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ABSTRACT

This paper aims at developing unsupervised bayesian kansei models in order to help designers
specifying new technical solutions as well as assessing their impact on customer’s perception. In other
words, these models provide designers with the three following use scenarios. The first one, denoted
hereafter direct/analysis scenario, allows assessing the impact of a given decision related to the
technical and/or functional design parameters on the final customer perception. The second one,
denoted hereafter the inverse/synthesis scenario, allows determining the optimal levels of design
technical attributes that can meet a given customer’s expected perception. The third one, called
henceforth compound scenario, is a combination of the two previous scenarios. To develop these
kansei models, we use unsupervised bayesian learning of probabilistic relations between perceptual
attributes and technical characteristics of the product under development. As a case study, we propose
to predict the customer perception of car dashboards by assuming their technical characteristics. We
also propose to help designers defining optimal dashboard technical characteristics to satisfy given
customer expectations.

Keywords: Decision-making, kansei engineering, unsupervised bayesian learning, design analysis,
design synthesis, perceptual evaluation, emotional design

1. INTRODUCTION

A design process can be seen as an iterative and complex process guided by a final and ultimate
objective, which is to make the developed product fitting the customer aspirations.

Hence, predicting customers’ satisfaction level when we develop a new product is fundamental.
Designers need tools to help them understanding customers’ needs and thereby predicting their
appreciation level of a new product. During a design process, designers are facing two main issues that
we explain through the two following questions. The first one is a question of simulation of
performances (deductive reasoning), denoted hereafter direct/analysis: what is the impact of a given
decision related to the design parameters (i.e. technical and/or functional parameters) on the final
customer perception? The second is more narrowly related to the design goal itself, starting from the
need (expected performances or perceived impacts) and inducing a satisfactory design solution,
denoted hereafter the inverse/synthesis scenario: what are the optimal levels of design technical
attributes that can meet a given expected perception by a customer?

Certainly, the two questions are connected and can be handled if the correlation between the design
attribute levels and the customer perceived impact levels is known. This correlation can be learnt
through experience. In other words, experienced engineers may be capable to convert a subjective
expected perception expressed by customers in concrete technical design attribute levels. However,
their suggestions remain subjective and generally difficult to explain. The second way to rationalize
this correlation is to construct an analytic predictive model. In this paper, we propose to construct such
a model using data mining learning techniques and more specifically Bayesian Networks (BNs)
learning.

As a case study, we propose to use customers’ evaluations of perceptual attribute levels of existing car
dashboards in order to predict the customer perception of new car dashboards by assuming their
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technical attributes or main design parameters (design analysis situation). Conversely, we also propose
to advise designers on values of dashboard physical attributes so as to better ensure meeting given
customer perceptions on these dashboards (design synthesis). Henceforth, we call technical (or
physical) attribute any parameter that deals with the design characteristics (shape type, number of
colors, subsystem location, average curvature radius of shapes, etc.). In other words, technical
attributes are parameters that a designer can tune to change and ultimately optimize his design. We
call perceptual (or subjective) attributes all variables that deal with the customer evaluation of the
design (comfort, novelty, cultural values, etc.). In the following, perceptual attributes are assessed by a
set of customer in an non-hedonistic way, i.e. perceptual attributes are assessed on an absolute scale
independently of personal preferences (as much as possible). This scale is automatically built through
the use of pairwise comparison techniques which are widely presented in [28][34][35] and which are
out of the scope of this paper.

Various scientific approaches relating physical attributes and perceptual attributes have been gathered
by Japanese researchers under the name Kansei Engineering. Ours may be considered as such. This
research aims at exploring the structure of emotions by building a database on consumer feelings.
From the consumer’s point of view, a forward mapping process from perceptual words to design
elements is established, and from the designer’s point of view, a backward process from drawings to
perceptual words is proposed [24][25]. These two processes exactly correspond to, respectively, the
aforementioned synthesis and analysis use scenarios. Some methods of category classification
methods based on the Semantic Differential Method (SDM) have been used for the design of car
interiors [15]. More sophisticated methods based on genetic algorithms, neural networks or fuzzy logic
have been applied to ensure mappings between perceptual words and design elements. However, these
systems are often opaque for designers and consumers. A semantic transformation method for
automotive form design is proposed in [12], allowing an automatic regulation of the shape with respect
to the required image required. The aim of this paper is to study the use of a still rarely used technique
in design, namely the Bayesian Network. Its main advantages compared to other techniques is the fact
that it is not opaque to the designer and that it can be easily used in compound analysis/synthesis
scenarios, complying with actual design problems.

After presenting Bayesian Networks in section 2, the collect protocol for perceptual data is briefly
evoked in section 3. Section 4 describes the model building and section 5 presents the model use
scenarios.

2. THEORETICAL BACKGROUND: UNSUPERVISED LEARNING OF
BAYESIAN NETWORKS

2.1. Bayesian networks

Consider “A”= “use comfort”={weak, good} as one of the perceptual attributes and “B”="control

button shape”={circular, square) as one of the physical attributes characterizing the dashboards. The

double functionality of our model (direct and inverse) is possible thanks to Bayesian Networks (BNs),

P(B/A).P(A)

PB)

BNs are directed acyclic graphs used to represent uncertain knowledge in Artificial Intelligence [14].

A BN is defined as a couple: G=(S, P), where:

o S=(N, A) represents the structure (i.e. the graph);

o “N” is a set of nodes. Each node represents a discrete variable X having a finite
number of mutually exclusive states (modalities). In our case study, X may be a
perceptual attribute as well as a technical attribute;

o “A” is a set of edges; the relation “N, is a parent of N,” is represented by an edge
linking N, to N,. In our case study, an edge may be interpreted as a causal relation.

. P represents a set of probability distributions that are associated to each node. When a node is a
root node (i.e. it does not have a parent), P corresponds to the probability distribution over the
node states. When a node is not a root node, i.e. when it has some parent nodes, P corresponds
to a conditional probability distribution that quantifies the probabilistic dependency between
that node and its parents. It is represented by a Conditional Probability Tables (CPT).

which are based on the Bayes theorem: P(A/B) =
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Because a Bayesian network is a complete model for the attributes and their relationships, it can be
used to answer probabilistic queries about them. For example, the network can be used to find out
updated knowledge of the state of a subset of attributes when other attributes (the evidence attributes)
are observed. This process of computing of the posterior distribution of attributes given evidence is
called probabilistic inference. Various inference algorithms can be used to compute marginal
probabilities for each unobserved node given information on the states of a set of observed nodes. The
most classical one relies on the use of a junction tree (see [14], pp. 76). Inference in BN [13] allows
then taking any state attribute observation (an event) into account so as to update the probabilities of
the other attributes. Without any event observation, the computation is based on a priori probabilities.
When observations are given, this knowledge is integrated into the network and all the probabilities
are updated accordingly.

The use of Bayesian networks in industry is continually growing up especially in risk management
fields, in marketing, and generally in domains where there is uncertainty and thereby a need to predict
a complex behavior such as in a decision making process.

Many commercial tools provide user with HMI allowing graphical representation of Bayesian
networks to model expert knowledge. They are also providing user with a panel of supervised and
unsupervised learning algorithms to extract automatically knowledge from databases.

2.2. Unsupervised learning of Bayesian networks

An unsupervised learning of a bayesian network consists in an unsupervised learning of the whole set

of probabilistic relationships existing between attributes within the data. In other words, there is no

target attribute to guide the learning task.

There are several techniques for learning Bayesian networks from data (see [31][27][4][16][26] for an

overview). Two main techniques may be distinguished. The first one is a constraint-based method and

the other is a score-based method. The constraint-based method employs statistical tests on the data set

for deciding the existence of probabilistic relation between attributes (i.e. edges in the Bayesian

network). The accuracy of the constraint-based method strongly depends on the size of the data set. A

huge data set can provide a more accurate statistical independence test. In this paper, we use a small

data set (cf. section 3), so we adopt the score-based approach.

Methods to learn Bayesian networks from data often consist of two components. The first component

is a score which is used to evaluate how well the learned model fits the data. The second component is

a learning algorithm (i.e. a structure search strategy) which is used to identify one or more network

structures with high scores by searching through the space of possible network structures.

1. The score function: there have been some scores proposed for learning Bayesian networks.
These includes the AIC score [1], the BIC score [32], the K2 score [7], the BDe score [11], the
GU score [22] and the MDL (Minimum description length) score [19][29][3][33]. Remco R.
Bouckaert [3] indicates that the performance of learning Bayesian network structure using MDL
score is slightly better than the performance of the other scores. In this paper, we use the MDL,
which is an information-theoretic criterion that favors models which provide the shortest
description of the training data. This description includes both the description of the model and
the description of the data given the model. Formally, given a Bayesian network BN = (S;P),
and a training data set D, the MDL score of BN is defined as Scoreyp (BN;D) = MDL(BN) +
MDL(D\BN). Without going into details of MDL derivation, we just note here that the first term
of the MDL score is the description length of a Bayesian network, i.e. the number of bits
required to encode the network parameters, while the second term is the negative log likelihood
of the model BN given data D, which gives the number of bits needed to describe D when using
BN.

2. Structure searching strategy: the number of possible network structures (NS) grows
exponentially with the number of nodes (n) (cf. formula 2 [30][9]):

i

NS(n)=Y, (—1)"“(”)2“"-‘) NS(n—1) for n>1 @)
i=1
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For example NS(5) = 29281 and NS(10) = 4.2 x 10'® [30]. Therefore, most algorithms for learning
Bayesian networks are heuristic search algorithms. Some examples are the K2 algorithm [7], the Structure
EM algorithm [8] and the Greedy Equivalent Search (GES) algorithm [21][5][6].

3. DATA PREPARATION

The data colleting protocol has been described in [35] and already experimented on another case study
in [28][34]. 10 dashboards (AUDI A2, CITROEN C2, FIAT Idea, LANCIA Ypsilon, NISSAN Micra,
PEUGEOT 206, RENAULT Clio, RENAULT Modus, TOYOTA Yaris, VW Polo} are evaluated by
11 customers. (cf. Figure 1).

8 TOYOTA Yaris 9 VW Po

Figure 1. The 10 dashboards evaluated by customers

We defined a set of 8 technical attributes characterizing the dashboards with corresponding modalities
(two at least but the number may increase): the “Speedometer dial position”’={behind steering wheel,
at the center of the dashboard}, “Display lay-out”={Analogue, Digital}, “Air conditioner
control "={Button, Other}, “Air vent shape”’={Rounded, Square}, “Dashboard color”={Single color,
Two colors}, “Aerator shape”={Rounded, Square}, “Arrangement space”={Many, Few} and “Style
lay-out ”={Curved lines, Straight lines}. The characterization of the 10 dashboards according to the
technical attributes is objective and do not depend on the preference of customers. It is presented in
table 1.

Table 1. The technical characterization of the 10 dashboards

. . Air .
Dashboards Speedon_I?ter Dial | Display lay- conditioner Air vent Dashboard | Aerator | Arrangement | Style lay-
position out shape color Shape space out
control

AUDI A2 behind steering wheel| _analogue button square signle colour square many Straight lines
CITROEN C2 behind steering wheel digital other rounded signle colour rounded few curved lines
FIAT Idea at the center analogue other square two colours square many Straight lines
LANCIA Ypsilon at the center analogue other square two colours square many curved lines
NISSAN Micra behind steering wheel| analogue button rounded signle colour rounded few Straight lines
ew behind steering wheel analogue other rounded two colours rounded few curved lines
RENAULT Clio_|behind steering wheel| _analogue other square signle colour square few Straight lines
odus at the center digital button rounded two colours rounded many curved lines

TOYOTA Yaris at the center digital other rounded signle colour | rounded many curved lines
VW Polo behind steering wheel analogue other square signle colour square few Straight lines

We also defined a set of 11 perceptual attributes, which describe the customer assessing of the “Space
organization”, “Control button comprehensibility”, “Aerator lay-out”, “Arrangement space”,
“Comfort”, “Simplicity”, “Sportive lay-out”, “Masculinity lay-out”, “Quality”, “Novelty” and
“Harmony” (see [10] for details on attributes). The customer evaluations of the dashboard perceptual
attribute levels is made in qualitatively pairwise comparing the 10 dashboards under each of the 11
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perceptual attributes (see [20] for mathematical details). It leads to 11 normalized score vectors. The
advantage of this method is that the value scale is automatically built thanks to the pairwise
comparison mechanism without the need to define a specific metrics (for instance, a score of 0.1 for
the “Masculinity lay-out” means much more feminine than a score of 0.3). Next, each normalized
score vector (the scores sum is 1) is transformed to fit into a standard scale of [0, 20]. Finally,
continuous attribute levels are projected into discrete categories: [0, 5/=Very low, [6, 10]=Low, [10,
14]=Medium, [15, 17]=High, [18, 20]=Very high.

As 11 customers have participated to this study, a //0 x 19 matrix is then constructed: rows=10
dashboards x 11 customers, columns=38 technical attributes & 11 perceptual attributes.

4. UNSUPERVIZED KANSEI MODEL CONSTRUCTION

4.1. Model learning

An unsupervised Kansei model construction consists in an unsupervised learning of the whole set of
probabilistic relationships existing within the data and especially between perceptual attributes and
technical attributes. We used the SopLEQ technique [17][18][23], which is a quick search based on
the whole dataset. It uses a cost function based on the MDL score and a structure search method based
on equivalent model classes. The description of SopLEQ as well as its advantages compared to the
other search techniques is pointed out in [17][18][23]. Figure 2 represents the constructed BN without
any user modifications.

Space organ;%\ Dashboard colo

Air conditioner coptrol

- e o —®
“7%"’"3 space : Air vent shape Control comprehensibility

ﬁ Spee er Dial position

"y Aerator Shape o
@ G
o DD
Arrangement space perception =i =i Hovelty
Cumfnk Aerator lay-out
@ O
Harmony Quality =

Sportive lay-out

Figure 2 Unsupervised learning to identify probabilistic relationships within the data (i.e.
between dashboard physical - car icon - and perceptual - face icon - attributes)

Edges in this bayesian network can be interpreted as causal relationships. For instance, according to
Figure 2, the subjective attribute “Novelty” depends on the two physical attributes “Air vent Shape”
and “Speedometer position”. Each relation (i.e. edge) is expressed through a conditional probability
table, which is automatically computed. For example, the relation between “Novelty”, “Air vent
Shape” and “Speedometer position” is represented through Table 2.
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Table 2 Conditional probabilities representing the causal relation between “Air vent
Shape’, “Speedometer position” and “Novelty”. According to this table : P(novelty= very
low/ Speedometer dial position=at the center & Air vent shape=rounded)=13,6%

Speedometer dial Aerator Novelty
position shape Very low  Low Medium  High Very High
At the centre Rounded 13.6 36.4 31.8 9.1 9.1

Square 27.3 36.4 273 0.0 9.1
Behind steering Rounded 242 60.6 9.1 6.1 0.0
wheel Square 75.8 242 0.0 0.0 0.0

We notice here that the constructed model (Figure 2) allows identifying three types of relationships:

e Relationships within technical attributes. For example, “Air vent shape” has a direct impact on
the “Aerator shape”.

e Relationships within perceptual attributes. For example, “harmony” perception has a direct
impact on “comfort” perception.

¢ Relationships between technical and perceptual attributes. For example, the two physical
attributes “Air vent Shape” and “Speedometer position” have an impact on the “Novelty”
perception.

4.2. Model evaluation

The numerical accuracy of an unsupervised model is written as: P(D|BN) meaning the probability of
the data given the Bayesian Network (BN). It is more common to use the log likelihood of BN given D
provided by formula (3):

n Qi Ri

log,(P(D|BN) =Y >"> = (N, / N)*log(N,, /N,) 3)

=1 j=l k=l
Where:

e Uis the set of attributes {X,X,,....X,}, n>=1,

e 5 is the total number of attributes,

e X is an attribute which takes values from {X;;,X5....},

e  R;is the total number of values of X,

e D is the data set over U,

® BNis a Bayesian network structure over U,

e Nis a number of instances in D,

e P, is the set of parents of X in Bs

e W, The jth instantiation of P,

e () 1is the total number of value combinations of P; in BN,

® Ny is the number of cases in D in which X;=Xj; and P,=W;

-

k=1
The log likelihood measures how many bits are needed to describe D based on the probability

distribution P. It also has a statistical interpretation: the higher the log likelihood, the closer BN is to
model the probability distribution in the data D.
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To assess our unsupervised Kansei model, we split the data into two subgroups, a training set (Dyining
= 80% of the data set) and a testing set (D, = 20% of the data set). We selected the testing set to be
the most representative as possible with respect to the original data. In a second step, we learned a BN
using the training set. Then, we compared the log likelihood of BN given Dy and the log
likelihood of BN given D, The model is acceptable if the two values are close, i.e. [0g(P(Dyyining
/BN)) oo log(P(D,est/ BN)). This means that the model is able to represent unseen data (i.e. Dieg).
Log(P(Dyining /BN))=—21 .75 and log(P(Dm/BN))=-24.38. The model fits to the testing set as well as
to the training set.

5. MODEL USE SCENARIOS

As we pointed out in the introduction, three main use scenarios of our BN model are possible. We
present each of them with explaining examples in the following sub-sections.

5.1. Direct/analysis scenario

A design process can be perceived as a decision process during which the designer tunes a set of
technical attributes in order to satisfy a required predefined performance. Before carrying out any
decision (i.e. technical choice), the designer analyzes the impact of his choice on the others attributes
(perceptual as well as physical). The direct/analysis scenario allows answering the question “what is
the probable impact of the choice related to physical attributes on the other design attributes and
especially on the perceptual attributes”? In a sense, this scenario consists in observing a technical
attribute and analyzing its impact on the other attributes. It may typically be used to compare different
technical solutions. In a direct use scenario, the input is a technical (or physical) attribute. Let us take
the speedometer dial position as an example.

5.1.1. The impact of a technical attribute (e.g. “the speedometer dial position”) on the
perceptual attributes

An interactive simulation of the model we presented in Figure 2 allows us having an idea about the

global impact of the choice related to the speedometer dial position. According to Figure 3, placing the

speedometer dial at the dashboard center improves the novelty perception, the sportive layout, the

harmony perception, the quality perception, the arrangement space perception. However, at the same

time this choice may deteriorate the comfort perception as well as the control comprehensibility.

-
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4100,00%: | st the certer 27 459 ey lowe
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15 ,05% Medim
— o YRS High
0 e 1.19% h3 high
Moy 13157 Ecart - 6,637 L ery g )
20,45% D wery low ity b
36.36% Low t .
>a'55% Wielium Moy 11,455 Ecart : 5,709
4 55% High 17 37% Wery low
9,09% ety high 42 967 Loy
L J 20 7% Medim
crrtive | ot & 13,14% High
Ortre [&y-o 5, BE% R high
Wy 10,945 Ecart : 5,468 L~ Sy g

35,93% ety oy
§ Arran ement space ercep‘llon
43,20% Lowr Moy - 32 500 Erar: B4
13,58% Mlecdium
4 61% High 10.91% ey lowe
2 69% wery high 2T 2T% Loy

L J 36 36% Medim
comtort A 183E% High
Qmtol 9 09% h3 high
Moy | 776 Ecart: 6,012 L~ ery g )
=
45 45% Wery lony
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30,36% Low Moy © 9,925 Ecart -
9,28% MecdiLm
T AB% High 29 559% \-"ery (=30
3.85% ety high S59,09%
L J 6 329% Medlum
2.27%,
2.27% Very high

L

Figure 3. The influence of the speedometer dial position on the perceptual attributes
characterizing a dashboard.
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5.1.2. The interactions of a technical attribute (e.g. the “speedometer dial position”) with the
other technical attributes

A technical choice may be incompatible with other technical choices or induce hard constraints toward
other technical choices (e.g. cost, technological incompatibility, functional incompatibility, etc.).
Figure 4 shows that the “speedometer dial position” has significant probabilistic correlations with the
“dashboard arrangement space”, the “dashboard color” and the “dashboard style layout”. Indeed, a
change of the speedometer dial position may affect the arrangement space attribute and the choice of
the dashboard color and/or the choice of the style layout. For instance, the model sates that positioning
the speedometer at the center of the dashboard may increase the arrangement spaces (cf. Figure 4). It
also states that, generally, dashboard whose speedometer dial is positioned at the center have curved
lines styls layout and two colors (cf. Figure 4)

Speedometer Dial position Air vent shape
100,00% | at the center 50,00% = roLnded
ll,l]l]“.-‘u| behind steeti... 50,00% suare
' - -
Arrangement space Ajr condtioner control
0,00, |f—— ey 25,00% = hutton
100,00% many T5,00% ather
- -
Dazhboard colar Style lay-out
25,00% = signle colour 25,00% = Straight lines
T5.00% two colours T5,00% curved lines
- -
Aeratar Shape Display lay-out
A0,00% = rounded A0,00% E analogue
50,00% TojUare 50,00% digital
- -

Figure 4. The interaction of the speedometer dial position with the
technical attributes characterizing a dashboard. According to this figure,
dashboards whose speedometer dial is located at the center have
generally many arrangement spaces, two colors, curved lines style
layout and digital display layout.

5.2. Inverse scenario
The inverse scenario allows answering the question “what is the best choices (related to technical
attributes) designer has to perform in order to maximize a perceptual attribute”? This is a typical
question designer asks when he carries out a design synthesis task. In the pervious section, we
showed how a bayesian network allows designer to simulate the impact of a technical choice on
perceptual and technical attributes: input=design choice, output=impact on design attributes and
performances. In this section, we show how the same model allows designer identifying all possible
design choices that allow him optimizing a given perceptual attribute (or performance):
input=perceptual attribute to be optimized, output=possible design choices. In other words, this
scenario consists in observing a perceptual attribute and analyzing how it interacts with the other
attributes.

As an example, we take the “dashboard novelty perception” as target attribute to optimize and show

how a BN Kansei model allows identifying the best technical choices designers can perform to

improve that attribute. The same model we presented in Figure 2 can be used to carry out this
optimization: it allows the two following points:

o Identifying all technical choices a designer can perform to improve the perceptual target
attribute. Thereby, the designer can choose to tune the technical attributes, which are at the same
time the most relevant (in term of their impact on the target attribute) and which engender the
least constraints (in term of cost, time, technologies, etc.) (cf. Figure 5)
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. Analyzing the impact of the optimization and avoid to deteriorate other perceptual performances
of the design. For example, Figure 6 shows that improving the novelty perception is in
coherence with the improvement of other perceptual attributes such as the “quality”, the
“sportive layout”, the “harmony”, the “comfort”’. However, it may at the same time worsen the
“control comprehensibility”, the “space organization” and the “masculinity lay out” of a
dashboard. Providing a designer with all these information is crucial to help him optimizing his

choices.
<
nNﬂou\;e:rt;S 012 Ecart - 0,000 Display lay-out Arrangement space
ll,l]ll“ri:| Wery low 41 32% analogue 0,00% ey
0,00% i Lo 58 65% digital 100,00% many
ll,l]ll"a'i:I edium A
0,00% | : High
100,00% | Yery high Ajr vent shape Style lay-out
L
58 B3Y% rounded 20 BE% Straight lines
Speedometer Dial position 41 32% SOUErE 79,34% curved lines
100,00% : at the center
0,007, [fm— hehind steeri... Aeratar Shape Alr conctioner contral
58 B8% rounded 3412% buttan
Dazhboard color 41 32% SOjUArE 65,58% ather
24 56% signle colour
7o 44% tweo colours
A

Figure 5. The optimal technical choices designer should carry out in order to improve
the novelty perception of a dashboard
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Figure 6. The impact of improving the novelty perception of a dashboard. Improving
the novelty perception of a dashboard may be coherent with the improvement of
other perceptual attributes (e.g. quality, harmony), but it may also deteriorate some
other perceptual attributes (e.g. control comprehensibility, space organization).
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5.3. A compound scenario for desighing under constraints

In a design process, a designer is confronted to many constraints, which make the control of some
technical attributes hard (or impossible) because of restrictions related to the cost and/or time and/or
technology. In that case, the designer has to freeze some technical choices and tune others. Suppose a
designer looks for the different technical possibilities to improve the novelty perception of a dashboard
he is developing and suppose he has no other choice but putting the speedometer dial behind the
steering wheel. According to the previous sections (cf. Figure 5), this constraint does not fit with his
objective because a dashboard whose speedometer dial position is at the center looks more novel than
a dashboard whose speedometer is behind the steering wheel. Thereby the designer has to identify the
other levers (i.e. the other technical choices) he can perform in order to improve the novelty perception
of the dashboard he is designing. The unsupervised model we presented in Figure 2 allows handling
that issue.

In a sense, this is a mixed scenario of the two previous ones: at a first step a decision about a technical
choice, so a direct scenario, is performed (“speedometer dial position” “behind the steering
wheel”). Then an inverse scenario is carried out to know what are the other technical attributes the
designer can tune to optimize the perceptual attribute (i.e. to maximize the novelty perception). A
simulation of a compound scenario is represented in Figure 7.

Speedometer Dial position Style lay-out
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Figure 7. A compound scenario. A direct scenario is performed (“speedometer dial
position” = “behind the steering wheel’) and then an inverse scenario is carried out
(“novelty perception” = “High”) to know what are the other technical attributes the
designer can tune to optimize the perceptual attribute (i.e. to maximize the novelty
perception)

6. CONCLUSION AND PERSPECTIVES

In a design process, designers need tools to help them understanding customers’ needs and thereby

predicting their appreciation level of a new product. In this paper, we propose unsupervised learnt

kansei models to represent the whole set of probabilistic relationships existing within the data. They
are very useful to carry out a global optimization of the design. We defined three scenarios to use
these models:

. A direct/analysis scenario in which the input is a technical attribute and the output consists of
an analysis of its impact on the other design attributes (technical and perceptual). This scenario
is typically used when a designer wants to compare different technical solutions.

. An inverse/synthesis scenario in which the input is a perceptual attribute and the output
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consists of a list of technical choices the designer can perform to optimize the perceptual
attribute. This scenario is typically used when a designer wants to identify all technical solutions
to optimize a given performance of his design. He can then choose the most relevant and the
least constraining technical attributes to tune.

. A compound scenario in which both technical and perceptual attributes are observed and the
impact on the other attributes is analyzed. This scenario is typically used when a designer wants
to optimize a given performance of his design under design constraints (cost, time, technology,
etc.).

Through these three use scenarios, we showed that Bayesian Networks are a very flexible and
powerful technology in preliminary perceptual (or emotional) design in terms of simulation and
prediction capacities.
In a future work, we will propose other types of bayesian kansei models intended to help designers
performing a local optimization of their design. In fact, the unsupervised model we propose in this
paper is more adapted to carry out a global optimization of the design in that it allows learning all the
probabilistic relations that hold between all attributes. However, in a local optimization, a designer
looks generally for characterizing a target attribute (technical or perceptual). Thereby, he needs to
focus the learning on identifying relations between the target attribute he is optimizing and the other
attributes instead of learning all the probabilistic relations that hold in the data set. We will show that
supervised learning is more accurate with respect to the target attribute characterization than
unsupervised learning.

REFERENCES

[1] Akaike, H. (1974) 'A new look at the statistical model identification', [EEE Transactions on
Automatic Control, Vol. 19, No. 6, pp.716-723

[2] Bayesialab, (2006). Bayesia tutorial Book. www.bayesialab.com

[3] Bouckaert, R. R. (1993) 'Probabilistic network construction using the minimum descriptions
length principle', Proceedings of the European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty.

[4] Buntine, W. (1996) 'A guide to the literature on learning graphical models', IEEE Transactions
on Knowledge and Data Engineering, Vol. 8, pp.195-210.

[5] Chickering, D. M. (2002a) 'Learning equivalent classes of bayesian network structures', Journal
of Machine Learning Research, Vol. 2, pp.445-498.

[6] Chickering, D. M. (2002b) 'Optimal structure identification with greedy search', Journal of
Machine Learning Research, Vol. 3, pp.507-554

[7] Cooper, G. F. and Herskovits, E. (1992) 'A bayesian method for the induction of probabilistic
networks from data', Machine Learning, Vol. 9, No. 309.

[8] Friedman, N. (1998) 'The bayesian structural EM algorithm', Proceedings of the Fourteenth
Uncertainty in Artificial Intelligence Conference (UAI-1998), San Francisco, CA, Morgan
Kaufmann Publishers, pp.129-138.

[9] Friedman, N. and Koller, D. (2003) 'Being bayesian about network structure. A bayesian
approach to structure discovery in bayesian networks', Machine Learning, Vol. 50, pp.95-125.

[10] Harvey A., (2005), Application of an integrated method to a study of the consumer perceptions
of automobile dashboards, Research Internship report in Ecole Centrale Paris, University of
Bath.

[11] Heckerman, D., Geiger, D. and Chickering, D. M. (1995) 'Learning Bayesian networks: the
combination of knowledge and statistical data', Machine Learning, Vol. 20, No. 3, pp.197-243

[12] Hsiao S.W., Wang H.P., 1998. Applying the semantic transformation method to product form
design. Design Studies 19, 309-330.

[13] Huang C., A. Dawiche (1996). Inference in Belief Networks : A Procedural Guide.
International Journal of Approximate Reasoning, 15, p225-263.

[14] Jensen F.V. (1996). An Introduction to Bayesian Networks. (UCL Press (Ed)), London.

[15] Jindo T., Hirasago K., 1997. Application studies to car interior of Kansei engineering.
International journal of industrial ergonomics 19, 105-114.

[16] Jordan, M. 1. (1998) Learning in Graphical Models, MIT Press, Cambridge, Massachusetts.

7] Jouffe L., Munteanu P. (2001), New Search Strategies for Learning Bayesian Networks,
Proceedings of Tenth International Symposium on Applied Stochastic Models, Data Analysis,

ICED’07/ Paper No 385 11



Compiégne, France.

[18] Jouffe L.,(2002), Nouvelle classe de méthodes d'apprentissage de réseaux bayésiens, Journées
francophones d'Extraction et de Gestion des Connaissances (EGC), janvier 2002, Montpellier,
France.

[19] Lam, W. and Bacchus, F. (1994) 'Learning bayesian belief networks: An approach based on the
MDL principle', Computational Intelligence, Vol. 10, pp.269-293.

[20] Limayem F., Yannou B., (2004), Generalization of the RCGM and LSLR Pairwise Comparison
Methods. Computers and Mathematics with Applications, vol. 48: p. 539-548.

[21] Meek, C. (1997), 'Graphical Models: Selecting causal and statistical models', PhD thesis,
Carnegie Mellon University.

[22] Mehmet, K. and Gregory, C. (2002) 'A bayesian network scoring metric that is based on
globally uniform parameter priors', Proceedings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-02), San Francisco, CA, Morgan Kaufmann Publishers, pp. 251—
258

[23] Munteanu P., Bendou M. (2001) The EQ Framework for Learning Equivalence Classes of
Bayesian Networks, First IEEE International Conference on Data Mining (IEEE ICDM), San
José.

[24] Nagamachi M., 1995. Kansei engineering: a new ergonomic consumer-oriented technology for
product development. International Journal of Industrial Ergonomics 15, 3-11.

[25] Nagamachi M., 2002. Kansei engineering as a powerful consumer-oriented technology for
product development. Applied Ergonomics 33, 289-294.0sgood C.E., Suci G.J., Tannenbaum
P.H., 1957. The measurement of meaning, Illinois press.

[26] Naim, P., Wuillemin, P. H., Leray, P., Pourret, O. and Becker, A. (1999) Les Réseaux
Bayésiens, Eyrolles, Paris

[27] Neapolitan, R. E. (2003) Learning Bayesian networks, Prentice Hall, Upper Saddle River, NJ.

[28] Petiot J.-F., Yannou B., (2004), Measuring consumer perceptions for a better comprehension,
specification and assessment of product semantics. International Journal of Industrial
Ergonomics, vol. 33(6): p. 507-525.

[29] Rissanen, J. (1986) 'Stochastic complexity and modeling', The Annals of Statistics, Vol. 14, No.
3, pp-1080-1100.

[30] Robinson, R. (1977) 'Counting unlabeled acyclic diagraphs' In Combinatory Mathematics V(Ed,
Little, C.) Springer, Berlin, pp.28-43

[31] Spirtes, P., Glymour, C. and Scheines, R. (2000) Causation, Prediction, and Search, MIT Press,
2nd edition, Cambridge, MA.

[32] Schwarz, G. (1978) 'Estimating the dimension of a model', Annals of Statistics, Vol. 6, pp.461—
464.

[33] Suzuki, J. (1993) 'A construction of bayesian networks from databases based on an MDL
principle', Proceedings of the 9th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-93), San Francisco, CA, Morgan Kaufmann Publishers.

[34] Yannou B., Petiot J.-F., (2004), A methodology for integrating the customers' assessments
during the conceptual design. in DETC/DTM: ASME Design Engineering Technical
Conferences / Design Theories and Methodologies, Sept. 28 - Oct. 2, Salt Lake City, Utah,
USA.

[35] Yannou B. (2007). Easy and flexible specifications and product evaluations by expert and
customer comparisons with existing products, submitted to ICED’07

Contact: Bernard Yannou

institution/university: ~ Ecole Centrale Paris

department: Laboratoire Genie Industriel (LGI)

street: Grande Voie des Vignes

PO Box, City: 92295 Chatenay-Malabry Cedex

Country: France

Phone: (33) 14113 15 21

Fax: (33) 141131272

e-mail: bernard.yannou@ecp.fr

ICED’07/ Paper No 385 12



