
ICED’07/473 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07

28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

EXPLORING THE WORTH OF AUTOMATICALLY

GENERATED DESIGN ALTERNATIVES BASED ON

DESIGNER PREFERENCES

Tolga Kurtoglu1, Matthew I. Campbell2
1Graduate Research Assistant, The University of Texas at Austin, Austin, TX, USA, 78712
2Associate Professor, The University of Texas at Austin, Austin, TX, USA, 78712

ABSTRACT
This paper introduces a tool called the DPM (Designer Preference Modeller) that analyzes the

designer’s decision making during concept evaluation, and constructs a designer preference model to

be used for evaluation of automatically generated design alternatives. The method is based on

establishing an interaction between a designer and a computational synthesis tool during conceptual

design. The synthesis software generates design alternatives using a catalogue of design knowledge

formulated as grammar rules which describe how electromechanical designs are built. DPM carefully

selects a set from these alternatives and presents it to the designer for gathering evaluation feedback.

The designer’s evaluations are translated into a preference model that is subsequently used for

automatically searching the solution space for best designs. Application of the method to the design of

a consumer product shows DPM’s range of capabilities.

Keywords: concept generation, design automation, sampling, design selection, grammar rules.

1 INTRODUCTION

Design generation and evaluation are two tightly interconnected processes of conceptual design.

Finding a good solution usually requires an in-depth search of the design space, often necessitating

generation of as many design alternatives as possible. These alternatives are then evaluated against

various design requirements, constraints, and objectives to determine which alternatives are most

useful for advancing towards successful designs and which alternatives have little or no design worth.

Often, these two processes occur over many iterations until a satisfactory design solution is found. A

closer look at the traditional and computer-based conceptual design methods reveals that computers

and humans have distinct characteristics regarding design generation and evaluation [1]. Humans are

very good at comparing and evaluating solutions of various complexities by using sophisticated

reasoning methods, however, it is impractical for them to generate all solution alternatives in a design

space. In contrast, computers are well suited for generating numerous design alternatives, thanks to

their computational speed, but they lack the judgement employed in human decision making to be able

to effectively evaluate them.

In this paper, we introduce a method that brings the designer and the computer together in order to

leverage the strengths of both in generating and evaluating conceptual design alternatives. The

objective of this research is to establish an interaction between a designer and a computational

synthesis tool so that the designer’s decision-making during concept evaluation can be analyzed,

modelled, and later used for faster search of larger design spaces. Accordingly, we have developed a

tool called DPM (Designer Preference Modeller) that facilitates communication between a designer

and a computational synthesis software as shown in Figure 1. The computational synthesis tool

generates design alternatives using a catalogue of design knowledge formulated as grammar rules

which describe how electromechanical designs are built. The designer, on the other hand, gets

involved in the process by evaluating a prescribed set from these design alternatives. In order to get

the synthesis software and the designer to interact, DPM carefully selects this set from the population

of candidate designs and presents them to the designer for gathering evaluation feedback. This

selection is made by following a heuristic that aims to simultaneously reduce the number of required

designer evaluations and capture the variety in the design solution space. The designer’s feedback is

ICED’07/473 2

translated into a preference model that is used to automatically search for best designs. Because the

preference model is built directly from the evaluations of the designer, it reflects the designer’s

reasoning and judgement under specific design objectives and constraints. The main advantage of the

presented method is that it allows the construction of a designer preference model from limited

number of designer evaluations, which then can be used for evaluating large number of design

alternatives.

The research presented here extends our previous work that integrates empirical knowledge

acquisition techniques and graph-grammar-based methods into a framework that facilitates the

automation of conceptual design of electromechanical systems [2]. The basis of this automated design

generation method is that knowledge is extracted from past designs, stored as procedural rules, and

then employed in building solutions to conceptual design problems. In the research presented here, we

use the DPM tool to evaluate these automatically generated design alternatives. The rest of this paper

presents the state of the art in design generation and evaluation (Section 2) and explains the approach

to our automated concept generation. (Section 3) This is followed by a description of the method used

by the DPM (Section 4) and a presentation of its use through an illustrative example (Section 5). The

results of this example are discussed in Section 6, and the paper concludes with a summary of the

method.

2 RELATED WORK

2.1 Generation Methods in Design
Concept generation research has traditionally focused on developing methods that improve the quality

and variety of ideas generated. These methods are often kept simple and efficient such that designers

are not burdened by the details or limitations of the method. The most common concept generation

method is known as brainstorming [3]. The term brainstorming is frequently applied to any idea

generation technique. Brainstorming as a specific method requires a group of individuals to follow the

basic rules of (1) avoiding criticism, (2) welcoming “wild ideas”, (3) building on one another’s ideas,

and (4) preferring more ideas than dwelling on specific ones. Designing by analogy is a well accepted

approach to arrive at novel design solutions. It can be accomplished by first generalizing the design

problem to a set of functions (or a graph of functions as in the function structure representation). Then

one can look for or conceive analogous products or components that perform the same set of functions

[4,5]. Function-means trees and Morphological Analysis [6] are similar methods in which solutions to

individual functional requirements are first sought and then synthesized together. Apart from these

approaches, one widely used method is the Theory of Inventive Problem Solving [7]. This method

provides a tabulated representation of a large number of solution principles that have been extracted

from existing patents. Another approach is “catalog design” where concepts are generated purely

through browsing a catalog of physical elements (components, assemblies, etc.). The results are

evidently limited by the breadth of the catalog; however, the benefit lies in the presentation of design

knowledge that falls outside the designer’s expertise memory [4].

Figure 1. DPM brings the designer and the computational synthesis tool [2]
together so that the designer’s decision-making during concept evaluation can be

modeled.

Evaluate
Designs

Generate
Designs

Computer-to-Human
Generation Feedback
(heuristic sampling)

Human-to-Computer
Evaluation Feedback

(designer preferences)

DPM

Designer Synthesis
Software

Evaluate
Designs

Generate
Designs

Computer-to-Human
Generation Feedback
(heuristic sampling)

Human-to-Computer
Evaluation Feedback

(designer preferences)

DPM

Designer Synthesis
Software

ICED’07/473 3

Various approaches have been attempted to solve conceptual design problems with computational

methods. Examples include the agent-based system presented in the A-Design research [8] and the

catalog design method used in Chakrabarti and Bligh [9]. In both these approaches, input-output

characteristics of component elements are used to synthesize a system level design by integrating

individual component models according to high-level design requirements. Some methods, on the

other hand, rely on representations that manage and manipulate functional descriptions (detailed

description of what a design should do) which are later converted into configurations of components.

As is shown in Pahl and Wallace [10], a representation of functions allows for a richer set (or a form-

independent set) of design principles to be captured. Bracewell and Sharpe [11] used the bond graph

formalism as a foundation in their “Schemebuilder” tool to automatically explore alternative

conceptual schemes and appropriate allocation of function between electromechanical components.

Following a similar function-based approach, Bryant, et al. [12] developed a concept generation

technique that utilizes a repository of existing design knowledge and a set of matrix-manipulation

algorithms. Finally, graph grammar based methods provide a flexible yet structured approach to

engineering design synthesis [13]. The concept of a grammar is that a set of rules is constructed to

capture specific domain knowledge about a certain type of artifact. For example, the rules can

encapsulate a set of valid operations that can occur in the development of a design. Grammar

techniques create a formal language for generating and updating complex designs from a simple initial

specification, or a seed. Our aforementioned approach to computational design generation [2] follows

the grammar formalism, and combines it with function based synthesis methods [14]. Accordingly, it

uses a functional description of a design as a seed and seeks multiple configuration-based solutions

that address the functional requirements.

2.2 Evaluation and Selection Methods in Design
Design evaluation and selection is an important part of the design process and has received great

attention in the design literature. In this section, we provide a review of various decision-based design

techniques [15] and describe traditional and computer-based methods for evaluating a pool of

conceptual solution alternatives and selecting the ones most likely to produce best solutions.

Perhaps, the most common concept evaluation method is the Pugh Concept Selection Charts [16].

Pugh charts use a minimal, qualitative evaluation scale and compare design alternatives in a matrix

format against a number of performance criteria. Pugh Charts provide an effective known tool for

preliminary concept selection when there is minimal information available about the potential design

solutions. Numerical concept scoring/weighting, and decision matrices [17] are similar methods and

only vary in the representation of the nature (qualitative vs. quantitative) and the resolution of their

evaluation scales. The Analytic Hierarchy Process (AHP) [18] is another multi-criteria decision

making technique that uses hierarchically related performance metrics. Similar in spirit to AHP, some

researchers have proposed methods that are inspired from the multi-attribute utility theory [19]. The

general method for these techniques is to assign a value for each performance metric, weight the value

by the importance of the metric, and then aggregate the weighted scores to convert multiple metrics

into a single metric. Application of these methods to design evaluation include formulation of non-

linear utility functions capturing multi-attribute aspects of engineering problems [20], physical

programming [21], and set-based techniques that rely on fuzzy logic to represent imprecision in design

and to conduct design evaluation [22]. Finally, at later stages of design where simulation data is

available, computational analysis tools such as finite-element-methods (FEM), computational fluid

dynamics (CFD), etc. offer accurate and robust evaluation of design alternatives. The integration of

these different analysis tools into a single, robust evaluator which can negotiate multiple attributes of a

design problem remains a challenging topic and is tackled by the field of multi-objective design

optimization.

2.3 Learning-Based Methods in Design
Examples of learning-based computational design tools include the Learn-It [23] and its temporal

extension Learn-It-II [24] systems which observe a designer’s actions and use an instance-based

technique to learn the design strategy employed. Both these systems are intended for parametric

design problems in which the designer iteratively adjusts the parameters of a design to meet specific

design requirements. The learned strategies are later used to automatically generate design solutions

when the design requirements change. Myers et al. [25] have created a system that monitors a

ICED’07/473 4

designer’s interactions with a CAD tool in order to automatically produce design documentation. This

system however, does not perform automated design. Moss et al. [26] integrated a learning mechanism

to the agent-based computational design tool called A-Design [8] in order to enable the system to learn

from its own design generation experiences. However, A-Design does not involve the designer in the

process and its learning scheme is aimed at improving the quality of designs generated by its agents.

3 A GRAPH GRAMMAR FOR AUTOMATED CONCEPT GENERATION

In this section, we explain our approach to automated concept generation and describe how we use a

graph grammar to automatically create new design configurations starting from a set of functional

requirements. A detailed description of this work can be found in Kurtoglu et al. [2].

In developing this method, we took the common view of design which models the design process as a

transformation of function to form. Accordingly, the framework includes representations that capture

the designs at these two levels of abstraction. In this framework, a design’s function is represented

using function structures [10], whereas its form, or configuration, is represented by the use of

configuration flow graphs (CFG’s) [2]. A CFG is a representation that shows the connectivity or

topology of components in a design. In a CFG, nodes of the graph represent a design’s components,

and arcs represent energy, material or signal flows between them. For flow naming, the functional

basis [27] terminology is adopted, while the components of the graph are named using the component

types of a user-defined taxonomy of electromechanical components [28]. These component types can

be thought of as generic abstractions of common component concepts (gear, shaft, wire, dc motor,

battery, etc.) without specific geometric details. The construction of a CFG allows a conceptual design

to be expressed as a configuration in a graphical, topology-based format. (A CFG can also be

interpreted as a conceptual sketch, or schematic.) The creation of a function structure (FM) and the

corresponding configuration flow graph (CFG) captures a direct mapping between the functional and

the structural architecture of a design and constitutes the foundation of the graph grammar that

represents the transition or production rules for creating conceptual configurations from functional

specifications.

In our computational approach to concept generation, we utilize an expanding online repository that

contains knowledge about past designs [29], and we derive design rules from it that capture the

decisions of the original designer in mapping functional specifications to component solutions. In

deriving the rules for the graph grammar, we first build an existing design’s CFG and its function

structure. This is illustrated in Figure 2. The figure shows the function structure and the configuration

flow graph of a past design from the repository. We, then capture the mapping between the two

graphs. Each mapping represents a potential grammar rule that shows how a functional requirement

was transformed into an embodied solution in the actual design. Some of the rules derived from the

analysis of the aforementioned design are also shown at the end of Figure 2. In the first rule, the rule

states that the functional requirements of “convert rotational mechanical energy to translational

mechanical energy” and “transfer translational mechanical energy” are addressed in the design by the

use of the component “link”. Similarly, the last rule shown in Figure 2 indicates that the function

“transfer RME” in the function structure is solved by a “driveshaft” and a “rotational coupler” in the

actual design. Following this procedure, we currently have defined 189 rules derived from 23

products.

The grammar provides a method to generate design configurations through the execution of rules that

create feasible solutions to the design problem. These solutions are encoded as configuration flow

graphs. Our automated synthesis method is to perform a graph transformation of the initial function

structure into one or more configuration flow graph. To perform this graph transformation, the

grammar rules are defined to add components to the CFG that maintain a valid connection of

components as well as meet specific function requirements specified with the function structure. Each

of the rules developed are modelled after basic grammar conventions where rules are compromised of

a left hand side (LHS) and right hand side (RHS) as illustrated in Figure 2. The left-hand side contains

the state that must be recognized in the function structure and the right-hand side depicts how the

design is transformed to a new configuration by the addition of new component(s). The basic

generation process for a set of rules is to first recognize which rules can be applied given the current

state of a design, then choose one of the applicable rules, and finally to apply the rule as a step towards

ICED’07/473 5

constructing an updated configuration, and a new design state. This cycle is repeated until no further

rules can be recognized, indicating that all functional requirements given by the function structure are

addressed and that the configuration synthesis is complete. This process is shown in Figure 3 for the

design of a “bread slicer”. At the beginning, none of the sub-functions of the initial function structure

are mapped to components. As the rules are applied, the CFG is incrementally updated by the addition

of new components. This is illustrated in the figure with four snapshots between start to finish. In

between the snapshots, we have listed the grammar rules that are applied. The result of this process is

the completed design configuration shown at the end of the figure. Each design configuration is

represented by a list called the recipe that captures the sequence of rules that are used in the

construction of that particular configuration. For example, the recipe for the CFG shown at the bottom

of Figure 3 is {39, 31, 13, 11, 28, 25, 38, 43}. Depending on the grammar rules chosen to create the

CFG, the recipes of different solutions may have potentially different lengths to their lists. The use of

the recipes by the DPM is explained in the next section.

4 CONCEPT EVALUATION USING THE DPM

Design evaluation provides a means of determining the ‘value’, ‘usefulness’, or ‘strength’ of a design

solution with respect to a given objective [14]. An evaluation requires a comparison of concept

variants, or a rating of solutions based on an idealized design solution. DPM facilitates the evaluation

of design concepts using an interactive approach that involves the designer in this critical process. In

terms of our specific implementation, the designer’s preferences are captured as preference scores for

rules that are used during the creation of designs. In other words, DPM models how much the designer

prefers a particular rule over others in the grammar, or synonymously how much the designer likes a

particular function-to-component mapping as described by that rule.

DPM carries out the construction of this model by employing a sampling strategy that selects and

presents the designer with a small-set of proposed solutions. It performs this sampling by following an

Figure 2. The function structure and the configuration flow graph of a past design,

along with three grammar rules derived from its analysis.

Battery

Electric
Conductor 1

Electric
Conductor 2

Motor

Wire 1

Wire 2

Drive

shaft

Brush

Rotational
Coupler

Upper
housing

Bottom
Housing

Switch

EE

EE

EE

EE

RME RME

Solid
HE

Human

Human

EE

EE

EE

Link
RME

Solid

Brush
liquid liquid

Seal

TME

Import human

Import Human
Energy

Convert HE to
CS

Guide Human Export Human

Store EE Supply EE Actuate EETransfer EE

Convert RME
to TME

Transfer TME

HE HE

Hand Hand

On/Off

EE EEEE

TME

TME

HandHand

EE

Import Solid Export SolidSolidSolid Solid

Convert EE to
RME

Transfer RME

RME

RME

Separate solidSolid

Import liquid Stop liquidliquid Guide liquid

Export liquid

liquid liquid

liquid

liquid

Transfer EE EE

EE

Transfer EEEE

Function Structure Configuration Flow Graph

Derivation of rules from empirical
analysis of function to form mapping

Convert RME
to TME

Transfer
TME

TMERME TME Link

RME TME

Liquid Stop Liquid SealLiquid

Transfer RMERME RME
Drive
Shaft

Rotational
RME RME

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure

RME

RHS: Configuration Flow Graph

Coupler

Convert RME
to TME

Transfer
TME

TMERME TME Link

RME TME

Liquid Stop Liquid SealLiquid

Transfer RMERME RME
Drive
Shaft

Rotational
RME RME

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure

RME

RHS: Configuration Flow Graph

Coupler

Battery

Electric
Conductor 1

Electric
Conductor 2

Motor

Wire 1

Wire 2

Drive

shaft

Brush

Rotational
Coupler

Upper
housing

Bottom
Housing

Switch

EE

EE

EE

EE

RME RME

Solid
HE

Human

Human

EE

EE

EE

Link
RME

Solid

Brush
liquid liquid

Seal

TME

Import human

Import Human
Energy

Convert HE to
CS

Guide Human Export Human

Store EE Supply EE Actuate EETransfer EE

Convert RME
to TME

Transfer TME

HE HE

Hand Hand

On/Off

EE EEEE

TME

TME

HandHand

EE

Import Solid Export SolidSolidSolid Solid

Convert EE to
RME

Transfer RME

RME

RME

Separate solidSolid

Import liquid Stop liquidliquid Guide liquid

Export liquid

liquid liquid

liquid

liquid

Transfer EE EE

EE

Transfer EEEE

Function Structure Configuration Flow Graph

Derivation of rules from empirical
analysis of function to form mapping

Convert RME
to TME

Transfer
TME

TMERME TME Link

RME TME

Liquid Stop Liquid SealLiquid

Transfer RMERME RME
Drive
Shaft

Rotational
RME RME

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure

RME

RHS: Configuration Flow Graph

Coupler

Convert RME
to TME

Transfer
TME

TMERME TME Link

RME TME

Liquid Stop Liquid SealLiquid

Transfer RMERME RME
Drive
Shaft

Rotational
RME RME

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure RHS: Configuration Flow Graph

LHS: Function Structure

RME

RHS: Configuration Flow Graph

Coupler

ICED’07/473 6

algorithm that aims to simultaneously reduce the number of required designer evaluations and capture

the variety in the design solution space. The goal of the sampling is to find the minimum set of

solutions, recipes of which represent the most diverse collection of the rules (i.e. solution principles, or

components). After completing the sampling, DPM presents the selected solutions to the designer for

evaluation. The designer is asked to make pairwise comparisons between the selected designs. These

solutions are then rated by the designer based on specific design objectives and constraints. After the

solutions are scored, the solution ratings are projected on to the rules. Using this projection, a

“preference score” is assigned to each rule. The collection of these preference scores constructs a

model of designer preferences. Finally, DPM uses the model of designer preferences to guide the

search for finding the “best” configurations in the population of generated solutions. To achieve that,

preference scores of rules are propagated over each recipe to compute the overall worth of each design

in the population. Before we present the details of the process, we provide some definitions that are

used in the formulation of the method.

Import Solid Secure Solid Separate Solid Export Solid
Food

Actuate EE
Convert EE

to RME

EE
Import EE

EE

Import

Human

Export

Human

Hand Hand

Transfer EE
EE EE

RME

Transfer RME

RME

Change RME

Guide

Human

Control

Signal

RME

Food Food
Sliced

Food

Sliced

Food

Hand Hand

Import

Human Energy

Convert HE to

Control Signal

HE
HE

Import Solid Secure Solid Separate Solid Export Solid
Food

Actuate EE
Convert EE

to RME

EE
Import EE

EE

Import

Human

Export

Human

Hand Hand

Transfer EE
EE EE

RME

Transfer RME

RME

Change RME

Guide

Human

Control

Signal

RME

Food Food
Sliced

Food

Sliced

Food

Hand Hand

Import

Human Energy

Convert HE to

Control Signal

HE
HE

EE EE

Hand

EE EE

RME

RME

RME

Food
Sliced

Food

Hand

HE

Cord Wire Switch Electric Motor

Worm Gear

Link

Blade

Handle

EE EE

Hand

EE EE

RME

RME

RME

Food
Sliced

Food

Hand

HE

Cord Wire Switch Electric Motor

Worm Gear

Link

Blade

Handle

The initial function structure

of the product to be designed.

Partially completed design after

the application of rules 39,31,13.

Applying

 grammar rules

39, 31, and 13.

Partially completed design after the

application of rules 39,31,13,11,28,25.

Applying

 grammar rules

11, 28, and 25.

A fully completed design concept

in the form a CFG.

Applying

 grammar rules

38, and 43.

Figure 3. A pictorial illustration of building a CFG from a function structure using the grammar rules.

Import Solid Secure Solid Separate Solid Export Solid
Food

Convert EE

to RME

Import

Human

Export

Human

Hand Hand

EE

RME

Transfer RME

RME

Change RME

Guide

Human

RME

Food Food
Sliced

Food

Sliced

Food

Hand Hand

EE EEEE

HE

Cord Wire Switch

Import Solid Secure Solid Separate Solid Export Solid
Food

Convert EE

to RME

Import

Human

Export

Human

Hand Hand

EE

RME

Transfer RME

RME

Change RME

Guide

Human

RME

Food Food
Sliced

Food

Sliced

Food

Hand Hand

EE EEEE

HE

Cord Wire Switch

Import Solid Secure Solid Separate Solid Export Solid
Food

Import

Human

Export

Human

Hand Hand

EE

Guide

Human

RME

Food Food
Sliced

Food

Sliced

Food

Hand Hand

EE EEEE

HE

Cord Wire Switch
EE

RME

RME

Electric Motor

Worm Gear

Link

Import Solid Secure Solid Separate Solid Export Solid
Food

Import

Human

Export

Human

Hand Hand

EE

Guide

Human

RME

Food Food
Sliced

Food

Sliced

Food

Hand Hand

EE EEEE

HE

Cord Wire Switch
EE

RME

RME

Electric Motor

Worm Gear

Link

ICED’07/473 7

CPc i ∈ is a candidate:

 An automatically generated configuration (CFG) as a solution to the design problem.

),...,...,,(21 ni ccccCP = is the candidate pool:

 The collection of all candidates where n is the number of candidates generated.

),...,,(pji cccDFS = is the designer feedback set: where ⊆DFS CP

 The set of candidates selected to be presented to the designer for evaluation feedback.

jr is a rule:

 A grammar rule (function-to-form mapping) used in the generation of a candidate.

ii RCPc !: ∃∈∀ where),...,,(slki rrrR = is the recipe of candidate
ic :

 The collection of rules used in the generation of candidate
ic .

nRRRRRP ∪∪∪=321
 is the recipe pool:

 The union of recipes of all candidates where n is the number of candidates generated.

],...,,[pji sssCDFS = is the cumulative designer feedback score vector: where ℜ∈s

 The vector of cumulative scores of candidates in DFS after designer evaluations.

],...,,[21 rprr sssRPS = is the rule preference score vector: where ℜ∈
jrs

 The vector of preference scores of rules in RP.

],...,,[pji cscscsCS = is the candidate score vector: where ℜ∈cs

 The vector of candidate scores of candidates in CP.

4.1 Sampling Strategy
The goal of the sampling is to select a set of candidates from the candidate pool. This set called the

DFS will be presented to the designer for obtaining evaluation feedback. As one might expect, there

may be countless possibilities for choosing the DFS. Here, DPM employs a heuristic sampling

strategy that strives to strike a balance between two objectives. First, it aims to choose candidates that

will keep the number of designer evaluations to a minimum. It accomplishes this by taking advantage

of the commonality of candidates in the candidate pool. Accordingly, DPM selects candidates with a

high “commonality measure”. Simultaneously, it targets candidates that will best represent the variety

in the solution space. To achieve the latter, DPM keeps track of a “variety measure” for the rules that

constitute the recipes of the candidates in the DFS and only allows addition of the candidates that

increase the variety of rules in the DFS. By monitoring these two measures, DPM continues to select

candidates from the candidate pool until all rules in the recipe pool are represented in the DFS.

To better understand the sampling approach, consider the example shown in Figure 4.a. This is a real

design example illustrating the synthesis of a switch assembly in a soda mixer. The design tree shows

the generation of the candidates. The arc labels in the tree correspond to the grammar rule that is

applied during the transition between any two nodes of the tree. The basic steps in applying the

heuristic sampling strategy are as follows:

1. Compute the candidate pool (CP), and the recipe pool (RP).

As shown in Figure 4.a., the final design configurations, i.e. candidates, are represented at the leaves

of the tree and numbered as C1-C9. The recipes of the nine candidates and the recipe pool are

summarized in Figure 4.b.

2. Create a histogram of the frequency of rules in RP.

Figure 4.c shows the “frequency of appearance” of the rules at each iteration. Rule#3 is used in the

construction of all nine designs and has the highest frequency with 9 in the first iteration.

3. Calculate the commonality measure of each candidate by summing frequencies of rules in the

recipe of the candidate.

Figure 4.d shows the “commonality measure” of the candidates at each iteration. In the first iteration,

C4-C9 has the highest commonality measure with 21.

4. Select the candidate with the highest commonality measure and add it to the DFS,

Among the four candidates with the highest commonality measure, C9 is (randomly) selected and

added to the DFS.

ICED’07/473 8

5. Remove the rules of the selected recipe from the recipe pool.

After the selection of C9 to the DFS, the rules in the recipe of this candidate (3, 10, 31, 35) are

removed from the recipe pool. As can be seen in Figure 4.c., the frequencies of the rules 3, 10, 31, and

35 following the first iteration are zero. This ensures that there will be minimum overlap between C9’s

recipe and the recipes of future selections. This modification is a necessary step for minimizing the

number of candidates included in the DFS at the end of the sampling.

6. Repeat steps 1-5 until no rules remain in the recipe pool.

Following a similar scheme, C6 is selected in the second (with a commonality measure of 6), and C1

is selected in the third (with a commonality measure of 6) iteration.

The result of the sampling process is the DFS containing C9, C6, and C1. This DFS satisfies the two

objectives of the heuristic sampling of finding a set with minimum number of candidates, recipes of

which represents the most diverse collection of the rules. Accordingly, the generated DFS captures all

the rules in the recipe pool by the selection of only three candidates.

Seed of the design generation tree

31

3
13 10

13 10 22 31 22 29

29 35 29 35 31 35

C1 C2 C3

C4 C5 C6 C7 C8 C9

Candidate

C1 (1,3,13)

C2 (3,13,22)

C3 (3,13,31)

C4 (1,3,10,29)

C5 (1,3,10,35)

C6 (3,10,22,29)

C7 (3,10,22,35)

C8 (3,10,29,31)

C9 (3,10,31,35)

Recipe

Recipe Pool (1,3,10,13,22,29,31,35)

Seed of the design generation tree

31

3
13 10

13 10 22 31 22 29

29 35 29 35 31 35

C1 C2 C3

C4 C5 C6 C7 C8 C9

Seed of the design generation tree

31

3
13 10

13 10 22 31 22 29

29 35 29 35 31 35

C1 C2 C3

C4 C5 C6 C7 C8 C9

Candidate

C1 (1,3,13)

C2 (3,13,22)

C3 (3,13,31)

C4 (1,3,10,29)

C5 (1,3,10,35)

C6 (3,10,22,29)

C7 (3,10,22,35)

C8 (3,10,29,31)

C9 (3,10,31,35)

Recipe

Recipe Pool (1,3,10,13,22,29,31,35)

(a) (b)

Frequency of Appearance of Each Rule in the Recipe Pool

3

9

6

3 3 3 3 33
0 0

3 3 3
0 0

3
0 0

3
0 0 0 00 0 0 0 0 0 0 0

1 3 10 13 22 29 31 35

Rule Number

F
re

q
u

e
n

c
y

 First Iteration

Second Iteration

Third Iteration

Sampling Finished

(c)

(d)

 Figure 4. An example of the application of the sampling strategy.

Commonality Measure of Each Candidate

15 15 15

21 21 21 21 21 21

6 6

3

6 6

9

3 3 0

6

3 3 3 3 0 0 0 00 0 0 0 0 0 0 0 0

C1 C2 C3 C4 C5 C6 C7 C8 C9

Candidate

C
o

m
m

o
n

a
li
ty

 M
e
a
s
u

re

First Iteration

Second Iteration

Third Iteration

Sampling Finished

ICED’07/473 9

4.2 Designer Feedback
The sampling is followed by gathering the designer’s feedback. To achieve this, DPM presents the

candidates in the DFS to the designer for evaluation. The designer is asked to make pairwise

comparisons between the selected candidates. The evaluation scale utilized during this concept scoring

is similar to the one used in decision matrices [17], and contains the ratings {-3, -2, -1, 0, 1, 2, 3}.

When element i compared to j is assigned one of the aforementioned ratings, then element j compared

to i is assigned its negative. The GUI for this step is shown in Figure 5. The overall worth of each

candidate as a result of this evaluation, called the cumulative designer feedback score (CDFS), is

calculated by simply adding the values in the cells of the column that corresponds to that particular

candidate.

Considering the values in Figure 5, the cumulative designer feedback score vector (for the candidates

C1, C6, and C9) becomes [4, -1, -3].

4.3 Construction of the Designer Preference Model
After the designer completes the pairwise comparisons between the candidates, the candidate ratings

are projected onto the rules in the recipe pool to compute a “preference score” for each rule. The

collection of these preference scores constructs a model of designer preferences as represented by the

rule preference score (RPS) vector. The basic steps in the computation of the RPS vector are as

follows.

1. Calculate the cumulative designer feedback score s for each candidate in the DFS by summing

each column in the comparison matrix,

2. For each rule in the recipe of a candidate, add the cumulative designer feedback score of that

candidate to the rule score,

3. Repeat step 8 for each candidate to calculate the final rule preference score rs ,

4. Aggregate the rule preference scores to construct the RPS vector.

Considering the same example shown in Figure 4 and taking the cumulative designer feedback scores

calculated in the previous section, the value of 4 is added to the rule score of the rules in the recipe of

C1 (rules 1,3, and 13). Similarly, the value of -1 is added to rule score of the rules 3,10,22,and 29 and

the value of -3 is added to the rule score of the rules 3,10,31,and 35. Aggregating these values defines

the RPS vector, which then becomes: RPS=[4, 0, -4, 4, -1, -1, -3, -3] corresponding to the “preference

scores” for rules 1, 3, 10, 13, 22, 29, 31, 35. The RPS vector represents a model of the designer’s

preference for each rule in the recipe pool. In this particular example, the designer prefers rule#1 and

rule#13 the most, and rule#10 the least.

 Figure 5. The GUI of the pairwise comparison matrix used during designer evaluations.

ICED’07/473 10

4.4 Automated Concept Scoring Using the Designer Preference Model
DPM uses the model of the designer preferences to automatically search for the best designs in the

population of generated candidates. This is performed by propagating the preference scores of rules

over each candidate recipe in the population. Specifically, by summing over the individual rule

preference scores in a recipe, the worth of each candidate can be computed. Finally, the aggregation of

these scores constitutes the candidate score (CS) vector. After all candidates are evaluated, they can be

ranked or sorted for identifying the best or the worst designs in the population.

Returning to the switch assembly design, and using the RPS vector shown before, all of the nine

candidates in the population can be evaluated. The CS vector for this example then becomes: CS=[8,

3, 1, -1, -3, -6, -8, -8, -10] corresponding to the “candidate scores” of candidates C1-C9. The best

three designs in this population are C1, C2, and C3. Note that in evaluating the candidates, DPM

preserves the designer’s original ranking among the candidates in the DFS, i.e. the relation C1 > C6 >

C9 holds true after the DPM evaluates the candidates using the designer preference model.

5 ILLUSTRATIVE EXAMPLE: DESIGN OF A BREAD SLICER

We have tested DPM’s performance on three electromechanical design problems: design of a bread

slicer, design of a wall climber toy product, and the design of a bottle capping machine. In this section,

we consider the first of these problems in detail to demonstrate DPM’s capabilities.

The design process starts with the specification of the function structure of the system to be designed.

This is accomplished through a graphical user interface that allows the designer to quickly draft a

function structure. The function structure that is used for the example problem is the same one shown

at the top of Figure 3, and includes 15 sub-functions, and 19 flows. After the concept generator

initiates the design generation process, the sub-functions are replaced with components through

incremental application of the grammar rules until the design space is exhaustively searched for all

possible design configurations. This generation process creates 594 valid design configurations.

After the candidate pool is generated, DPM employs its sampling algorithm and selects 12 candidates

from the candidate pool. These candidates are added to the DFS and are presented to the designer for

evaluation feedback. The designer evaluates the 12 candidates based on the criteria of quality of

concepts. Finally, the rule preference score (RPS) and the candidate score (CS) vectors are computed

by the DPM. The result of this process is summarized in Table 1, and the best and the worst candidates

determined by the evaluation are shown in Figure 6.

Looking at these two candidates, one can see that the design on the left has a number of superior

features when compared to the design on the right. First, it includes a knob component to activate the

switch which can be used for setting the speed of the slicer. Second, the power transmission from the

electric motor to the blade is much better developed in this design. It includes a gear box for speed

reduction, and a rotational coupler that secures a blade to the output shaft of the gear box. Moreover,

in this design, the blade is supported by an outer housing that helps with importing and securing of the

bread into the device. This was a feature that the designer particularly favoured while providing

evaluation feedback for reasons regarding to the customer needs of “safety” and “ability to

accommodate different slice sizes”. On the contrary, in the other design, the importing and securing of

the bread are addressed by the blade itself, similar to how an electric kitchen knife functions.

As this case illustrates, DPM is capable of generalizing a small number of designer evaluations into a

preference model, which it later uses to evaluate a large range of automatically generated design

alternatives.

6 CONCLUSIONS

We have described a tool called the DPM (Designer Preference Modeller) that analyzes the designer’s

decision making during concept evaluation, and constructs a designer preference model to be used for

evaluation of automatically generated design alternatives. The method is based on establishing an

interaction between a designer and a computational synthesis tool during conceptual design.

The main novelty of the DPM approach is the combination of computing and human reasoning.

Computational design tools can generate numerous solutions to a design problem by conducting an in-

depth search of the design space. But, they typically require very detailed specifications of part shapes

and dimensions in order to evaluate certain performance parameters. At the conceptual stage of design,

however, such detailed models of system components and design parameters are simply not available

and the evaluation of conceptual design alternatives remains a stumbling block in computational

ICED’07/473 11

synthesis. Humans, on the other hand, can employ sophisticated reasoning techniques in making

decisions for ruling out or approving design alternatives, however they are bounded by the limits of

their own rationality [1]. This makes it impractical for them to process and evaluate more than a

handful of alternatives. The heuristic followed by the DPM takes advantage of the commonality of

solutions in a design space and ensures that the required number of designer evaluations is kept to a

minimum, consistent with the principle of bounded rationality. By establishing a proper level of

interaction between the designer and the synthesis software, DPM combines the strengths of

computational search with that of human decision-making. Moreover, since the preference model is

directly derived from the evaluations of the designer, it reflects the designer’s reasoning and

judgement under specific design objectives and constraints which is easily generalized and used for

faster search towards the best designs in large design spaces.

REFERENCES

[1] Simon, H. A., 1969, The Sciences of the Artificial, The MIT Press, Cambridge, MA.

[2] Kurtoglu, T., Campbell, M.I.,Gonzales, J., Bryant, C.R., McAdams, D.A., Stone, R.B., ,2005,

“Capturing Empirically Derived Design Knowledge for Creating Conceptual Design

Configurations,” Proceedings of DETC2005, Sept. 24-28, Long Beach, California.

[3] Osborn, A., 1957, Applied Imagination. Scribner, New York, NY

[4] McAdams, D. and Wood, K., 2000, “Quantitative Measures for Design By Analogy,”

DETC2000/DTM-14562, Proceedings of DETC2000, Balitmore, MD.

[5] Linsey, J.S., Green, M.G., Murphy, J.T., Wood, K.L., Markman, A.B.,2005, “Collabrating to

Success: An Experimental Study of Group Idea Generation Techniques”DETC2005, Long

Beach, CA.

[6] Zwicky, P., 1969, Discovery, Invention, Research through Morphological Analysis, McMillan,

New York.

[7] Altshuller, G., 1984, Creativity As An Exact Science, Gorden and Breach, Luxembourg.

Figure 6. Summary of DPM’s evaluation results and the best (left) and the

worst (left) candidates in the population.

Design Problem

Example Problem Bread Slicer

Evaluation Criteria Quality of Concepts

Design Generation and Sampling

of candidates generated 594

of rules in the recipe pool 30

of candidates in DFS 12

Design Evaluation

Recipe Pool

1,7,8,10,11,12,13,15,17,20,21,22,23,24,25,26,

28,29,30,31,33,34,35,36,38,39,40,41,42,43

RPS

-3,3,14,3,0,6,-3,7,-21,-7,15,3,24,-9,-14,7,

-3,3,-9,0,2,-9,0,3,0,0,9,9,9,-9 Recipe Score

Best Candidate C155 10,11,15,22,23,29,38,39,40,41,42 67

Worst Candidate C498 1,8,11,13,17,38,39,43 -50

ICED’07/473 12

[8] Campbell, M., J. Cagan and K. Kotovsky, 2000, “Agent-based Synthesis of Electro-Mechanical

Design Configurations,” Journal of Mechanical Design, Vol. 122, No. 1, pp. 61-69.

[9] Chakrabarti, A., Bligh, T. P., 1996, "An Approach to Functional Synthesis of Mechanical

Design concepts: Theory, Applications, and Merging Research Issues," AIEDAM, Vol.10, 313-

331.

[10] Pahl, G. and Wallace, K., 2002, Using the Concept of Functions to Help Synthesize Solutions,

Springer, London.

[11] Bracewell, R.H.,and Sharpe, J.E.E., "Functional Descriptions Used in Computer Support for

Qualitative Scheme Generation—Schemebuilder," AIEDAM, Vol. 10, No. 4, 1996, pg. 333-

346.

[12] Bryant,C, Stone, R., McAdams, D., Kurtoglu, T., Campbell, M., 2005, “A Computational

Technique for Concept Generation”, ASME IDETC’05. Long Beach, CA.

[13] Cagan, J., 2001, “Engineering Shape Grammars,” Formal Engineering Design Synthesis,

Antonsson, E. K., and J. Cagan, eds., Cambridge University Press.

[14] Pahl, G., and Beitz, W., 1996, Engineering Design—A Systematic Approach, 2nd edition,

Springer, London.

[15] Hazelrigg, G. (1996). Systems Engineering: An Approach to Information-Based Design.

Prentice Hall, Upper Saddle River, NJ.

[16] Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering.

Addison-Wesley Publishing Company, Workingham, UK.

[17] Ullman.D. 1995.The Mechanical Design Process. NewYork:McGraw-Hill.

[18] Saaty, T. (1980). The Analytic Hierarchy Process, McGraw-Hill.

[19] Keeney, R. L., and Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences and Value

Tradeoffs, John Wiley & Sons, New York.

[20] Thurston, D. L., 1991, “A Formal Method for Subjective Design Evaluation with Multiple

Attributes” Research in Engineering Design, Vol. 3, pp. 105-122.

[21] Messac, A. (1996). Physical programming: effective optimization for computational design.

AIAA Journal, Vol. 34(1), 149–158.

[22] Wood K.L, Antonsson, E.K., Beck, J.L. 1990, “Representing Imprecision in Engineering

Design: Comparing Fuzzy and Probability Calculus”, Research in Engineering Design, 1990.

[23] Stahovich, T.F., 2000, “LearnIT: an instance based approach to learning and using design

strategies,” ASME Journal of Mechanical Design, Vol 122, No.3, pp.249-256.

[24] Rawson, K., Stahovich, T.F., 2006, “A Method for Inferring Design Rules with Explicit Bounds

of Applicability” ASME IDETC’06. Philadelphia, PA.

[25] Myers,K.L., Zumel, N.B., Gracia, p., 1999, “Automated Rationale Capture for the Detailed

Design Process,”, In: 11’th Conference on Innovative Applications of AI.

[26] Moss J., Cagan, J., Kotovsky k., 2004“Learning from Experience in an Agent Based Design

System”, Research in Engineering Design, Vol 15, pp:77-92.

[27] Stone R. and Wood K., 2000, “Development of a Functional Basis for Design,” Journal

Mechanical Design, Vol. 122 pp.359-370.

[28] Kurtoglu, T., Campbell, M., Bryant,C, Stone, R., McAdams, D., 2005, “Deriving a Component

Basis for Computational Functional Synthesis” Proceedings of ICED’05, Melbourne, Australia.

[29] Bohm, M. and Stone, R., 2004, Product Design Support: Exploring a Design Repository

System, Proceedings of IMECE’04, IMECE2004-61746, Anaheim, CA.

Contact: Tolga Kurtoglu

Department of Mechanical Engineering – University of Texas at Austin

1 University Station, C2200, Austin, TX 78712-0292, USA

Phone: +1-512-471 7347

Fax: +1-512-471 7682

e-mail: tolga@mail.utexas.edu

