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Abstract: 
 

In this paper we look at a combinatorial optimization problem in application to a layout of 
mechatronic devices. There is a need to create a flexible and intelligent design tool, which 
allows an engineer to handle the complexity and non-linearity of a 3D mechatronic design 
task. The objective of the research is to develop a feasible optimization algorithm based on 
Simulated Annealing (SA). SA is a family of randomized algorithms used to solve many 
combinatorial optimization problems. This paper presents a conceptual model of integrated 
design environment based on SA algorithm embedded into Solid Works. The focus is on 
structural optimization with housing and layout modeling, with the objective to minimize the 
required assembly space. Also we present an attempt to automate the design process by 
introduction of integrative modeling of a set of design modules, which can be selected and 
linked together to provide tailored modeling solutions to a variety of design problems. 
 

Key Words: Simulated Annealing, 3D Modeling, Design Simulation and Concurrent 

Optimization. 

 
1. Introduction 
 

Space optimization for an assembly of components in complex hybrid systems is a 
challenging structural design task. Experience and common sense have been usual 
engineering tools in the optimization process. Although CAD environment helps designers to 
achieve compact designs to a certain degree, it is still time consuming and the solution is less 
than optimal. 
 
Modeling and simulation techniques allow flexible and optimal handling of a complex n 
dimensional design space. Thus it becomes essential to create an intelligent design 
environment which gives the benefit of SA optimization in loop with the comprehensive Solid 
Works model. Development of capable optimization tool for structural design is a 
contribution towards improving a feasibility of engineering efforts. 
 
SA [1, 2, 3, 4] mimics the physical annealing process and is successfully used to obtain an 
intelligent solution for a variety of combinatorial optimization problems. The process can be 
formulated as the problem of finding – among a potentially very large number of solutions – a 
layout solution with lowest energy or cost function. In other words, an example of a 
combinational optimization problem can be formulated as a pair (R, C), where R is the finite 
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or possibly countable infinite set of configurations and C is a cost function. It is assumed that 
C is defined such that the lower the value of C, the better the corresponding configuration, 
with respect to the optimization criteria.  
 
During the past decades, SA technique has been utilized in such diverse areas as, for example, 
electrical engineering, nesting problem, packing problem, operation research, code design, 
image processing, and molecular physics. In many of these areas the exiting algorithms 
performed poorly whilst SA has shown such salient features as general applicability, 
flexibility, ease of implementation and a modicum of sophistication. Embedding annealing 
optimization procedure into a CAD system will be an exciting challenge to achieve an 
intelligent design environment of significant potential for a wide range of possible 
engineering applications.  
 
This paper presents the concept of space optimization methodology for mechatronic devices 
within a 3D envelope. Design requirements and constraints are based on a number of different 
components and interfaces within a device. The embedded optimization procedure 
intelligently creates an optimal solution for a minimized, highly integrated assembly. This 
optimized solution is then fully designed in Solid Works CAD environment using the 
identified envelope as the design space. 
 
2. Related Research Work 
 

SA is a general method for a wide variety of combinatorial problems. The method is flexible 
as well as powerful.  
 
Simulated Annealing algorithms have shown great success in the circuit layout design and 
significant work in the mechanical component layout area has been motivated by the circuit 
layout technology. The performance of the SA algorithm has been compared to other facility 
layout methods and shown to yield either equal or better quality for each of classical test 
problems. The efficiency of the SA approach is recognized to be insensitive to initial starting 
states. 
 
Szykman [5] and Cagan [6] extended the technology from 2-D VLSI to 3-D mechanical and 
electro-mechanical layout. Their approach can deal with blocks and cylinders with rotations 
constrained to multiples of 90º. A perturbation-based approach was used in which infeasible 
states with component overlap and constraint violations were allowed and penalized.  
 
An integrated SA approach to 3-D layout and routing was introduced in Szykman and Cagan 
[7] and Szykman et al [8], and the experiments showed that concurrent layout and routing 
results in superior solutions over the traditional layout–then–rout approach. Routing problems 
are abundant in engineering applications such as routing of pipes, wires and air ducts. The 
routing cost can be influential in the manufacturing of certain products such as HVAC (Heat, 
Ventilation and Air Conditioning) products. Taking the routing cost into account during the 
component placement stage of the layout could significantly improve the quality and reduce 
the cost of the product layout.  
 
Rao and Iyengar [9] applied SA to a variety of the bin-packing problems. The extensive 
simulation experiments demonstrated that the solutions obtained by SA showed a significant 
improvement over those obtained by any other well-known heuristic methods. Han and Na 
[10] proposed a nesting approach with two stages: initial layout stage and layout improvement 
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stage. A self-organizing layout algorithm generates a ‘good’ initial layout then Simulated 
Annealing was used to improve the initial layout. In short, it has been demonstrated that the 
Simulated Annealing is capable of successfully solving bin-packing problems. However, in 
all applications the performance, in terms of efficiency and effectiveness, depends greatly on 
the solution space, implementation strategies and objective functions. 
 
3. Simulated Annealing  
 

SA is a generally applicable, stochastic technique based on the analogy between simulating 
the metallurgical annealing process and solving large combinational optimization problems. 
The algorithm was first derived by Metroplis et al. [11] in 1953 then was further extended by 
Kirkaptrick et al. [12] in 1983.  
 
SA is a kind of hill-climbing search for finding a good solution. A simple hill-climber 
searches in the neighborhood of the best solution found to date, and jumps to a new solution 
whenever one is found that improves upon the best to date. Formally, Simulated Annealing is 
a Markov Chain Monte Carlo method. That is, the probability of jumping from one point to 
another depends only on the last point and not on the entire previous history. 
 
Within the algorithm, an initial design state is chosen and the value of the cost function for 
that state is evaluated. A step is taken to a new state by applying a move, or operator, from an 
available move set. This new state is evaluated; if the step leads to an improvement in the cost 
function, the new design is accepted and becomes the current design state. If the step leads to 
an inferior state, the step may still be accepted with Boltzmann probability. This probability is 
a function of a decreasing parameter called temperature, based on an analogy with the 
annealing of metals, given by: 
 
                                                        Probability accept = e –∆C/T                                             (1) 
 
Where ∆C is the change in cost function due to the move and T is the current temperature. 
The Probability accept would be a uniform random number between 0 and 1 (0 < Probability 
accept ≤ 1). 
 
Applications of SA algorithms require specifications of three distinct items: (1) a concise 
problem representation- (2) a transition mechanism; and (3) a cooling schedule. The problem 
representation consists of a configuration representation and an expression for the cost 
function. The cost function represents the cost effectiveness of different layouts. The 
transition mechanism generates a new configuration from a current one. The difference in cost 
between the two configurations must be calculated and a decision is made whether or not the 
new configuration is to be accepted. The cooling schedule is used to control the temperature 
in the algorithm, and specify the starting value, decrement function, length of generation and 
the stopping criterion. 
 
The temperature starts out high and decreases with time. At each temperature, the system is 
perturbed several times. The set of iterations carried out at each value of the temperature is 
called a Markov Chain. The number of iterations in a chain is sometimes referred to as the 
chain length. Initially, steps taken through the state space (and, therefore, the cost function 
space) are almost random, resulting in a broad exploration of the cost function space. As the 
probability of accepting inferior steps decreases, those steps tend to get rejected, allowing the 
algorithm to converge to an optimum once promising areas of the cost function space have 
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been found. And, as the temperature freezes, Simulated Annealing completes its search like a 
simple hill climber. 
 
The process has the objective to find an optimal solution with the minimal associated cost. 
Sorkin [13] has revealed that the behavior of simulated annealing depends heavily on the cost 
function landscape associated with the optimization problem. The success of annealing relies 
on the overall ‘cost difference’ of collections of states being large compared with the barriers 
dividing these collections. A large number of evaluations are necessary for SA to converge to 
good solutions. When the cost function is complex, the computation can be expensive and 
time-consuming.  

 
4. Three-Dimensional Design Layout Optimization 
 

Space optimization for electric-mechanical assemblies is a time-consuming and challenging 
task for designers. Although CAD environment can help designers to achieve compact 
designs to a certain degree, the solutions are still less than optimal. Embedding annealing 
optimization procedure into CAD system is an exciting challenge aiming to achieve an 
intelligent design environment of significant potential for a wide range of applications. The 
undertaken research is a new trial of using SA technique embedded in SolidWorks 
environment to optimize complex mechatronic assemblies. Such space optimization method 
can be used as an optimization tool to intelligently minimize the housing space for many 
complex devices where a number of different sections and components are interfaced in the 
assembly.  
 
4.1 Problem formulation and solution strategy 
 

In this work, the 3D layout problem can be described as packing a batch of components of 
different sizes into an ‘envelope’. The packing tasks are characterized by the following four 
objectives: 
 

• Fitting the components into the specified envelope; 
• Observing topological connections or assembly relationships between components; 
• Avoiding any overlap between components and the envelope protrusion; 
• Achieving high packing density, or minimizing the overall space of the envelope.  

 
Obviously, this layout problem is non-liner, combinational and discontinuous. That makes SA 
algorithm a promising approach in finding the global, or at least very good, local optimum. 
The strategy is to move components around within a pre-defined space and analyze each move 
on its effectives towards minimizing a combined cost function. The function includes design 
goals such as minimizing the packing density, the relationships between components, and the 
penalty terms, that evaluate the amount of components overlaps, envelope penetrations and 
spatial constraint violations.  
 
The move set can be defined as following: 
 

• Rotate – to change the orientation of a component without changing the location of the 
component center. There are six possible orientations to be selected. 

• Stroll – to randomly change the location of the center of the component in ±x, ±y, ±z 
directions. The moving distance depends on the current temperature. A longer distance 
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of movement will be selected at a higher temperature to achieve a greater change in 
the cost function and to avoid local minimum. 

• Swap – to switch the locations of two components. The two components are selected 
randomly. 

• Move towards the origin (0, 0, 0) – to move a randomly selected component along 
with the x, y, z coordinate directions of the packing envelope, so that the overall 
envelope could be decreased accordingly. 

• Move against wall – to move a randomly selected component towards the nearest wall 
of the packing envelope until it touches other component or the wall, and then reduce 
the packing envelope. 

• Eliminate overlap – to calculate the overlap vector between components then move 
each component along the corresponding vector towards decreasing the overall 
overlaps. 

 
Upon the nature of Simulated Annealing, large numbers of evaluations must be performed 
throughout the hundreds of thousands of moves. Therefore, the evaluation of the cost function 
must be performed quickly and effectively. The detection of overlaps and its quantification is 
the most computationally expensive task. Thus, to minimize the overall running time, the 
algorithm must minimize the complexity within this operation. 
 
4.2 Overlap detection and evaluation 
 

During the annealing process, components are permitted to overlap under the assumption that 
the future moves will lead the infeasible layouts to superior feasible layouts.  
 
The easiest way to detect an overlap between two components is to detect the overlaps of their 
projections in every 2-D planes (x-y, y-z, or z-x plane). If there is no overlap between the 
projections in any 2-D plane, then there is no overlap between these two components. A 
multi-resolution detection scheme [14, 15] could be adapted to obtain reasonable running 
time. Rough analyses are performed at the start of the algorithm (low-resolution) and more 
refine analyses (high-resolution) are performed towards the end of the algorithm where more 
accurate evaluations are required. The following five figures illustrate the concept of 
decomposition levels of a component in 2-D plane, and the principle of the resolution levels 
of an overlap. 
 

 
 

Figure 1 First level of decomposition of 2-D model 
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Figure 2 Second level of decomposition of 2-D model 
 

 
 

Figure 3 Third level of decomposition of 2-D model 
 
Figures1-3 show three different levels of decomposition for a 2-D model. The first level of 
decomposition is defined as having a single rectangular, which is used to completely contain 
the model. Consequently, the higher levels (Figures 2 and 3) are defined as having multi-
rectangular which are equally divided from the single rectangular of the first level. The more 
sub-rectangular are used by the decomposition process, the higher the level is. Further more, it 
is assumed that each rectangular at each level has its unique color label- white or black (or say 
binary number 0, 1). The white color indicates that no part of the model sits inside the 
rectangular; while the black color indicates the entire or partial model rests inside the 
rectangular.  
 
At each iteration in the optimization process, the annealing algorithm perturbs (moves) the 
position of components and requires overlap detection and evaluation. The amount of overlap 
is calculated as the sum of the area of overlap projected at each 2-D plane at a specified level 
of resolution, giving an accurate evaluation at that level of resolution. Figures 4 and 5 show a 
configuration of an overlap projected at a 2-D plane for two levels of resolution. 
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Figure 4 Detected overlap at a low level of resolution 
 
 

 
 

Figure 5 Detected no overlap at a higher level of resolution 
 
Figure 4 represents a lower level of resolution, where two objects are detected overlapping. 
Figure 5 illustrates the same objects at a higher level of resolution, where no overlap is 
detected. It is easy to see, that as the resolution level increases, the accuracy of overlap 
calculation increases as well.  
 
Because of the efficiency and generality, the developed concepts can be used to evaluate the 
overlaps within the Simulated Annealing process for arbitrary shapes of arbitrary components 
with any moves. 
 
It is found that early in the annealing process, nearly all layout state perturbations are 
accepted as new layout states and thus the algorithm does not require a very accurate estimate 
of the cost function. Conversely, later in the process, layout perturbations are smaller and 
more accurate evaluations of the cost function are necessary. By changing the resolution level 
at each move a more or less accurate evaluation of the amount of overlap is determined. At 
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lower levels, less accurate calculations are obtained with minimal computation, while at 
higher levels, more accurate evaluations take longer to calculate. Thus it allows specify the 
precision of overlap calculations needed for each stage during the running of the algorithm 
and therefore significantly save the overall computational time. To determine which 
resolution level should be used at each stage, the simplest way is to increase the accuracy of 
the calculations as a function of decreasing of the temperature. 
 
4.3 Spatial constraint and annealing violation 
 

There are special relationships between particular components or housing constraints, such as 
the placement constraints of a component, the assembly constraints, the electronic 
interference avoidances, the electro-mechanical-interface match-ups, the wiring restrictions, 
etc. It is necessary to constrain components with respect to the envelope and each other.  
 
For those particular components with restrictions in a given direction (a particular absolute 
position or orientation with respect to a linear combination of global coordinate axes), it is 
simple to place the component in a feasible initial position and its moves are restricted in such 
a way that it cannot be moved to an infeasible point or be rotated along an infeasible axis. 
Similarly, for those components with particular restrictions to the global coordinate axes, the 
constraints may be violated under the assumption that allows the annealing to ‘pass through’ 
infeasible layouts and lead to feasible layouts. The constraints are violated at the beginning of 
the algorithm and the layouts are pushed into the feasible range as the algorithm processes. 
 

 
 

Figure 6 Spatial constraints by centre 
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Figure 7 Spatial constraints by extents 
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In this work, two types of such constraints would be adopted [5] with the employment of 
violation process, which is constrained by centers or by extents. Constrained by center is to 
restrict the position of component based upon its origin of coordinate system (Figure 6). For 
instance, components A and B are restricted with x distance, which is measured from their 
own origin of coordinate system. Constrained by extent is to restrict the position of all points 
of the component rather than only its origin (Figure 7). These constraints could be 
implemented to firstly separate the constraint into x, y, z directions to restrict the parallel 
transfers of a component and its rotations, then the annealing violation for each component is 
calculated and a penalty function could be created that penalize the cost function for the 
constraint violation. 

 
5. Software Implementation and Embedment 
 

The optimization algorithm / procedure would be programmed in Visual C++ [14, 15, 16] and 
would be embedded into SolidWorks [19, 20, 21] so that the designer can concurrently recall 
the optimization software while drafting in a CAD environment. The algorithm parameters 
can be adjusted through the provided User Graphic Interface. All interfaced components can 
be filled into a ‘3D-envelope’ in a piecewise fashion and produce a minimized ‘envelope’ 
representing the design space.  

 

Figure 8 indicates the logical flow chart for an algorithm implementation. Firstly, it creates an 
initial layout specified by the designer or by using a suitable knowledge-based method. The 
designer is then asked to input the initial parameters in order to start the algorithm, such as the 
initial temperature, the final temperature, the maximum iterations for each temperature, the 
spatial constraints, etc. Once the initial settings are specified, the Simulated Annealing 
process is initiated to calculate overlaps between components and that, in turn, starts the inner 
move loop. If the termination condition -- final temperature -- is reached, then the best 
solution is taken and the optimization process is stopped. Otherwise the inner move loop is 
continued from the current layout until it reaches the acceptable criteria. The newly accepted 
layout is further checked at the outer loop to see if the equilibrium condition has been 
reached. If it is, then the algorithm reduces the temperature following the cooling schedule; 
starts a new inner move loop and repeats the previous steps again. Otherwise, with the same 
temperature the algorithm returns to the existing inner loop and continues to move sets.  
Obviously, these annealing steps finally lead to the optimal layout.  

Below are some major parameters and definitions of the algorithm: 

• Initial temperature – Our initial temperature To is based on the acceptance rate.  As we 
measured overlap in percentage, so the initial temperature To is set at 100. If the new 
layout has 50% worse than the old one at To, then the Probability accept =0.606, that 
means there is still a relatively large chance that the inferior solutions can be accepted 
at the beginning of the process. 

• Final temperature -- The final temperature Tf is set at 0.8. If the new solution has 1% 
worse than the old one at Tf, then the Probability accept =0.287, that means there is not 
many chance that the inferior solutions can be accepted at the final stage of process. 

• Maximum iterations for each temperature — To achieve an efficient processing time 
and capability of finding reasonably good local optimum, we set the maximum 
number of iterations at 2000. 
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• Equilibrium condition – There is a variety of ways to define if the equilibrium has 
been achieved. We set an upper boundary for the possible number of neighborhood 
moves. If there is no improvement in the foregoing 10 moves, we decide that the 
equilibrium has been attained at that temperature. 

• Cooling schedule – The performance of this algorithm also depends on the cooling 
schedule which is essentially the temperature updating function. Two schedules are 
employed in this work. 

           -- Proportional decrement scheme,  
                             Tk+1= αTk, where 0<α<1.                                                                 (2) 

                 -- Lundy and Mees scheme [20],  
                                   Tk+1= Tk / (1+βTk), where β>0, a suitable chosen parameter.          (3) 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Logical flow chart of Space Optimization Algorithm / Procedure Using SA 

 
6. Design with Intelligence 
 

Once this optimization algorithm has been embedded in SolidWorks, an intelligent CAD 
design environment is established ready for design of a wide range of portable mechatronic 
devices and also other compact equipment, if it requires high density of packing performance. 
While drafting, the designer could concurrently recall the software, and change the input 
parameters through the GUI at any time to simultaneously run more than one optimization 
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processes. That intelligent system allows the designer to develop different configurations of 
assembly and compare its packing performances before selecting a detail design. The 
development time could be significantly saved and an efficient design procedure could be 
achieved. More over, with this intelligent system, the designer is enabled to link pre-
processed modules or subassemblies into a new envelope to provide integrative tailored 
modeling solutions for even much complex assembly space in a systematic manner. Figures 9, 
10 and 11 are just an illustration of this potential. 
 
 

        
 
 

Figure 9 Pre-processed subassemblies of gear train 
 

 
 

     
          

 
Figure 10 Pre-processed configuration modules 
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Figure 11 Integrative tailored modeling solutions 
 

 
7. Conclusions 
 

This paper presented a novel space optimization algorithm for design of mechatronic 
assemblies based on Simulated Annealing technique. This algorithm can be used as an 
optimization tool to intelligently minimize the housing space for such devices where a large 
number of different sections and components are interfaced in the assembly. The optimization 
algorithm / procedure was in turn programmed in Visual C++ and embedded into SolidWorks 
environment. All interfaced components can be filled into a ‘3D-envelope’ in a piecewise 
fashion and intelligently produce a minimized ‘envelope’ representing the design space. 
 
As an intelligent design tool, SA algorithm / procedure can be used for the optimal design of a 
wide range of portable devices and also other compact equipment which require high density 
packing performance. An interesting future work would be to test the algorithm in application 
to other complex problems and to improve the detection of overlap in order to minimize the 
computational time. 
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