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1 Introduction 

The product and this way the production process determines the economic prosperity of a 
company. Constructional design plays an important role in the manufacturing process. Not 
only the quality requirements but also the necessary time and costs, hence optimal resource 
management are essential criteria when the efficiency of the process is determined [4]. 

Several methods, procedures and models have been developed in the fields of operations 
research, organization, management, information technology and engineering sciences for 
manufacturing and innovation processes from the strategic design of the product to the 
introduction to market.  

2 Background 

Simple relation models, methods such as the ERM (Entity Relationship Model) are used to 
describe the structure of processes, while models applied in network planning are Petri nets,  
PERT (Program Evaluation und Review Technique), CPM (Critical Path Method) and MPM 
(Metra Potential Method). 

The development process is often illustrated with the Nassi – Schneidemann, PAP and Gantt 
diagram, which is wide spread in the scheduling tasks in project management. 

The Popp type generalized decision net supports the decision steps of production and models 
the development process with activities, decision points and stochastic nodes as well as 
forecasts the progress. 

Hierarchic relation models, graphical description methods like the SADT are applied in 
activity and data modeling. Up-to-date information technological or artificial intelligence 
methods such as neural networks are also more and more frequently used. 

The first generation model of product development that only contained the classical steps was 
worked out at NASA in the 1960s. In Europe the outstanding representatives of the German 
theoretical design trend, i.e. R.Koller, K.-H. Roth, G. Pahl and W. Beitz worked out process 
plans of uniform structure for the purpose of development and constructional design [5]. 
These were the basis of VDI Richtlinie 2221 and 2222 [15], which are considered to be a 
transition to the second generation and are applied frequently in the industry.   
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The second generation models focused on activities, preserved the rigid sequential separation 
of phases in the development process and separated the phases with exact decision points. 
Several theories, such as the integrated product development proposed by Ehrenspiel, quality 
standard ISO 9000, axiomatic design theory (Suh) and general design theory (Tomiyama) 
have been worked out on the basis of these activity oriented models. This way the autogenetic 
design theory (Bercsey- Vajna) as well as design systems that provide primarily theoretical 
and methodological support, such as TRIZ/ARIZ (Altschuller) and the contradiction oriented 
WOIS (Linde-Hill) have evolved based on the analogy between the evolution of natural and 
technical systems,  

The third generation phase gate models that allow the overlapping of phases and activities and 
the flexible transformation of the process model dependant on the task, company and risk 
were developed from the second generation models. Decisions in the model also depend on 
the optimal process of the whole development project. Two applications of these third 
generation models are QS9000 and VDA 4.3. 

The development trend of methods inevitably show that there is an increasing need for the 
decomposition of processes to the smallest available details, for the consideration of the costs, 
resources and time of the process and for the dynamic optimization of the process according 
to these parameters.  

Processes can be rather long and costly, so finding optimal schedules is crucial in product 
success over competitors. There are many possible objectives when considering a project 
precedence problem. These include minimizing process cost, minimizing variation of resource 
profiles, or minimizing project duration. In particular, minimizing project duration or 
makespan is of strategic significance in the stage of product planning for product 
development problems. 

The designer usually requires an aid for effective design since it requires overall knowledge, 
checking and control of all processes and activities. This aid should model the series of 
activities, all possible parameters (e.g. time, cost) and the environment as well. If the 
environment changes, the model should react considering all the intervention possibilities. 

3 Modelling 

Process elements, the logical relations of which are defined in rules, are applied in process 
modeling and description. The following techniques are available for process description [5]:  

− Flowchart 

− Sequence diagrams 

− Multiple Activity diagram 

− Process diagrams. 

The most wide spread, standardized process modeling method is the SADT (Structured 
Analysis and Design Technique) [9], which is one of the Multiple Activity diagram 
techniques. SADT is a graphical method and is similar to data flow and structure diagrams, 
although it is more general and uniform. It has disadvantages since it is vast, difficult to 
handle and to modify (see Figure 1) due to graphical and hierarchical mapping (only a limited 
number of boxes can be illustrated on the given sheet size). 
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Figure 1. An example of SADT [16] 

The IDEF (International DEFinition language) [16] family has been formed on the basis of 
modeling tool SADT so that process modeling of different purposes can be carried out. There 
are four versions considered to be important in design processes. Their modeling tools differ 
to a certain extent, since the purpose of the description is also different but the principle is the 
same as in the SADT model.   

IDEF0 is used to produce a function model which is a structured representation of the 
functions of a manufacturing or design system or environment and of the information and 
objects which interrelate to those functions. 

IDEF1 is used to produce an information model which represents the structure of information 
needed to support the functions of a manufacturing or design system or environment. 

IDEF2 is used to produce a dynamics model which represents the time varying behavior of 
functions, information, and resources of a manufacturing system or environment. 

An IDEF3 process description organizes the network of relations between situations in a 
specified scenario. IDEF3 descriptions are developed from two different perspectives: 
process-centered and object-centered. Because these approaches are not mutually exclusive, 
IDEF3 allows cross-referencing between them to represent complex process descriptions. 

These versions can be integrated but then their usage and computerization becomes difficult. 
Since handling the costs, time and resources is important from the aspect of design processes, 
these factors should be presented in a way that makes exact description and optimization 
possible. This task can be solved with using the Design Structure Matrix (DSM).  
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The adaptation and conversion of process models do not result in data loss, and they can be 
transformed back to their original state exactly from DSMs (see Figures 2 and 3). 

4 Design Structure Matrix 

Stewart [12] has used DSM for the first time to describe informational and organizational 
relations. 

The DSM method is based on the fact that the sequence of activities can be rearranged on the 
basis of the relations among the design processes of the product elements. This way the whole 
process is easier to understand and becomes shorter (cheaper).  

A matrix with the following parameters was used in the description of the relation among the 
structural elements of the product to be designed: 

The main structural elements (S.E.) of the product Ai (i=1,2,…,n) define the matrix shown in 
Figure 3. The elements of the diagonal represent themselves, hence aij=0 (i=j). The other 
elements of matrix A reveal the relations between the main structural elements.  

If the structure elements provides information for Ai, aij=1 otherwise aij=0 meaning that there 
is no connection between elements Ai and Aj. If aij=1 and i<j are valid for one element in the 
matrix, it is supposed to be above the diagonal and refers to a feed forward relation. While if 
i>j, the element is below the diagonal and refers to feedback or to a cycle. In case of a cycle 
the number of supposed cycles based on the current sequence can be given (see Figure 3). 

If the description of the method is applied, Figure 2 can be transformed into the matrix 
revealed in Figure 3 and vice versa.  
 

1.

2.

3. 4. 5. 6.

7.

1.

2.

3. 4. 5. 6.

7.  

Figure 2. Process blocks 

Further information, such as the time and cost of design, can be assigned to the matrix 
elements. These pieces of information are shown in Figure 4, in the second (time) and third 
(cost) columns of the matrix.  

The relations plotted in DSM can be transformed into graphical form in the way revealed in 
Figure 3.  
 

 4 



Ai 1 2 3 4 5 6 7 

1 *     1  

2  *    1  

3   * 1   1 

4    * 1   

5     * 1  

6      * 1 

7      1 * 
 

Independent

Coupled 

Dependent

1.

2.

6.

7.

3. 4. 5.

 

Figure 3. Interpretation of relations  

When the matrix is produced, the number and ‘size’ of feedbacks (containing more elements) 
is huge due to the precedence, hence more time is required and the costs are also higher.  An 
example is shown in Figure 4, in the 20-8 and 18-5 column-row combinations. 

From the aspect of information flow it is rather disadvantageous if the cycles cross. This 
results in increased costs and chaotic events, as well during the planning process due to 
information redundancy and uncertainty. An example for this phenomenon is revealed in 
Figure 4, where cycle 20-14 crosses cycle 17-10.  

The aim is to produce a sequence of DSM elements in which the number of feedbacks and 
crossovers is minimal, while costs and required time is also decreased. 

It has been shown earlier that the scheduling problem subject to precedence and resource 
constraints is NP-Hard [6], leaving exact methods time consuming and inefficient at solving 
large problems and real-world applications. Besides the impact of problem size, problem 
complexity also relies on how highly constrained the problem is. There exist benchmark 
instances with as few as 60 tasks that have failed to been solved to optimality [7]. 

This task requires an optimizing algorithm that can also solve robust tasks, as well and is 
capable of fast optimization when there are more, weighted aims. Hence genetic algorithms 
(GA) have been chosen for the optimization task [11]. Since the applicability of GAs depends 
on the type of the task, preliminary examination is necessary for the correct setting of 
algorithm parameters (mutation and crossover probability, selection procedures). 
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S.E. T C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 30 30 1
2 40 20 8
3 10 50 1
4 10 50 1
5 10 50 1
6 50 10 4 2 1 1 1
7 40 20 1
8 50 10 8 6 2
9 20 40 7 2

10 20 40 8 1
11 40 20 8
12 30 30 5
13 30 30 3 1
14 20 40 6
15 30 30 4 8
16 20 40 6 7
17 30 30 8 7 8
18 40 20 6 8 6
19 50 10 6 2
20 40 20 7 4 2
21 20 40 8
22 20 40  

Figure 4. DSM example  

5 Genetic algorithms  

A genetic algorithm is a search method that first of all maps a wide range of allowed solutions 
randomly. After an evaluation it chooses the ones from the range that are most capable of 
living and it recombines and mutates them in a way that the results are almost optimal 
solutions. Genetic algorithms use the principles of biological evolution during stochastic 
searching and optimization [8, 10]. 

5.1 Coding 

Genetic algorithms usually work with the parameters to be optimized in a coded form (e.g. 
binary or gray coding) and not directly but in case of precedence optimization this is not 
effective [2, 3]. In this case a gene of “individual” (a given sequence, a solution of the search 
space) consists of the numbers of structural elements (chromosome) in an uncoded way. 

5.2 Selection 

The efficiency of two selection methods was examined among the individuals of the initial 
population, which is formed randomly, after evaluation.  “Better Half” [1] selection was one 
of these methods, where the better half of the population is selected to operate further genetic 
operators. The other type is “Tournament” [14], where the capability of living of the two 
individuals chosen randomly is compared and the better one makes it to the next step.  

5.3 Crossover 

During crossover the genetic information is interchanged between the two individuals and a 
new individual is formed. The algorithm carries out crossover with a so called position based 
crossover method [13]. This means that the algorithm chooses chromosomes randomly from 
one parent and these are rewritten in the child’s gene in the selected places. The remaining 
places are filled with the other parent’s elements in a way that the sequence is checked and 
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the first chromosome not present in the child is placed in the child’s first free chromosome 
place (see Figure 5). 
 

1 7 2 4 3 5 6

6 5 2 1 3 7 4

1 2 3 4 7 5 6

Parent 1

Child

Parent 2

chromosome

gen

1 7 2 4 3 5 6

6 5 2 1 3 7 4

1 2 3 4 7 5 6

Parent 1

Child

Parent 2

chromosome

gen

 

Figure 5. Position based crossover 

5.4 Mutation 

During mutation the algorithm chooses two chromosomes randomly in the child produced in a 
crossover and swaps the values of the chromosomes. This is the order based mutation [13]. 
 

1 2 3 4 7 5 6

1 7 3 4 2 5 6

Parent

Child

Selected for mutation

Swap with

1 2 3 4 7 5 6

1 7 3 4 2 5 6

Parent

Child

Selected for mutation

Swap with

 

Figure 6. Order based mutation 

5.5 Evaluation 

The different evaluation methods are detailed in Chapter 6. 

6 Examinations 

Position based crossover and order based mutation were used in our examinations. The 
impact of mutation, crossover parameters and the two different selection processes was 
examined (Chapter 6.1). With the help of the experience gained a multi object optimization 
task was solved in order to find a cost and time optimum (Chapter 6.2).  
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6.1 Testing parameter values and selection processes 

First of all the impact of the change in the ratio of the probability of mutation and crossover 
(0.1/0.9; 0.2/0.8; 0.25/0.75; 0.3/0.7; 0.4/0.6) was examined simultaneously with the efficiency 
of the “Better Half” and the “Tournament” selection in case of different matrix dimensions 
(10, 12, 16, 22). 

6.1.1 Evaluation 

During testing 1 time unit was uniformly assigned to the elements of the matrices. The aim of 
searching was to produce a sequence of structural element design the turnaround time of 
which is minimal.  

Turnaround time was calculated on the basis of Equation (1) and the cycles were also taken 
into consideration.  
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In this equation f(t) denotes the fitness function the minimum of which is to be found, TΣ is 
the calculated time value, ti is the time dedicated to one structural element, while n stands for 
the number of structural elements.  

6.1.2 Test results 

12 optimization processes were carried out during the tests. Efficiency was examined in the 
following way: the population number where the individual with the best fitness value 
appears was registered. Table 1 involves the average values (Av.) and the standard deviation 
(s) of the 12 optimizations. 

Table 1. Optimization results 
 

Mut. rate/ Crosso. rate

Matrix dim. Av. s Av. s Av. s Av. s Av. s Av. s Av. s Av. s Av. s Av. s
10 22 14 15 6 19 12 32 30 21 7,5 20 10 13 8 32 18 17 3 14 4
12 47 10 45 8 28 11 36 15 40 9 45 12 47 14 38 18 38 14 43 12
16 63 13 60 10 36 5 33 4 42 8 40 10 51 14 49 19 49 7 51 10
22 700 100 750 100 380 20 400 20 220 18 320 20 200 15 300 15 180 31 250 30

0.3/0.7
Better 
Half

Tourna-
ment

Better 
Half

Tourna-
ment

Better 
Half

0.4/0.6
Better 
Half

Tourna-
ment

Better 
Half

Tourna-
ment

Tourna-
ment

0.1/0.9 0.2/0.8 0.25/0.75

 
 

Figure 7 illustrates the average values (shown in Table 1) of two selected combinations 
(0.2/0.8 and 0.4/0.6). The efficiency (the population value where the best fitness was 
achieved) of the two selection procedures are graphed as a function of the matrix dimension 
in case of the above mentioned two mutation/crossover combination.  

The number of relations in the matrices was determined on the basis of the dimension so that 
the almost same filling was provided. The number of relations was set to be one and a half 
time the matrix dimension and ¾ of it was set to be feedback. The population size was 20 
during the tests. 
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Figure 7. Efficiency of selection processes  

The examinations revealed inevitably that efficiency of the “Better Half” selection is much 
worse than that of the “Tournament” selection in case of tasks of large dimension. The tests 
also showed that if the average fitness value of the population reaches that of the best 
individual, the algorithm sticks, since only the same individuals are present and the one-point 
crossover is not efficient. Search is only done due to the mutation probability and its small 
value slows down the process very much.  

This was experienced in case of the “Better Half” selection since there only the better half of 
the population takes part in offspring production. Thus, it converges more quickly than the 
“Tournament” selection but excludes the individuals which have worse fitness values but may 
contain sequences that could be positioned in a right place during crossovers. 

The examinations also proved that it is worth choosing a higher mutation/crossover ratio than 
the usual 0.2/0.8 if the dimension of the matrix increases. Since the algorithm implemented by 
us used only one-point mutations and crossovers, the trial of 2-point mutation and crossover is 
also planned in a further research project. A module that changes the value of mutation 
dynamically is also to be introduced in order to sustain the selection pressure. 

6.2 Multi object search, learning rate 

The optimization of design processes requires optimization according to time and cost. 
Hence, the evaluation process was modified in a way that both the time and costs can be taken 
into consideration simultaneously. During the development the fact that the customer 
requirements may differ for these two aims was kept in focus. For this reason a weighing 
factor was introduced for both parameters. This way the cost or the time can gain different 
importance.  
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A further learning rate was introduced in the cycles so that the model approximates reality 
better. The application of this rate is verified because the steps that occur more times in the 
cycles require less and less time and expense since the a priori knowledge necessary for the 
solution also decreases. 

The time and costs combined with the learning rate are calculated as the sum of a geometrical 
series (2) in our model: 
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where F∑ is the total time / cost, Xj is the time / cost of designing a structural element, Lrate is 
the learning rate and n is the number of cycles. 

6.2.1 Evaluation 

The applied fitness function f(c,t) (3) is determined with the help of the calculated time and 
costs and its components may have different weights.  The calculation was carried out in the 
following way: 
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where f(c,t) is the fitness function, the minimum of which is to be found, wc / wt is the weight 
of the cost / time value, Fc / Ft is the cost / time value calculated with Equation (2) and m is 
the number of the structural elements. 

6.2.2 Algorithm parameters 

The following parameters were used in the algorithm: 
− Mutation probability:   0.4 
− Crossover probability:   0.6 
− Learning rate:    0.95 
− Population size:    20 
− Number of generations:   1000 

6.2.3 Test results 

The examined task consists of 22 structural elements, contains 24 feedbacks and 16 
crossovers. The initial sequence requires 12066 time units and 12020 cost units. The initial 
matrix can be seen in Figure 4, where S.E. denotes the number of structural elements, T is the 
design time and C is the cost of planning. 
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S.E. T C 12 11 6 3 21 16 17 18 19 20 10 15 5 13 14 8 7 9 2 1 4 22
12 30 30 1
11 40 20 1
6 50 10 1 1 1 1 1
3 10 50 1

21 20 40 1
16 20 40 7 1
17 30 30 7 8 1
18 40 20 8 6 1
19 50 10 6 2
20 40 20 2 1 1
10 20 40 1 1
15 30 30 1 1
5 10 50 1

13 30 30 3 1
14 20 40 6
8 50 10 1 2 1
7 40 20 1
9 20 40 2 1
2 40 20 1
1 30 30 1
4 10 50 1

22 20 40  

Figure 8. Optimized DSM 1 
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Figure 9. Optimization process 1 

The impact of the weighing factors was studied during the optimization process. The values 
of weighting were the same, i.e. wc = wt =0.5 during the first optimization. Figure 8 shows the 
optimized sequence, while Figure 9 reveals the optimization process. The cost demand 
decreased to 4476 units, while the time demand to 5359 units as a result of the optimization.  

The weight values were the following during the second optimization: wc =0.7; wt =0.3. 
Figure 10 shows the optimized sequence, while Figure 11 reveals the optimization process. 
The cost demand decreased to 4450 units, while the time demand to 5370 units as a result of 
the optimization. 
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S. E. T C 12 11 6 21 3 16 17 18 19 20 10 15 5 13 14 8 7 9 2 1 4 22
12 30 30 1
11 40 20 1
6 50 10 1 1 1 1 1

21 20 40 1
3 10 50 1

16 20 40 7 1
17 30 30 7 8 1
18 40 20 8 6 1
19 50 10 6 2
20 40 20 2 1 1
10 20 40 1 1
15 30 30 1 1
5 10 50 1

13 30 30 3 1
14 20 40 6
8 50 10 1 2 1
7 40 20 1
9 20 40 2 1
2 40 20 1
1 30 30 1
4 10 50 1

22 20 40  

Figure 10. Optimized DSM 2 
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Figure 11. Optimization process 2 

In order to understand the operation of the algorithm it should be noted that if the target 
function is chosen adequately, the algorithm arranges the related elements into subprocesses 
(and this way decreased the time and costs of the process) without using a separate clustering 
algorithm (see Figure 8, the part between elements 12-13 and 14-22). 

7 Conclusion 

The conclusion that the simultaneous application of 0.4/0.6 mutation/crossover probability 
ratio and “Tournament” selection is the best process in case of genetic algorithms created for 
decimally coded precedence tasks. The developed method provides a possibility for adequate 
design process optimization drawn. Furthermore, it can co-work with the standardized 
systems and can be converted back and forth.  
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The system efficiency is to be increased with the help of the probabilities introduced, hence 
the system will be able to provide an adequate solution even when a new product in 
introduced in a way that the weakest relation are not taken into consideration. Presently total 
man hours are used in the calculation of the target function, since this is optimal concerning 
the sequence but the process cannot be positioned in time. Real time can be calculated if the 
optimized DSM is converted into a network plan. This makes it possible to assign the 
resources to the tasks on the basis of the scheduled process, the requirements of the project.  

The research supported by application OTKA T032474 
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