-variance in Kriging requires a similar optimization 
process, and to solve the values of co-variance for each point sampled requires the set up and solving 
of an n-by-n matrix (where n is the number of existing sample points). Similarly in our approach, the 
combined C-field expression is indeed composed of n terms; however, by using the exponential 
equation we can create an analytical expression of not only our C-field but of it gradient and Hessian 
as well. In doing so, gradient based optimization methods are used quite efficiently since there is no 
need to find such information with finite difference approaches. The multimodality of the space is 
alleviated by initiating parallel optimization at the known local maxima. These maxima are known 
since they correspond to the peaks caused by the actual experiments. 
Merging Functions 
Step 4 of the flowchart (Figure 3) requires that different C-field information gathered from different 
sources or during different iterations to be merged to create a unified C-field. The combination 
function should be such that it does not violate the definition of C-field, i.e., for two given point a, 
b∈[-1 +1] the combination function f (a, b) → [-1  +1]. Two different merging functions that exhibit 
the property mentioned above can be used to merge different C-fields: 
Normalizing merging function: 

ppp babaf /1)(),( +=  
Where, p is odd integer. The restriction of p being an odd number is due to fact that range is [-1 1]. 
Merging a negative number with positive number can be preserved only when p is odd. 
Averaging function: 

(13) 

(14) 
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Where, N is total number of C-fields data. 
For analytical brevity and due to savings in computational efforts normalizing function was selected to 
proceed further. 
Mirroring Function of C-f-x plots 
There are two mirroring function that can be used. 
Absolute Function:                            ):( xfC v  

Square Function:                              ( )2):( xfC v  
Out of these two, square function is preferred over the absolute function due to following reasons: 
Using Absolute function has the pitfall of creating potential cusps in the overall C’-f-x plot. 
The Square function is more amenable for calculating the derivate of analytical expressions. 
Analytical expression Derivation 
For the purpose of analytical expression derivation, the Gaussian form was selected for actual 
experiment/user guess information. The sigmoid function was selected for representing both the 
positive and the negative monotonicity information. The primary reason behind these selections was 
the ease of differentiability of these functions. These functions can be easily differentiated easily to 
provide Gradient and Hessian information which can be used by the gradient based optimization 
technique. In case we want to use algorithms which do not require gradient information any of the 
above mentioned function can be used (Table 1).  
Let us assume the actual experiment or user guess information is modeled through Guassian form in 
Table 1. Then for I variable problem the actual experiment/ user guess information can be modeled by. 
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Let us assume the negative monotonicity information is modeled through sigmoid form in equation 10. 
. Then for I variable problem the negative monotonicity information can be modeled by 
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Let us assume the positive monotonicity information is modeled through sigmoid form in equation 11. 
Then for I variable problem the positive monotonicity information can be modeled by 
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In step 3 (equation 12), the process integrates C-field along the f dimension for each x to produce a 
new value of confidence as a simpler function of just x: 

∫=′
max

min

),()( 0

f

f

dfxfCxC vv .  

Which can be rewritten in terms of df by simple substitution  

∫=′
max

min

),()( 0

f

f
ftol ddxfCfxC vv                                          

This integration when performed on experiment/ user guess information gives 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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Here A is constant with respect to df as it is just a function of the input variable x’s and not f. 
Similarly, this integration when performed on negative monotonicity and positive monotonicity 
equations we have, 
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Let us assume that when we reach step 4, we have L user guesses or actual experiment data, M 
positive monotonicity data, and N negative monotonicity data, and assuming normalized merging 
function being used for merging purpose, then mathematically step 4 can be written as follows: 
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Where, different coefficient al, bm, cm, bn, and cn are found from evaluation of integrations in step 3. 
The final equation at step 5 is just the square (assuming square function being used for mirroring) of 
the previous equation. The equation used during the optimization step can be written as: 
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This equation is in analytical form can still be differentiated to provide slope and Hessian information 
which can be easily used by gradient based search techniques. 

5     PERFORMANCE COMPARISON 
In this section, we investigate the performance of the Q2S2 technique by comparing its performance to 
that of several other classes of sampling plans found in the literature. A sampling technique results in a 
specified number of data points over the design domain where the actual function is evaluated. In the 
present paper, we use three representative sampling techniques for comparison purposes. These 
sampling techniques are Full Factorial, Latin Hybercube Design and Hammersley Sequential 
Sampling [18, 19, 28, 29]. The overall performance of the metamodels is evaluated using six standard 
accuracy measures from literature [11, 32]. These measures are RSME, NRSME, RSQUARE, RAAE, 
RMAE, and MAXAB. Only higher values of R Square are desirable, while smaller values of RSME, 
NRSME, RMAE, RAAE and MAXAB are sought. The effect of sample size on metamodel accuracy 
is also an important criterion for selecting an appropriate sampling approach. 16 sample points for 2 
variable problems and 128 sample points for 7 variable problems were selected for comparison 
purposes.  

Table 2. Test functions and monotonicity information used 
Name Function # of 

variables 
Design Domain 

Test Function1 
(Projectile) 

2v0
2 sin ϕ cosϕ/g 2 0≤v0≤18 

0≤φ≤90 
Monotonicity Information used in Q2S2:      φ[0 30]+          φ[60 90]- 
Test Function 2  7 0≤xi≤90 

Monotonicity Information used in Q2S2:   x3[0 3]+   x3[9 10]+   x5[0 3]+   x5[9 10]+    

 
 

(25) 

(26) 

(23) 

(24) 

(x1-10)2+5(x2-12)2+x3
4+3(x4-

11)2+10x5
6+7x6

2+x7
4-4x6x7-10x6-8x7

{ ( )}
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The error measure RSME is defined as: 
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Where, if
~  is the corresponding predicted value for the observed value if . The Normalized Root Mean 

Squared Error (NRMSE) as follows: 
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Third measure is R square, we calculate the R square as follows: 

( ) ( )
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MSEffffRSQUARE
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where, if  is the mean of the observed values. While MSE (Mean Square Error) represents the 
departure of the metamodel from the real simulation model, the variance captures how irregular the 
problem is. The fourth measure is Relative Average Absolute Error (RAAE): 

(27) 

(29) 

(28) 

Figure 4. Box plots for test function 1 and 2 
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where STD stands for standard deviation. Fifth measure is Relative Maximum Absolute Error 
(RMAE): 

( )
STD

ffffff
RMAE

nn
~,...,~,~max 2211 −−−

=  

A small RMAE is preferred. Sixth measure is Maximum Absolute Bias (MAXAB): 
( )nn ffffffMAXAB ~,...,~,~max 2211 −−−=  

 
Based on the proposed scheme for comparative study, Kriging metamodels are created for the 2 test 
problems [4,  32] ( from literature), using different sampling techniques (see Table 2). Table 2 also 
presents assumed qualitative information about the problems that has been used for Q2S2 method. 
Different techniques are compared based on the results from different metamodel accuracy measures. 
Boxplot graphs are used for comparisons (Figure 4).  
Once the qualitative information about the problems are supplied to Q2S2, the efficiency of the 
sampling increases significantly. For each of the test function shown the Q2S2 produces the best 
sample points. As the number of variables increases Q2S2 is clearly better than LHD and HSS 
sampling techniques in every measure. 

6  CONCLUSIONS AND FUTURE WORK 
In this paper, a new approach that integrates both qualitative and quantitative information into a 
sequential sampling process is presented. Five example problems (four problems existing in current 
literature) were emulated and compared to show the effectiveness of the methodology. To the best of 
our knowledge this is the first attempt to include qualitative knowledge into sequential sampling 
techniques. The Q2S2 allows us to incorporate information of varying degrees of precision including 
detailed experiments, computational simulations, back-of-the-envelop calculations, and human 
intuition. The Q2S2 relying on human qualitative knowledge in conjunction with already existing 
quantitative techniques focuses efforts on important regions of the design space, thus eliminating extra 
sampling points and reducing the number of actual experiments performed.  
The current implementation of Q2S2 does not rely upon existing metamodeling techniques. However, 
it will be beneficial to develop a metamodeling technique that is customized to incorporate this new 
qualitative information. For example, if we know that in certain regions of x there exists piecewise 
monotonicity (linear, quadratic so on) and directly map that information into the metamodel, it will be 
able to model the true nature of the problem more accurately. Current research is aimed at suitably 
modifying existing Kriging metamodels that would serve this purpose. 
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