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ABSTRACT 
The embodiment design of a Joule-Brayton cycle based air-conditioning system for aircrafts 
(bootstrap) proves to be a difficult design problem. This difficulty is due to the variability in the 
system environment. For instance, atmospheric conditions are very different according to the flight 
phases. This difficulty is also inherent to the complexity of the system. Therefore, the design space 
appears to be very broad and quite difficult to explore. Design choices are relating to continuous and 
discrete design variables while the Bootstrap effectiveness is extremely sensitive to most of these 
design variables. Designers investigate the design exploration space by considering several criteria and 
there is a lack of tools to support designer decisions at early stages of the design process. In this paper, 
a method is proposed to manage the compromise between various requirements. 
A design digital tool based on the meta-heuristic of Genetic Algorithms has been developed to 
investigate the design problem. An exploration of the feasible design configurations is also proposed. 
The selection of Pareto optimal solutions is used to optimize choices among the design solutions of an 
air conditioning system. 

Keywords: Design space exploration, embodiment design, trade off, decision support, genetic 
algorithm, Pareto optimal solutions, aeronautics 

1 EMBODIMENT DESIGN OF COMPLEX SYSTEMS 

1.1 Research context 
 
Before the detail design phase, the embodiment design phase leads to the expression of a design 
configuration (product architecture) where main dimensions and components are chosen [1]. This 
design phase remains challenging in the context of industrial design departments. Indeed, at a stage 
where the knowledge is uncertain, most of existing computer aided tools are not suitable because they 
are based on models requiring the complete geometrical definition of the product. Designers do not 
have the tools to help them make decisions with regard to the choice of concepts whose performances 
they have to assess [2]. Therefore, many a priori choices are performed according to the expertise of 
the designer or of the company; these choices hide a great part of the potential solution space. 
 
Embodiment design problem can be naturally expressed as mixed Constraint Satisfaction Problems [3] 
[4] which cannot be solved using classical mechanical simulation tools. In order to overcome this 
difficulty, embodiment design problems are tackled using several solving strategies. 
An overview of these solving strategies is presented by Antonsson and Cagan [5]. Existing tools are 
mainly concerned with genetic algorithm, evolutionary programming, agent based systems and 
ensemblist methods [6]. These tools are developed for application relating to structural configuration 
in mechanics, micro system and robotic synthesis and chemical processes [7]. 

1.2 Application: air conditioning system design 
Air conditioning systems for aircrafts are made of several complex components which interact to 
regulate air temperature and pressure in the aircraft cabin [8]. The air-conditioning system considered 
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in this paper (see figure 1) is mainly made of two cross-flow plate-type heat exchangers (main and 
pre-cooling exchangers), one turbine and one compressor coupled together. Nozzles, valves and pipes 
are used to manage the air flow between these elements. 
The air flowing through the cabin comes from the main compressor of one of the turbo reactors of the 
aircraft. This air flow (main air flow) goes through a precooling heat exchanger, a turbo machine 
(compressor, turbine, coupling shaft) and the main heat exchanger. Heat extracted from the main air 
flow is transferred to a ram air flow taken from the frontal surface of the aircraft. Due to the aircraft 
velocity, the ram air flows through the precooling and main heat exchangers. The temperature of the 
main air flow is regulated by taking cool air -from the outlet of the precooling heat exchanger 
(secondary air flow) and mixing it with cold air flow from the outlet of the turbine. The secondary air 
flow regulation is performed by a valve. 
The two circuits (main air and ram air) cross each other in alternate layers inside the exchangers. 
Exchange surfaces are made of stacked fins. For each air circuit, the fins have to be chosen among 48 
different standard shapes [9]. Since there are two exchangers, and two air circuit per exchanger, there 
are 5.3 millions (484) possible alternatives according to the choice of heat-transfer surfaces types. 
Thanks to the discrete nature of some design variables and to the discernment precision of the others, 
the number of solution principles of the design problem can be assessed. For example, the dimensions 
of the precooling heat exchanger along “x” and “z” axes, which define the ram air inlet section. In 
order to facilitate the ram air flowing through the two exchangers, the equivalent dimensions of both 
heat exchangers are identical. The domains of the Lx and Ly dimensions range from one 0.01m to 
0.5m. Their discernment precision has been defined by designers at 0.01m. Thus, the number of 
combinations of possible value domains is equal to 2,500. 
The size of the global Bootstrap design problem has been assessed to approximately 1015 design 
configurations when considering all of the possible value combinations of the design variables. 
However, every design configuration does not correspond to a design solution. Every design 
configuration does not fit the design requirements and some design configurations do not work for 
some system environment configurations. 

 

Figure1. Air conditioning system components and environment 
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The air conditioning system has to produce air at constant temperature and pressure inside the aircraft 
cabin. Therefore, the design of the Bootstrap must take into account different flight phases 
corresponding to different altitudes and relative speed of the aircraft. The temperature, pressure and 
relative speed of the air strongly vary between these flight points. 

1.3 Embodiment design difficulties and proposal 
Due to the complex interactions of the components, air conditioning designers have no support to 
guide them in the process of determining the more efficient fin types inside heat exchangers. Manual 
(as opposed to digital) solving processes require the setting of values of some design variables. 
Therefore, bootstrap designers usually fix a priori values for the heat exchanger efficiencies, which is 
equivalent to considering one configuration of heat exchanger without considering the variability of 
the design problem. 
No tool is available to assist the designer during this design phase, especially because the product 
behaviour modelling has to take into account complex combinations of physical phenomena. 
Moreover, design solution validation is performed as soon as all of the architectural choices are made. 
It is usually processed by developing a digital simulation code of air conditioning system and by 
testing and comparing the performances of a small number of configurations. 
Finally, the dimensioning of the system is performed for the most critical life-cycle stage, the 
prevailing situation. Using trial and error mode, the designer converges towards a solution which is 
not necessarily the most powerful one, or, which doesn’t necessarily corresponds to the best trade off 
between the various flight phases. 
 
The approach proposed in this paper leads to the identification of the best design compromises 
between various design objectives, whatever the life cycle stage. It consists in : 
• the expression of the design problem as a set of constraints, 
• the exploration of the whole design space using Genetic Algorithms, 
• the assessment of their performances using criteria relating to the design objectives, 
• the reduction of the solution space using the Pareto front : it allows identifying solutions which 

are the best compromise in simultaneously satisfying the design objectives, without privileging 
one. 

Until the end of the embodiment design phase, no potential solutions have been dismissed by a 
designer choice. The results of the proposed approach allow decision support at this stage of the 
design process. 

2 DESIGN PROBLEM MODELLING 

2.1 Constraint modelling 
In order to avoid the usual trial and error iterative design process and not to dismiss a solution because 
of a priori choices, we propose to take all the constraints into account simultaneously, without any 
hierarchy or preliminary choices, by modelling the problem as being as set of constraints. 
Relations between variables (equalities, inequalities, logical rules) and variable domains constitute the 
constraints. Variables can be real numbers, integers, enumerated values. Parameter values of standard 
components can be described using discrete variables. Domain using is well adapted to the uncertain 
knowledge inherent to the embodiment design phase. 
The variables which define the product architecture to be designed (dimension, standard component 
characteristics, materials, mass, number of elements, etc.) are called design variables (DV). The 
assessment of a solution is performed by using criteria relating to the design objectives [10]: the 
resolution allows the evaluation of various working structures -meeting the working conditions of the 
system. These solutions may be numerous and may thus require to be classified. In order to objectify 
choices among these solutions, criteria which express the performance of each design configuration 
are used.  
So, a design problem is described by a set of DV, criteria and constraints. A solution corresponds to a 
set of values -for all DV and criteria- which meet all the stated constraints: these values define a 
particular design configuration. 
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2.2 Air conditioning system modelling 
The knowledge base of the air-conditioning system consists of:  
• 23 thermodynamic state variables (pressures, mass flow rates, temperatures),   
• 14 geometric and structural variables: lengths, surface types, pass number;   
• 8 criteria (outputs, efficiencies, etc.) which define the performance or which are used to qualify 

the quality of a design configuration;   
• 24 auxiliary variables which are defined as functions which correlate their definitions with the 

45 preceding variables. 
A methodology has been proposed to identify the structuring characteristics of the embodiment design 
problem, which must be translated into constraints [11]. The global model is constituted by 69 
constraints. Constraints relating tophysics have been derived from energy, momentum or mass flow 
conservation laws. Due to the complexity of the physical models which indicate strongly-coupled 
physical phenomena, model reduction methods have been applied [10]. The model of the design 
problem also includes the functional performance specifications and the description of standard 
components. The aircraft manufacturer expresses technical skills and manufacturing rules. 
 
The Design Variables are: 
• the type of fin (integer value ranging from 1 to 48), 
• the dimensions of each exchanger (from 0.1m to 0.5m), 
• the diameter of the bypass pipes. 
 
The performance criteria are: 
• the mass of the heat exchangers, 
• the total volume of the 2 exchangers, 
• the drag force induced by the air flowing through the heat exchangers. 

Table 1. Flight phase characteristics 

Aircraft speed Altitude Atmosphere 
pressure 

Atmosphere 
temperature 

Mach number ft m Pa (104) K 
0,8 36080 11000 2.27 216.7 
0,3 9840 3000 7.03 268.7 

 
The system has to deliver air at constant temperature and pressure to the cabin whatever the flight 
phase (ground, lift, economic cruise, economic cruise for long haul flights, descent, etc). For the sake 
of simplicity, only the main two flight phases have been investigated in this paper (see table 1). 

3 GENERATION OF DESIGN SPACES 
A first investigation of the design search space has been carried out by using a Constraint Satisfaction 
Problem solver [12]. Only one flight point was investigated at this stage. More to the point, the 
Bootstrap design problem was solved by considering only 6 kinds of fins inside the heat exchangers, 
whereas, in this paper, 48 different types of fins and two different flight points have been considered. 
The design exploration space is therefore much wider in this case. 
In the following paragraphs, the computing times of every exploration job have been limited to one 
hour in order to facilitate comparison of the results. 

3.1 Genetic algorithm based solving 
A Genetic Algorithm (GA) based design code has been developed to improve the solving performance 
of the Bootstrap design problem process. The Genetic Algorithm heuristic is a meta-heuristic having a 
large scope of interest and applications (see [13] and [7]). It is based on the mutation, crossover and 
selection of individuals among an evolving population. Evolving generations tend to improve 
optimization criteria (fitness function) by mixing individual genes and generating random individuals 
to search the complete exploration space of solutions. This heuristic method is involved in many 
different types of mechanical design tools. However, in industrial conditions, it is mainly used as an 
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optimization tool for the management of several simulation codes. Simulation codes simulate the 
behaviour of different parts of the mechanical system, whereas the GA based optimization tool 
supervises the system architecture and the design performance criteria. 
The design code proposed in this paper is used to solve a design Constraint Satisfaction Problem, 
rather than optimizing a design problem. This means that the design code conducts a search for sets of 
solutions rather than optimized solutions. This is performed using an optimization criterion 
guaranteeing the satisfaction of every constraint of the design problem. Every constraint “Ci” of the 
problem is relating to a value “SAT(Ci)”: If Ci is satisfied, SAT(Ci)=1, else SAT(Ci)=0. 
The fitness function optimized by the genetic algorithm is described in (1) : 

( )∏
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+
=
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Three different mutation probabilities (Pm equals 0.1, 0.3 or 0.5) are considered in the following 
paragraphs. Figure 2 displays all the solutions obtained for the two flight points and the three values of 
the mutation probability. Every solution is represented according to three performance criteria: the 
global masses and volumes of the heat exchangers, and the drag forces induced by the air flowing 
through the heat exchangers. 
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Figure 2. Performance space of solutions obtained for all the mutation probability and 
both life cycle stages 

Some solutions relating to the flight point for a Mach 0.8  speed may correspond to a bigger volume of 
heat exchangers than for a Mach 0.3 speed. However, the exchanger masses are quite equivalent. 
Figure 2 also highlights solutions minimizing the three performance criteria: mass, volume and drag 
force. This selection was obtained by computing the set of optimal solutions according to a Pareto 
method (see §4.1). Pareto optimal solutions are highlighted by squares in this figure.The solutions 
selected for a Mach 0.8 speed are close to the ones selected for a Mach 0.3. speed 
The exploration algorithm discards any redundant solution. As a consequence, every point in the 
figure corresponds to one particular solution of the design problem.  

3.2 Random search 
In order to achieve a first assessment of the size of the solution space, the exploration process was 
performed using a pure random search algorithm. This pure random search was obtained by generating 
random samples of solution principles and by testing their corresponding performances. These results 
are illustrated in figure 3. In this figure, every solution is displayed in the performance space (mass, 
volume, drag force). The performance criteria values reached using the random search appear to be 
quite similar to those obtained using genetic algorithms. However, the solution space corresponding to 
the random search is a bit wider than the one corresponding to the genetic algorithm whatever the 
value of the mutation probability. Nevertheless, the density of the solution set found using the random 
search algorithm is much lower. 
On the other hand, despite the low number of solutions obtained with this approach, some solutions 
appear to fit for the two flight points (diamond shapes in figure 3): they correspond to the same design 
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variables (fin types and exchanger dimensions). Many of these common solutions range within the 
same zone (see figure 3): the exchanger masses are close to 30 kilograms and their volumes are close 
to 20 liters. On the contrary, drag forces appear to be much more distributed, which is appropriate to 
discriminate the best solutions according to this performance criterion. Figure 4 shows the shared 
solutions between the two flight points in the masses-drag forces performance space. 
Finally, figure 3 shows that most of the shared solutions are distinct from the solutions belonging to 
the Pareto optimal front. Pareto optimal solutions correspond to the best compromise from the design 
objective minimization point of view. This minimization may lead to solutions which are not suitable 
for several different flight phases. Though, one of the common solutions belongs to the Pareto optimal 
front for the Mach 0.3 speed. 

 

Figure 3. Performance space of solutions obtained with random search, for both life cycle 
stages 
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Figure 4. Performance space of the common solutions to the life cycle stages 

3.3 Comparison of solving methods 
To observe the influence of the solving method on the nature of the results, figures 5 and 6 present the 
solutions obtained using a genetic algorithm with 3 different mutation probability values or the pure 
random search algorithm. It is important remember that these result sets have been obtained for a 
computation time of one hour. 
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Figure 5. Solutions obtained for Mach 0.3 displayed in the performance space, 
according the mutation probability (pm) or random search 
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Figure 6. Solutions obtained for Mach 0.8 displayed in the performance space, 
according the mutation probability (pm) or random search 

Genetic algorithm based solving processes lead to increasing numbers of solutions according to the 
mutation probability. However, the pure random search algorithm converges to a much lower number 
of solutions whatever the flight phases being considered. According to the phase considered, the 
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number of solutions differs; however, this number is higher for the Mach 0.8 case whatever the value 
of the mutation probability. More to the point, the number of optimal solutions according to the Pareto 
method (displayed as squares in figures 5 and 6) increases with the mutation probability. Thus, it 
seems profitable to investigate the Pareto front using the high values of this probability. Pure random 
search leads to a wide investigation of the design space but supplies a lower number of design 
solutions. 

4 DESIGN SPACE EXPLORATION 
Once the investigation of the design configurations is performed, we aim to support the decision of the 
designers by guiding the exploiting of the results. This means: 
• supporting decisions among the solutions by reducing the solution space and find suitable 

solutions for the two flight phases (Mach 0.3 and 0.8), 
• guiding the choice of design variables among the variables of the problem by finding the 

relevant design variables or the relevant combinations of variables.  

4.1 Solution space reduction 
The types of fins and the arrangement of the stacked plates in the heat exchangers have a decisive 
influence on the mass and the volume of the system. They also affect the efficiencies of the 
exchangers (to be maximized), and therefore the air-conditioning efficiency of the system. Moreover, 
some air feeding the conditioning systems is scooped off the surface of the aircraft using a scoop. This 
air bleeding induces a drag force at the surface of the aircraft, which is detrimental to the global 
performance of the aircraft. This drag force has to be minimized. Therefore, a compromise has to be 
found between these antagonistic requirements. 
The solution classification has been investigated with an objective function [14], but a weight-factor 
method raises the problem of factor value assignment. 
The Pareto-optimal solutions correspond to a trade off between disparate and conflicting design 
performances [15]. Every Pareto solution is non-dominated [16], and the optimal front definition aims 
at minimizing the performance criteria values. In the present case, less than 1% of the solutions belong 
to the Pareto front of the complete solution space. A solution is non-dominated if no other solution is 
relating to best values for all criteria. This selection process makes the number of solution drop from 
957 solutions (AG and random) to 9 solutions for an aircraft speed of Mach 0.3. For an aircraft speed 
of 0.8, the set of 2022 solutions narrows down to 10 solutions. Figure 7 displays the performance 
space and locates the Pareto optimal solutions matching the performance criteria pair by pair. A 
solution minimizing two performance criteria may be detrimental to the third performance criterion. 
For instance, for a Mach 0.8 speed, the solution corresponding to a mass of 16.362 kilograms is  the 
Pareto optimal solution according to the masses and volumes of the heat exchanger but is detrimental 
to the drag force. 
Furthermore, whatever the speed of the aircraft, the Pareto optimal solutions are located in the same 
space. Some solutions corresponding to equivalent masses, volumes and drag forces exist for every 
value of the aircraft speed. 

30,309 41,31

22,461

18,452
18,601

29,275

22,606

36,683

17,918

26,31518,955

38,444

36,276

29,57

20,486

16,362

30,87

21,351

40,061

28,658

29,037

0

0,005

0,01

0,015

0,02

0,025

0,03

15 20 25 30 35 40 45

mass

to
ta

l v
ol

um
e

MO3

M08

Pareto
common

 

30,309
41,3122,461

18,452

18,601

29,275
22,606

36,683

17,918
26,315

18,955

38,444
36,276

29,57

20,486

16,362

30,87

21,351

40,061

29,037

0

10

20

30

40

50

60

15 20 25 30 35 40 45

mass

dr
ag

 in
du

ce
d

M03

M08

Pareto
common

  

Figure 7. Performance space of Pareto optimal solutions (with mass value) 
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The solution space was also reduced by looking for solutions suitable for the two flight phases. 
Twelve solutions have been identified among the solutions resulting from pure random search 
processing. Then, the solution space was reduced by looking for Pareto optimal solutions among these 
solutions. Two solutions appear to belong to the Pareto front for Mach 0.3 and 0.8 aircraft speeds. 
These solutions are presented as diamonds in the figure 7. These performances appear to be close to 
the mean value of the performances of the Pareto optimal solutions (GA and random). 

4.2 Design space and decision support 
Despite the reduction of the solution space, design decisions remain difficult. To overcome this 
difficulty, we propose to supply designers with an overview of the design space: the solutions are 
displayed according to combined design variables, to assist designers in making choices among them. 
Figures 8 and 9 show the design variable space corresponding to the two fin types of the two heat 
exchangers (main exchanger and pre-cooling exchanger). The design variable values have been sorted 
according to the circuit of the air flowing through the exchangers (main air and ram air). In spite of the 
high number of solutions, which correspond to different performance criteria values, many design 
variable values overlap. More to the point, some fin types don’t match any solution. 
Following each air circuit (ram air and main air), there is no visible link between the choices of 
exchanger surface types resulting from the computation. The entire design variable space appears to be 
filled by solution points and any surface type may be related to other surface types. However, some fin 
types seems to be well adapted to one particular air circuit and one particular exchanger. These 
particular fins are related to design solutions while solutions are functioning in association with 
different types of fins. Furthermore, some fin types are applied in the definition of design solutions for 
the two flight phases (aircraft speed of Mach 0.3 or 0.8). Fin types 7 or 34 may be used in the ram air 
circuit in both cases. Finally, some fin types don’t match any design solution and, therefore, seem to 
be irrelevant for the Bootstrap application. For instance, whatever the flight phase and the air circuit 
being considered, types 17 and 19 are never involved in the functioning of the main heat exchanger.  
 
The preceding analysis cannot guide designers to the optimal solution of the Bootstrap design 
problem. However, this investigation supports designer decisions by suggesting relevant guidelines 
and avoiding some irrelevant choices. 
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Figure 8. Design space: fin types for each circuit (Mach 0.3) 
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Figure 9. Design space: fin types for each circuit (Mach 0.8) 

Figures 8 and 9 illustrate the fin types corresponding to computed design solutions. The Pareto front 
solutions are highlighted by means of squares. The Pareto-optimal solutions are the design solutions 
managing compromise between requirements. These solutions are shown on figure 10 to put emphasis 
on the optimal associations of fin types according to Pareto analysis. For example, type 7 is relevant 
for the main exchanger on the ram air circuit because many solutions are existing, and some of them 
are Pareto-optimal (figure 8).  
A small number of optimal solutions meets the totality of the design constraints for the two flight 
phases. This consideration corroborates the difficulty of finding design solutions suitable for the 
complete Bootstrap life cycle; this difficulty appears to be the bottleneck of the Bootstrap design 
process. Design solutions presented in figure 10 show evidence of the dissociation between the 
optimal solutions according to one particular flight phase and optimal solutions according to the two 
flight phases. 
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Figure 10. Design space (fin types for each circuit): Pareto optimal solutions and 
solutions common to both life cycle stages 

5 CONCLUSION 
In this paper, we discussed the design of an aircraft air conditioning system (Bootstrap). Two flight 
phases were taken into account in the Bootstrap life cycle. Classical design processes are based on the 

M 0.3 M 0.8 
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investigation of a little number of design configurations. In this paper, a wide design space has been 
explored without considering a priori choices. This digital approach is based on Genetic Algorithms 
and has proved to be influenced by some genetic parameters; mainly the mutation probability. This 
probability influences the size of the solution space. On the contrary, a pure random search algorithm 
leads to a wider exploration of the design space, but the exploration appears to be slower and retrieves 
less solutions. Despite the fact that the computing process found 2979 design solutions, a few design 
solutions proved to be adapted to the two aircraft flight phases. Among these joint solutions, barely 2 
solutions belong to the set of the optimal Pareto solutions. 
This approach supports designers in the process of determining feasible embodiments. Such an 
approach may be relevant to design complex industrial systems or when the life cycle of the system is 
faced with varying situations. Not only designers can identify pertinent values or irrelevant values to 
the design variables, but also find relevant design solutions managing compromise between 
requirements. However, it has been observed that optimal solutions according to one particular life 
cycle situations may be unrelated to optimal solutions according to several life cycle situations. 
Our perspectives concern the analysis of the multiple situations in the Bootstrap life cycle and the 
coupling between the preceding method and robustness analysis based approaches. 
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