
1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 03 STOCKHOLM, AUGUST 19-21, 2003

CAPTURING PRODUCT REQUIREMENTS INTO THE
TRANSFORMATION MODEL OF A TECHNICAL PROCESS BY USING

UML

Tapio Korpela

Abstract

The design process of an original new product is started by an implementation free definition
of the problem. The external properties of a product are commonly clarified at first. Typical
users, user interfaces, and the typical using scenarios of the different kind of users are this
kind of external properties. In my paper I am going to discuss and present ideas, how the third
generation object-oriented graphical language (UML) can be applied for capturing product
requirements into the formal models in early phases of the design process.

Key words: process modelling, requirements modelling, theory of technical systems

1 Introduction

In early phases of a design process the designer knows what the system should do, not how
the system should be implemented or realised. The information processing science has
developed object-oriented modelling methods for capturing the information and behaviour of
entities in systematic models. The third generation object-oriented process modelling
language: “Unified Modelling Language” (UML) [3] has been developed and adopted for the
newest release of the model. The original designers of the Unified Modelling Language:
James Rumbaugh, Ivar Jacobson and Grady Booch have developed earlier also their own
object-oriented modelling methods, which are: the Booch method, published in 1991 [2], the
Object Modeling Technique (OMT) by Rumbaugh et al., in 1991, and the Objectory (OOSE)
by Jacobson et al., in 1992 [7]. The aim of the object oriented analysis method (OOA) is to
make an implementation free model of the system. This model includes also the models of
mechanical and electrical components. The same kind of basic idea of an implementation free
model is seen also in the model of the technical process in the theory of technical system by
Hubka and Eder [6].

2 Transformation system

A technical process is needed to transform something from an unsatisfactory state to a
satisfactory state. In this process human beings, technical products and an active environment
co-operate. An example of these transformation processes and products could be:

• Mobile phone: An urgent need to contact a distant person -> A person is reached for a
conversation or a message is left for her or him,

2

Vladimir Hubka and W. Ernst Eder, in their book: “Theory of Technical System” (TTS) [6],
describes a total concept theory for engineering design. In this theory the product to be
designed (technical system, TS, in Fig. 1) is one part of the transformation system, in which
the technical process (Tp, in Fig. 1) is a formalised transformation process, which changes the
state of operands (Od, in Fig. 1) in desired way. Transformation system consists of humans
(Hu, in Fig. 1), environment (Env, in Fig. 1) and technical system, which co-operate with one
another as well as with the technical process.

Technical process is decomposed into the partial processes, which are related to each other by
the states of operands between consecutive processes. Transformations in these partial
processes are realised by certain effects (Ef, in Fig. 1) , which are the means of achieving the
desired transformation on operands. The effects are produced by the operators, which are:
humans, technical systems and active environment. The active units, which create the
necessary effects in the technical system are called organs and the organs are maintained in
the final machine structure by parts. These three domains (transformation, organs and parts)
are the basic elements of the Domain Theories (DT) developed by M. Myrup Andreasen [1].

M
E

I
M M

E E
I I

MEI

MEI

Σ Hu

ΣTS

AEnv

TpΣOd1 ΣOd2

MEI

ΣEf

M E I Material
Energy
Information

M
E
I

=
=
=

Figure 1. The transformation system by Hubka and Eder [6].

The most important part of this model is the state transition model of the Technical process,
because the whole understanding of the problem to be solved is captured into it. Concluding
from this matter, the crucial thing is to define the technical process. The first draft of the
technical process for the problem can be a traditional preceding manual method, or a method,
which has been used in the competitive product.

3 Object-oriented analysis

Object-oriented methods in software engineering are divided into implementation-
independent analysis (OOA), implementation-dependent design (OOD) and implementation
with a programming environment (OOP). Most important phase is analysis, because it is fully
application-oriented and it is in this process that the logical customer-oriented models of the
system are processed. The OOA process for software engineering, according to [7], is
presented in Fig. 2.

3

Analysis
process

Analysis model

Customers

Domain object model

Use case model

Interfaces

Requirements model

Control object
Entity object

Interface object

Requirement
specification

Figure 2. The OOA-process for system modelling by Ivar Jacobson [7].

The aim of object-oriented analysis is to model the system domain in a fully application-
oriented manner. The implementation tools used, e.g. DBMS and programming source codes,
do not constrain the OOA process. Analysis starts with requirements modelling. In
requirements modelling of a system, the external properties of a product are commonly
clarified at first. Typical users, user interfaces, and the typical using scenarios of the different
kind of users are these kind of external properties. OOA offers formal methods for this
definition process in carrying out using actors, use cases, classes, and sequence and
collaboration diagrams, which is called the Use Case development [4]. The requirements of a
design system are clear and easy to refine to object models with end users, because the
semantic gap between the model and reality is small [7]. The notations used in the modelling
process are usually simple and easy to understand. In Fig. 3 there has been presented the
principle idea of the object oriented analysis process.

Figure 3. From real world entities to the models of objects and classes.

4

The real world entities, called instances in Fig. 3, are modelled by the list of attributes. These
instances have their common behaviour patterns, which can be modelled by state transition
diagrams. The attribute structure and common behaviour of similar instances are defined in
their common classes [2]. In the transformation model by Hubka and Eder (presented in Fig.
1.), the needed effect f(Ef) to achieve the transformation from initial unwanted state Od1 to
the final desired state Od2 is produced by the technical system, human or the active
environment. Similar to this principle is to abstract the common behaviour pattern to produce
the lifecycle of an unspecified instance of a system or an object by using state transitions
diagrams in OOA.

The UML notation encompasses [3]:

• things, which are structural things such as classes, interfaces, collaborations, use cases,
active classes, components, and nodes; behavioural things such as interactions and state
machines; grouping things which are packages; and annotational things which are notes.

• relationships, types of which are: dependency, association, and generalization.

• diagrams, which are: class, object, use case, sequence, collaboration, statechart, activity,
component, and deployment diagram.

• extensibility, which consists of three mechanisms for extending the UML language syntax
and semantics: stereotypes, tagged values, and constraints.

4 The chain from state transition to the structure

According to German Gerhard Pahl and Wolfgang Beitz [8] a system has boundary, which
connects it to its environment by means of inputs and outputs. A system can be divided into
sub-systems. It is possible to define appropriate system at every stage of abstraction, analysis
or classification. As a rule such systems are parts of larger, superior systems. All technical
systems involve the conversion of energy, material and/or signals, which must be defined in
quantitative, qualitative and economic terms [8].

First the system is described by an overall function, which is abstracted from the technical
specification. The overall function is divided into the sub-functions. This process leads to the
functions structure (functional interrelationship). Sub-functions are solved by means of
working interrelationships. These are effects of physical (chemical, biological) phenomena or
geometric or material characteristics to fulfil the sub-functions. The result is the working
structure, which is called the organ structure in Theory of Technical Systems (TTS) by Hubka
and Eder [6] and in Domain Theories (DT) by Andreasen [1].

Parts and assemblies, which realize and maintain the working structure form a constructional
interrelationship. The construction to be designed usually belongs to a superior system. It has
a system interrelationship. In this level the product has its contact to the users and active
environment. The superior systems effects also internally to the lower level constructions.

If an electric shaver is taken as an example for the product definition, the primary problem is:
“How the beard on the face is cut as short as possible without damaging the skin under the
beard?” As an active environment the electric power is available from the plug or from
included loadable batteries. The body of the device can be manufactured handy and light. The
electric power is able to transform easily to reciprocating or rotating mechanical movement.

5

The critical construction is the cutter head. When starting the definition, the scenarios of the
problem: “How to shave?” can be written. The designer has images of practical user
interfaces for the device. These matters outline the first draft of the implementation free
model of the technical process. The technical process is a state transition model, which is
accomplished during the design process. The development of the needed technical system is
the conclusion chain from needed effects to make state transitions happen in the technical
process to the means, which are realized by the machine constructions and other technical
solutions, as it is presented in the next Fig. 4.

Clean the
cutter
heads

USE CASES

Shave

User interface

A user in the
initial bad
state

State 1

State 2
Technical
Process

The chain from state
transitions to the
structural solution for
the different
abstraction levels

Refines the
process

Initiates the
technical process

 Figure 4. Design data is maintained and managed in the state transition model of the technical process.

Modern products include very often besides mechanics also electrical components and
embedded software. The automation (hardware and software) gets stimuli from the
environment by the help of sensors such as thermocouples, optical scanners and contact
probes, for example. An effector is the part of mechanical, electrical, optical equipment or
components to make an effect that causes some chances in the environment into which these
components belong to.

6

The design process of an original new product is started by the implementation free definition
of the problem. Use Case development, which is used in Unified Modeling Language (UML)
and presented also in the previous pages of this paper, offers powerful formal tools for
modelling the requirement of the product. The results of the definition are captured into the
state transition model of the technical process, as it is presented in the next Fig. 5. The means
to carry out the state transitions in the technical process are realized by software, or electrical
hardware, or mechanical constructions.

Preliminary Problem
Statement

An external view

Use Case

Use Case

SYSTEM and OBJECT
LEVEL LIFECYCLES

State 1

State 2

State 3

State 4

event1

event3

event2

event4

Sequence Diagrams

Software Design and
implementation

Electrical Engineering
Design

Mechanical Engineering
Design

Components

Packages

State 1

State 2

Technical Process
Initial
Unsatisfactory
State

 Final
 Satisfactory
 State

Sensor

Effector

Processor

 state
transition

means

is realized bymeans are realized
and maintained by

(user manuals)

means are physical, chemical,
or biological effects, which are
needed to succeed the technical
process

A textual scenario of
"WHAT" the system
should do

Figure 5. The layered design process of a mechatronic product.

Design tools for the software, the electrical engineering, and the mechanical engineering
includes their own class hierarchies and libraries for modelling and implementing the detail
structures in these different disciplines of the technology. The unifying layers of the product
modelling presented in Fig. 5 are the state transition model of the technical process and the
models of the use case development, which are accomplished during the design process.

5 An example

The problem is to define and develop a self-service cocoa maker maintained by the bartender
and used by an ordinary client as a self-service machine in a cafe. The first draft of the
technical process can be read from a commercial package of cocoa powder under the heading
“Directions for use”.

7

Mix together

Add boiling
milk or water
to the cup

Stir the
liquid

Heat the water
or milkApportion cocoa

and sugar into
the cup

Figure 6. The first draft of the technical process for making a cup of cocoa.

Some obvious and tangible objects, which have direct counterparts in the modelled world
(Domain objects), can be perceived. Water tank, heater, boxes for cocoa, sugar and dry milk,
apportion systems and mixing system are needed for example in the cocoa maker. More
objects can be found by using a top-down approach to requirement modelling, whereupon
new objects appear throughout the OOA process.

The UML offers for the requirements modelling: the use case models, sequence diagrams, and
statecharts of the use cases. In this case there are two typical users (actors) and their use
cases, namely the bar client, who makes the cup of cocoa with the system and the bartender,
who keeps the cocoa maker up. Simple user interfaces for the client and the bartender can be
described.

THE CLIENT THE BARTENDER

keep the machine
 up

System boundary box

restore and/or inlet

WATER MILK

apportion
mix up

co
nt

ro
l

he

at
 COCOA

&
SUGAR

CUP

USER INTERFACES W M

make the cup of
 cocoa

Figure 7. The actors, their use cases and the preliminary layout of the cocoa maker.

The more interesting and meaningful is the use case of the client. In Fig. 7 there has been
presented the first draft of the simple user interface of the client. The interface consists of the
start button marked with a letter “S”. There are also the selection buttons for milk (marked
with “M”) and for water (marked with “W”). The textual description for the client’s use case,
which is also the directions for use, could consists of the following lines:

1. Put an empty cup under the tube.

2. Press the start button marked with “S” in the panel.

3. Wait until the milk and water buttons marked with “M” and “W” start to blink in the
panel.

4. Select the liquid into your cocoa by pressing milk or water button in the panel.

5. Wait until the lights in the buttons are gone out.

6. Take the cup out of the machine table.

8

The use cases and their textual description are external views of the system. The technical
process can be refined by modelling the behaviour of the system. Statecharts are formal
graphical language for defining the behaviour of the use case. In modelling the statechart of
the clients use case (Fig. 8), there has been applied Sally Shlaer’s and Stephen J. Mellor’s
state transition modelling method [9].

1. Idle

2. Idle with cup
 on the table

V1: The empty cup
 is put under
 the tube.

V2: The Start button
 is pushed

3. Initial the
 process

Generate S1: Turn on
light in "S" button
Generate C1: Start
the apportion of
cocoa and sugar

4. Cocoa and sugar
 in the cup

Generate M1: Start light
blinking in "M" and "W" buttons
Generate C2: Stop the apportion
of cocoa and sugar

V3: Wait

V4: The "W"
 button is
 pushed

6. The whirlpool
 running of water

Generate M3: Check that the
apportion of milk is stopped
Generate G1: Start the water
pump

V5: The "M"
 button
 is pushed

5. The milk powder
 is apportioned

Generate M2: Start the apportion
of dry milk powder V3: Wait

V3: Wait7. Cocoa is in the cup

Generate G2: Turn
the water pump
off

V6: The cup is taken
 out of the machine

Generate T1: Check that
the cup is under the tube

Figure 8. State model of the cocoa making process.

A state transition diagram (STD) for the cocoa maker is presented in Fig. 8. The states are
represented in rectangular boxes. The states have been written in these boxes and they are
labelled with order numbers. The transitions are shown by arcs, which connect the two states.
Each transition is labelled with the letter “V”, order number and the event that causes the
transition. The texts under the state boxes labelled with the text “Generate” are the actions,
which are associated with the state above. An action is an activity or operation that must be
accomplished when an instance (object) arrives in a state. State modelling method used in this
example differs from the method used in UML. The state model of Shlaer & Mellor [9] bases
on Moore form, which allows actions only upon state entry. The UML notation includes also
actions when a transition is taken (Mealy form) and activities, which takes place during the
states. States can be nested and the transitions can be modelled more precisely in the UML
[5].

In this example the statecharts has been applied for modelling the behaviour of the use cases.
Later in OOA process the statecharts are applied to model the behaviour pattern of one object.
Actions associated with the states gives the functions of the objects. Besides this objects have
static relationships and they communicate with each other. Typical static relationship among
objects can be aggregation (part of) or inheritance (kind of). The water tank and the heater
element are parts of the cocoa maker. Start button is a kind of push button. Events between
objects and external entities such as operators (users of the system), physical devices, and
objects in other subsystems are modelled by the object collaboration models.

The sequence diagram in the UML is used to model the flow of control in the system. It
shows the sequence of messages between the objects in the system. There are two scenarios
for the client’s use case. The cup of cocoa can be made with or without milk. In the next Fig.
9 the case with milk has been presented.

9

S W M

MMI
the apportion
of cocoa and
sugar

the apportion
of dry milk
powder

hot water
supply

push

start the apportion

stop
the app.

turn the
light on

start to
blinkstart to

blink
stop
blinking

start the
apportion

stop
the app. start the

whirlpool
running of
hot water

stop
the run

turn the light off

apportion

apportion

run the
water

turn the light off

push

MODULE 1 MODULE 2 MODULE 3

:user

put an emty
cup under the tube

take the cup of cocoa from the cocoa maker

Figure 9. The sequence diagram for making a cup of cocoa with milk.

Co-operative actors, user interface objects and the known domain objects are named in the
upper side of the diagram and drawn as vertical lines (dashed lines in Fig. 9). Horizontal
arrows with texts are the messages. The sequence diagram allocates the needed functionality
of the product (operations) to the participating objects.

6 Conclusion

The design process of an original new product is started by the implementation free definition
of the problem. The external properties of a product are commonly clarified at first. Typical
users, user interfaces, and the typical using scenarios of the different kind of users are these
kind of external properties. The third generation graphical OO modelling language UML
offers formal methods for this definition process in carrying out using actors, use cases,
classes, and sequence and collaboration diagrams, which is called the Use Case development
[4]. The results of the definition are captured into the transformation (state transition) model
of the technical process. The means to carry out the state transitions in the technical process
are realised by software, or electrical hardware, or mechanical constructions. Design tools for
the software design, the electrical engineering design, and the mechanical engineering design
include their own class hierarchies and libraries for modelling and implementing the detail
structures. The integrating layers of the design process are the state transition model of the
technical process and the models of the use case development, which are accomplished during
the process. In this way the models for defining the product corresponds always with the
designed construction during the process, and the chain from technical requirements to
constructions can be traced from the models.

10

Modelling tools, which base on UML, have been developed for modelling the software for
information systems and embedded control for mechatronic products. In these tools software
and electrical modules of products are modelled and managed well from requirements into the
implementations. Mechanical modules have been considered only by their I/O interfaces in
these system models. Characteristics of mechanical solutions have to be taken into account
from the first line of product development to the final structural solutions so that the best
combination of the solution principles are found out in these modelling approaches.

References

[1] Andreasen, M., M.: “Design Methodology”, a PhD course on theory, research and
education, Technical University of Denmark, Denmark, 1998.

[2] Booch, G.: “Object-Oriented Design with Applications”, The Benjamin/Cummings
Publishing Company Inc., California, 1991.

[3] Booch, G., Rumbaugh, J., Jacobson, I.: “The Unified Modeling Language User Guide”,
Addison Wesley Longman, Inc., USA, 1999, 482 p.

[4] Canals, A.: “Use of UML/CS SI Development Process”, JOOP, 13(12): 10-17, April
2001.

[5] Douglas, B., P.: “Real-time UML: developing efficient objects for embedded systems”,
Addison-Wesley Longman Inc., United States of America, 2000.

[6] Hubka, V. & Eder W.,E.: “Theory of Technical Systems”, Springer-Verlag, New York,
1988.

[7] Jacobson, I., Christerson, M., Jonsson, P. & Overgaard, G.: “Object-Oriented Software
Engineering: A Use Case Driven Approach”, Addison-Wesley, Wokingham, England,
1992.

[8] Pahl, G., Beitz, W.: “Konstruktionslehre: Handbuch für Studium und Praxis”
2. Auflage, Springer-Verlag, Berlin, 1986, 590 p.

[9] Shlaer, S. & Mellor, S.,J.: “Object Lifecycles: Modeling the World in States”,
Englewood Cliffs, New Jersey, Yourdon Press, 1992.

Corresponding author:
Tapio Korpela
University of Oulu
Department of Mechanical Engineering
P.O.Box 4200, FIN - 90014 University of Oulu, Finland
Tel: +358 8 553 2052, Fax: +358 8 553 2026, E-mail: Tapio.Korpela@me.oulu.fi

