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ABSTRACT 
This paper introduces a tool called the DPM (Designer Preference Modeller) that analyzes the 

designer’s decision making during concept evaluation, and constructs a designer preference model to 

be used for evaluation of automatically generated design alternatives. The method is based on 

establishing an interaction between a designer and a computational synthesis tool during conceptual 

design. The synthesis software generates design alternatives using a catalogue of design knowledge 

formulated as grammar rules which describe how electromechanical designs are built. DPM carefully 

selects a set from these alternatives and presents it to the designer for gathering evaluation feedback. 

The designer’s evaluations are translated into a preference model that is subsequently used for 

automatically searching the solution space for best designs. Application of the method to the design of 

a consumer product shows DPM’s range of capabilities. 

Keywords: concept generation, design automation, sampling, design selection, grammar rules. 

1 INTRODUCTION 

Design generation and evaluation are two tightly interconnected processes of conceptual design. 

Finding a good solution usually requires an in-depth search of the design space, often necessitating 

generation of as many design alternatives as possible. These alternatives are then evaluated against 

various design requirements, constraints, and objectives to determine which alternatives are most 

useful for advancing towards successful designs and which alternatives have little or no design worth. 

Often, these two processes occur over many iterations until a satisfactory design solution is found. A 

closer look at the traditional and computer-based conceptual design methods reveals that computers 

and humans have distinct characteristics regarding design generation and evaluation [1]. Humans are 

very good at comparing and evaluating solutions of various complexities by using sophisticated 

reasoning methods, however, it is impractical for them to generate all solution alternatives in a design 

space. In contrast, computers are well suited for generating numerous design alternatives, thanks to 

their computational speed, but they lack the judgement employed in human decision making to be able 

to effectively evaluate them.  

In this paper, we introduce a method that brings the designer and the computer together in order to 

leverage the strengths of both in generating and evaluating conceptual design alternatives. The 

objective of this research is to establish an interaction between a designer and a computational 

synthesis tool so that the designer’s decision-making during concept evaluation can be analyzed, 

modelled, and later used for faster search of larger design spaces. Accordingly, we have developed a 

tool called DPM (Designer Preference Modeller) that facilitates communication between a designer 

and a computational synthesis software as shown in Figure 1. The computational synthesis tool 

generates design alternatives using a catalogue of design knowledge formulated as grammar rules 

which describe how electromechanical designs are built. The designer, on the other hand, gets 

involved in the process by evaluating a prescribed set from these design alternatives. In order to get 

the synthesis software and the designer to interact, DPM carefully selects this set from the population 

of candidate designs and presents them to the designer for gathering evaluation feedback. This 

selection is made by following a heuristic that aims to simultaneously reduce the number of required 

designer evaluations and capture the variety in the design solution space. The designer’s feedback is 
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translated into a preference model that is used to automatically search for best designs. Because the 

preference model is built directly from the evaluations of the designer, it reflects the designer’s 

reasoning and judgement under specific design objectives and constraints. The main advantage of the 

presented method is that it allows the construction of a designer preference model from limited 

number of designer evaluations, which then can be used for evaluating large number of design 

alternatives.  

The research presented here extends our previous work that integrates empirical knowledge 

acquisition techniques and graph-grammar-based methods into a framework that facilitates the 

automation of conceptual design of electromechanical systems [2]. The basis of this automated design 

generation method is that knowledge is extracted from past designs, stored as procedural rules, and 

then employed in building solutions to conceptual design problems. In the research presented here, we 

use the DPM tool to evaluate these automatically generated design alternatives. The rest of this paper 

presents the state of the art in design generation and evaluation (Section 2) and explains the approach 

to our automated concept generation. (Section 3) This is followed by a description of the method used 

by the DPM (Section 4) and a presentation of its use through an illustrative example (Section 5).  The 

results of this example are discussed in Section 6, and the paper concludes with a summary of the 

method. 

2 RELATED WORK 

2.1 Generation Methods in Design 
Concept generation research has traditionally focused on developing methods that improve the quality 

and variety of ideas generated. These methods are often kept simple and efficient such that designers 

are not burdened by the details or limitations of the method. The most common concept generation 

method is known as brainstorming [3]. The term brainstorming is frequently applied to any idea 

generation technique. Brainstorming as a specific method requires a group of individuals to follow the 

basic rules of (1) avoiding criticism, (2) welcoming “wild ideas”, (3) building on one another’s ideas, 

and (4) preferring more ideas than dwelling on specific ones. Designing by analogy is a well accepted 

approach to arrive at novel design solutions. It can be accomplished by first generalizing the design 

problem to a set of functions (or a graph of functions as in the function structure representation). Then 

one can look for or conceive analogous products or components that perform the same set of functions 

[4,5]. Function-means trees and Morphological Analysis [6] are similar methods in which solutions to 

individual functional requirements are first sought and then synthesized together. Apart from these 

approaches, one widely used method is the Theory of Inventive Problem Solving [7]. This method 

provides a tabulated representation of a large number of solution principles that have been extracted 

from existing patents. Another approach is “catalog design” where concepts are generated purely 

through browsing a catalog of physical elements (components, assemblies, etc.). The results are 

evidently limited by the breadth of the catalog; however, the benefit lies in the presentation of design 

knowledge that falls outside the designer’s expertise memory [4].  

Figure 1. DPM brings the designer and the computational synthesis tool [2] 
together so that the designer’s decision-making during concept evaluation can be 

modeled. 
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Various approaches have been attempted to solve conceptual design problems with computational 

methods. Examples include the agent-based system presented in the A-Design research [8] and the 

catalog design method used in Chakrabarti and Bligh [9]. In both these approaches, input-output 

characteristics of component elements are used to synthesize a system level design by integrating 

individual component models according to high-level design requirements. Some methods, on the 

other hand, rely on representations that manage and manipulate functional descriptions (detailed 

description of what a design should do) which are later converted into configurations of components. 

As is shown in Pahl and Wallace [10], a representation of functions allows for a richer set (or a form-

independent set) of design principles to be captured. Bracewell and Sharpe [11] used the bond graph 

formalism as a foundation in their “Schemebuilder” tool to automatically explore alternative 

conceptual schemes and appropriate allocation of function between electromechanical components. 

Following a similar function-based approach, Bryant, et al. [12] developed a concept generation 

technique that utilizes a repository of existing design knowledge and a set of matrix-manipulation 

algorithms. Finally, graph grammar based methods provide a flexible yet structured approach to 

engineering design synthesis [13]. The concept of a grammar is that a set of rules is constructed to 

capture specific domain knowledge about a certain type of artifact. For example, the rules can 

encapsulate a set of valid operations that can occur in the development of a design. Grammar 

techniques create a formal language for generating and updating complex designs from a simple initial 

specification, or a seed. Our aforementioned approach to computational design generation [2] follows 

the grammar formalism, and combines it with function based synthesis methods [14]. Accordingly, it 

uses a functional description of a design as a seed and seeks multiple configuration-based solutions 

that address the functional requirements.  

2.2 Evaluation and Selection Methods in Design 
Design evaluation and selection is an important part of the design process and has received great 

attention in the design literature. In this section, we provide a review of various decision-based design 

techniques [15] and describe traditional and computer-based methods for evaluating a pool of 

conceptual solution alternatives and selecting the ones most likely to produce best solutions.  

Perhaps, the most common concept evaluation method is the Pugh Concept Selection Charts [16]. 

Pugh charts use a minimal, qualitative evaluation scale and compare design alternatives in a matrix 

format against a number of performance criteria. Pugh Charts provide an effective known tool for 

preliminary concept selection when there is minimal information available about the potential design 

solutions. Numerical concept scoring/weighting, and decision matrices [17] are similar methods and 

only vary in the representation of the nature (qualitative vs. quantitative) and the resolution of their 

evaluation scales. The Analytic Hierarchy Process (AHP) [18] is another multi-criteria decision 

making technique that uses hierarchically related performance metrics. Similar in spirit to AHP, some 

researchers have proposed methods that are inspired from the multi-attribute utility theory [19]. The 

general method for these techniques is to assign a value for each performance metric, weight the value 

by the importance of the metric, and then aggregate the weighted scores to convert multiple metrics 

into a single metric. Application of these methods to design evaluation include formulation of non-

linear utility functions capturing multi-attribute aspects of engineering problems [20], physical 

programming [21], and set-based techniques that rely on fuzzy logic to represent imprecision in design 

and to conduct design evaluation [22]. Finally, at later stages of design where simulation data is 

available, computational analysis tools such as finite-element-methods (FEM), computational fluid 

dynamics (CFD), etc. offer accurate and robust evaluation of design alternatives. The integration of 

these different analysis tools into a single, robust evaluator which can negotiate multiple attributes of a 

design problem remains a challenging topic and is tackled by the field of multi-objective design 

optimization.  

2.3 Learning-Based Methods in Design 
Examples of learning-based computational design tools include the Learn-It [23] and its temporal 

extension Learn-It-II [24] systems which observe a designer’s actions and use an instance-based 

technique to learn the design strategy employed. Both these systems are intended for parametric 

design problems in which the designer iteratively adjusts the parameters of a design to meet specific 

design requirements. The learned strategies are later used to automatically generate design solutions 

when the design requirements change. Myers et al. [25] have created a system that monitors a 
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designer’s interactions with a CAD tool in order to automatically produce design documentation. This 

system however, does not perform automated design. Moss et al. [26] integrated a learning mechanism 

to the agent-based computational design tool called A-Design [8] in order to enable the system to learn 

from its own design generation experiences. However, A-Design does not involve the designer in the 

process and its learning scheme is aimed at improving the quality of designs generated by its agents.  

3 A GRAPH GRAMMAR FOR AUTOMATED CONCEPT GENERATION 

In this section, we explain our approach to automated concept generation and describe how we use a 

graph grammar to automatically create new design configurations starting from a set of functional 

requirements. A detailed description of this work can be found in Kurtoglu et al. [2].  

In developing this method, we took the common view of design which models the design process as a 

transformation of function to form. Accordingly, the framework includes representations that capture 

the designs at these two levels of abstraction. In this framework, a design’s function is represented 

using function structures [10], whereas its form, or configuration, is represented by the use of 

configuration flow graphs (CFG’s) [2]. A CFG is a representation that shows the connectivity or 

topology of components in a design. In a CFG, nodes of the graph represent a design’s components, 

and arcs represent energy, material or signal flows between them. For flow naming, the functional 

basis [27] terminology is adopted, while the components of the graph are named using the component 

types of a user-defined taxonomy of electromechanical components [28]. These component types can 

be thought of as generic abstractions of common component concepts (gear, shaft, wire, dc motor, 

battery, etc.) without specific geometric details. The construction of a CFG allows a conceptual design 

to be expressed as a configuration in a graphical, topology-based format. (A CFG can also be 

interpreted as a conceptual sketch, or schematic.) The creation of a function structure (FM) and the 

corresponding configuration flow graph (CFG) captures a direct mapping between the functional and 

the structural architecture of a design and constitutes the foundation of the graph grammar that 

represents the transition or production rules for creating conceptual configurations from functional 

specifications.  

In our computational approach to concept generation, we utilize an expanding online repository that 

contains knowledge about past designs [29], and we derive design rules from it that capture the 

decisions of the original designer in mapping functional specifications to component solutions. In 

deriving the rules for the graph grammar, we first build an existing design’s CFG and its function 

structure. This is illustrated in Figure 2. The figure shows the function structure and the configuration 

flow graph of a past design from the repository. We, then capture the mapping between the two 

graphs. Each mapping represents a potential grammar rule that shows how a functional requirement 

was transformed into an embodied solution in the actual design. Some of the rules derived from the 

analysis of the aforementioned design are also shown at the end of Figure 2. In the first rule, the rule 

states that the functional requirements of “convert rotational mechanical energy to translational 

mechanical energy” and “transfer translational mechanical energy” are addressed in the design by the 

use of the component “link”. Similarly, the last rule shown in Figure 2 indicates that the function 

“transfer RME” in the function structure is solved by a “driveshaft” and a “rotational coupler” in the 

actual design. Following this procedure, we currently have defined 189 rules derived from 23 

products. 

The grammar provides a method to generate design configurations through the execution of rules that 

create feasible solutions to the design problem. These solutions are encoded as configuration flow 

graphs. Our automated synthesis method is to perform a graph transformation of the initial function 

structure into one or more configuration flow graph. To perform this graph transformation, the 

grammar rules are defined to add components to the CFG that maintain a valid connection of 

components as well as meet specific function requirements specified with the function structure. Each 

of the rules developed are modelled after basic grammar conventions where rules are compromised of 

a left hand side (LHS) and right hand side (RHS) as illustrated in Figure 2. The left-hand side contains 

the state that must be recognized in the function structure and the right-hand side depicts how the 

design is transformed to a new configuration by the addition of new component(s). The basic 

generation process for a set of rules is to first recognize which rules can be applied given the current 

state of a design, then choose one of the applicable rules, and finally to apply the rule as a step towards 
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constructing an updated configuration, and a new design state. This cycle is repeated until no further 

rules can be recognized, indicating that all functional requirements given by the function structure are 

addressed and that the configuration synthesis is complete. This process is shown in Figure 3 for the 

design of a “bread slicer”. At the beginning, none of the sub-functions of the initial function structure 

are mapped to components. As the rules are applied, the CFG is incrementally updated by the addition 

of new components. This is illustrated in the figure with four snapshots between start to finish. In 

between the snapshots, we have listed the grammar rules that are applied. The result of this process is 

the completed design configuration shown at the end of the figure. Each design configuration is 

represented by a list called the recipe that captures the sequence of rules that are used in the 

construction of that particular configuration.  For example, the recipe for the CFG shown at the bottom 

of Figure 3 is {39, 31, 13, 11, 28, 25, 38, 43}. Depending on the grammar rules chosen to create the 

CFG, the recipes of different solutions may have potentially different lengths to their lists. The use of 

the recipes by the DPM is explained in the next section. 

4 CONCEPT EVALUATION USING THE DPM 

Design evaluation provides a means of determining the ‘value’, ‘usefulness’, or ‘strength’ of a design 

solution with respect to a given objective [14]. An evaluation requires a comparison of concept 

variants, or a rating of solutions based on an idealized design solution. DPM facilitates the evaluation 

of design concepts using an interactive approach that involves the designer in this critical process. In 

terms of our specific implementation, the designer’s preferences are captured as preference scores for 

rules that are used during the creation of designs. In other words, DPM models how much the designer 

prefers a particular rule over others in the grammar, or synonymously how much the designer likes a 

particular function-to-component mapping as described by that rule.  

DPM carries out the construction of this model by employing a sampling strategy that selects and 

presents the designer with a small-set of proposed solutions. It performs this sampling by following an 

Figure 2. The function structure and the configuration flow graph of a past design, 

along with three grammar rules derived from its analysis.  
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algorithm that aims to simultaneously reduce the number of required designer evaluations and capture 

the variety in the design solution space. The goal of the sampling is to find the minimum set of 

solutions, recipes of which represent the most diverse collection of the rules (i.e. solution principles, or 

components). After completing the sampling, DPM presents the selected solutions to the designer for 

evaluation. The designer is asked to make pairwise comparisons between the selected designs. These 

solutions are then rated by the designer based on specific design objectives and constraints. After the 

solutions are scored, the solution ratings are projected on to the rules. Using this projection, a 

“preference score” is assigned to each rule. The collection of these preference scores constructs a 

model of designer preferences. Finally, DPM uses the model of designer preferences to guide the 

search for finding the “best” configurations in the population of generated solutions. To achieve that, 

preference scores of rules are propagated over each recipe to compute the overall worth of each design 

in the population. Before we present the details of the process, we provide some definitions that are 

used in the formulation of the method.  
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Figure 3. A pictorial illustration of building a CFG from a function structure using the grammar rules.
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CPc i ∈  is a candidate:    

 An automatically generated configuration (CFG) as a solution to the design problem. 

),...,...,,( 21 ni ccccCP = is the candidate pool:   

 The collection of all candidates where n is the number of candidates generated. 

),...,,( pji cccDFS = is the designer feedback  set:                      where    ⊆DFS CP  

 The set of candidates selected to be presented to the designer for evaluation feedback. 

jr  is a rule:    

 A grammar rule (function-to-form mapping) used in the generation of a candidate. 

ii RCPc !: ∃∈∀     where ),...,,( slki rrrR = is the recipe of candidate 
ic :   

 The collection of rules used in the generation of candidate 
ic . 

nRRRRRP ∪∪∪= .....321
 is the recipe pool:    

 The union of recipes of all candidates where n is the number of candidates generated. 

],...,,[ pji sssCDFS =  is the cumulative designer feedback  score vector:         where ℜ∈s  

 The vector of cumulative scores of candidates in DFS after designer evaluations. 

],...,,[ 21 rprr sssRPS =  is the rule preference score vector:                              where ℜ∈
jrs  

 The vector of preference scores of rules in RP.  

],...,,[ pji cscscsCS =  is the candidate  score vector:                                        where ℜ∈cs  

 The vector of candidate scores of candidates in CP.  

4.1 Sampling Strategy 
The goal of the sampling is to select a set of candidates from the candidate pool. This set called the 

DFS will be presented to the designer for obtaining evaluation feedback. As one might expect, there 

may be countless possibilities for choosing the DFS. Here, DPM employs a heuristic sampling 

strategy that strives to strike a balance between two objectives. First, it aims to choose candidates that 

will keep the number of designer evaluations to a minimum. It accomplishes this by taking advantage 

of the commonality of candidates in the candidate pool. Accordingly, DPM selects candidates with a 

high “commonality measure”. Simultaneously, it targets candidates that will best represent the variety 

in the solution space. To achieve the latter, DPM keeps track of a “variety measure” for the rules that 

constitute the recipes of the candidates in the DFS and only allows addition of the candidates that 

increase the variety of rules in the DFS. By monitoring these two measures, DPM continues to select 

candidates from the candidate pool until all rules in the recipe pool are represented in the DFS.  

To better understand the sampling approach, consider the example shown in Figure 4.a. This is a real 

design example illustrating the synthesis of a switch assembly in a soda mixer. The design tree shows 

the generation of the candidates. The arc labels in the tree correspond to the grammar rule that is 

applied during the transition between any two nodes of the tree. The basic steps in applying the 

heuristic sampling strategy are as follows: 

 

1. Compute the candidate pool (CP), and the recipe pool (RP).  

As shown in Figure 4.a., the final design configurations, i.e. candidates, are represented at the leaves 

of the tree and numbered as C1-C9. The recipes of the nine candidates and the recipe pool are 

summarized in Figure 4.b.   

2. Create a histogram of the frequency of rules in RP. 

Figure 4.c shows the “frequency of appearance” of the rules at each iteration. Rule#3 is used in the 

construction of all nine designs and has the highest frequency with 9 in the first iteration.   

3. Calculate the commonality measure of each candidate by summing frequencies of rules in the 

recipe of the candidate. 

Figure 4.d shows the “commonality measure” of the candidates at each iteration. In the first iteration, 

C4-C9 has the highest commonality measure with 21.  

4. Select the candidate with the highest commonality measure and add it to the DFS, 

Among the four candidates with the highest commonality measure, C9 is (randomly) selected and 

added to the DFS. 
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5.  Remove the rules of the selected recipe from the recipe pool. 

After the selection of C9 to the DFS, the rules in the recipe of this candidate (3, 10, 31, 35) are 

removed from the recipe pool. As can be seen in Figure 4.c., the frequencies of the rules 3, 10, 31, and 

35 following the first iteration are zero. This ensures that there will be minimum overlap between C9’s 

recipe and the recipes of future selections. This modification is a necessary step for minimizing the 

number of candidates included in the DFS at the end of the sampling.  

6. Repeat steps 1-5 until no rules remain in the recipe pool. 

Following a similar scheme, C6 is selected in the second (with a commonality measure of 6), and C1 

is selected in the third (with a commonality measure of 6) iteration.  

 

The result of the sampling process is the DFS containing C9, C6, and C1. This DFS satisfies the two 

objectives of the heuristic sampling of finding a set with minimum number of candidates, recipes of 

which represents the most diverse collection of the rules. Accordingly, the generated DFS captures all 

the rules in the recipe pool by the selection of only three candidates.  
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4.2 Designer Feedback 
The sampling is followed by gathering the designer’s feedback. To achieve this, DPM presents the 

candidates in the DFS to the designer for evaluation. The designer is asked to make pairwise 

comparisons between the selected candidates. The evaluation scale utilized during this concept scoring 

is similar to the one used in decision matrices [17], and contains the ratings {-3, -2, -1, 0, 1, 2, 3}. 

When element i compared to j is assigned one of the aforementioned ratings, then element j compared 

to i is assigned its negative. The GUI for this step is shown in Figure 5. The overall worth of each 

candidate as a result of this evaluation, called the cumulative designer feedback score (CDFS), is 

calculated by simply adding the values in the cells of the column that corresponds to that particular 

candidate.  

Considering the values in Figure 5, the cumulative designer feedback score vector (for the candidates 

C1, C6, and C9) becomes [4, -1, -3]. 

4.3 Construction of the Designer Preference Model  
After the designer completes the pairwise comparisons between the candidates, the candidate ratings 

are projected onto the rules in the recipe pool to compute a “preference score” for each rule. The 

collection of these preference scores constructs a model of designer preferences as represented by the 

rule preference score (RPS) vector. The basic steps in the computation of the RPS vector are as 

follows. 

1. Calculate the cumulative designer feedback score s  for each candidate in the DFS by summing 

each column in the comparison matrix, 

2. For each rule in the recipe of a candidate, add the cumulative designer feedback score of that 

candidate to the rule score, 

3. Repeat step 8 for each candidate to calculate the final rule preference score rs , 

4. Aggregate the rule preference scores to construct the RPS vector. 

 

Considering the same example shown in Figure 4 and taking the cumulative designer feedback scores 

calculated in the previous section, the value of 4 is added to the rule score of the rules in the recipe of 

C1 (rules 1,3, and 13). Similarly, the value of -1 is added to rule score of the rules 3,10,22,and 29 and 

the value of -3 is added to the rule score of the rules 3,10,31,and 35. Aggregating these values defines 

the RPS vector, which then becomes: RPS=[4, 0, -4, 4, -1, -1, -3, -3] corresponding to the “preference 

scores” for rules 1, 3, 10, 13, 22, 29, 31, 35. The RPS vector represents a model of the designer’s 

preference for each rule in the recipe pool. In this particular example, the designer prefers rule#1 and 

rule#13 the most, and rule#10 the least. 

     Figure 5. The GUI of the pairwise comparison matrix used during designer evaluations. 
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4.4 Automated Concept Scoring Using the Designer Preference Model 
DPM uses the model of the designer preferences to automatically search for the best designs in the 

population of generated candidates. This is performed by propagating the preference scores of rules 

over each candidate recipe in the population. Specifically, by summing over the individual rule 

preference scores in a recipe, the worth of each candidate can be computed. Finally, the aggregation of 

these scores constitutes the candidate score (CS) vector. After all candidates are evaluated, they can be 

ranked or sorted for identifying the best or the worst designs in the population. 

Returning to the switch assembly design, and using the RPS vector shown before, all of the nine 

candidates in the population can be evaluated. The CS vector for this example then becomes: CS=[8, 

3, 1, -1, -3, -6, -8, -8, -10] corresponding to the “candidate scores” of candidates C1-C9.  The best 

three designs in this population are C1, C2, and C3. Note that in evaluating the candidates, DPM 

preserves the designer’s original ranking among the candidates in the DFS, i.e. the relation C1 > C6 > 

C9 holds true after the DPM evaluates the candidates using the designer preference model.   

5 ILLUSTRATIVE EXAMPLE: DESIGN OF A BREAD SLICER  

We have tested DPM’s performance on three electromechanical design problems: design of a bread 

slicer, design of a wall climber toy product, and the design of a bottle capping machine. In this section, 

we consider the first of these problems in detail to demonstrate DPM’s capabilities.  

The design process starts with the specification of the function structure of the system to be designed. 

This is accomplished through a graphical user interface that allows the designer to quickly draft a 

function structure. The function structure that is used for the example problem is the same one shown 

at the top of Figure 3, and includes 15 sub-functions, and 19 flows. After the concept generator 

initiates the design generation process, the sub-functions are replaced with components through 

incremental application of the grammar rules until the design space is exhaustively searched for all 

possible design configurations. This generation process creates 594 valid design configurations. 

After the candidate pool is generated, DPM employs its sampling algorithm and selects 12 candidates 

from the candidate pool. These candidates are added to the DFS and are presented to the designer for 

evaluation feedback. The designer evaluates the 12 candidates based on the criteria of quality of 

concepts. Finally, the rule preference score (RPS) and the candidate score (CS) vectors are computed 

by the DPM. The result of this process is summarized in Table 1, and the best and the worst candidates 

determined by the evaluation are shown in Figure 6.  

Looking at these two candidates, one can see that the design on the left has a number of superior 

features when compared to the design on the right. First, it includes a knob component to activate the 

switch which can be used for setting the speed of the slicer. Second, the power transmission from the 

electric motor to the blade is much better developed in this design. It includes a gear box for speed 

reduction, and a rotational coupler that secures a blade to the output shaft of the gear box. Moreover, 

in this design, the blade is supported by an outer housing that helps with importing and securing of the 

bread into the device. This was a feature that the designer particularly favoured while providing 

evaluation feedback for reasons regarding to the customer needs of “safety” and “ability to 

accommodate different slice sizes”. On the contrary, in the other design, the importing and securing of 

the bread are addressed by the blade itself, similar to how an electric kitchen knife functions.  

As this case illustrates, DPM is capable of generalizing a small number of designer evaluations into a 

preference model, which it later uses to evaluate a large range of automatically generated design 

alternatives.  

6 CONCLUSIONS 

We have described a tool called the DPM (Designer Preference Modeller) that analyzes the designer’s 

decision making during concept evaluation, and constructs a designer preference model to be used for 

evaluation of automatically generated design alternatives. The method is based on establishing an 

interaction between a designer and a computational synthesis tool during conceptual design.  

The main novelty of the DPM approach is the combination of computing and human reasoning. 

Computational design tools can generate numerous solutions to a design problem by conducting an in-

depth search of the design space. But, they typically require very detailed specifications of part shapes 

and dimensions in order to evaluate certain performance parameters. At the conceptual stage of design, 

however, such detailed models of system components and design parameters are simply not available 

and the evaluation of conceptual design alternatives remains a stumbling block in computational 
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synthesis. Humans, on the other hand, can employ sophisticated reasoning techniques in making 

decisions for ruling out or approving design alternatives, however they are bounded by the limits of 

their own rationality [1]. This makes it impractical for them to process and evaluate more than a 

handful of alternatives. The heuristic followed by the DPM takes advantage of the commonality of 

solutions in a design space and ensures that the required number of designer evaluations is kept to a 

minimum, consistent with the principle of bounded rationality. By establishing a proper level of 

interaction between the designer and the synthesis software, DPM combines the strengths of 

computational search with that of human decision-making. Moreover, since the preference model is 

directly derived from the evaluations of the designer, it reflects the designer’s reasoning and 

judgement under specific design objectives and constraints which is easily generalized and used for 

faster search towards the best designs in large design spaces.  
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