

INTERNALTIONAL CONFERENCE ON ENGEERING DESIGN
ICED 05 MELBOURNE, AUGUST 15 – 18, 2005

THREE-DIMENTIONAL DESIGN LAYOUT OPTIMIZATION FOR

MECHATRONIC DEVICES USING THE SIMULATED ANNEALING
APPROCH

Hao Shen, Aleksandar Subic, Anna Bourmistrov

Abstract:

In this paper we look at a combinatorial optimization problem in application to a layout of
mechatronic devices. There is a need to create a flexible and intelligent design tool, which
allows an engineer to handle the complexity and non-linearity of a 3D mechatronic design
task. The objective of the research is to develop a feasible optimization algorithm based on
Simulated Annealing (SA). SA is a family of randomized algorithms used to solve many
combinatorial optimization problems. This paper presents a conceptual model of integrated
design environment based on SA algorithm embedded into Solid Works. The focus is on
structural optimization with housing and layout modeling, with the objective to minimize the
required assembly space. Also we present an attempt to automate the design process by
introduction of integrative modeling of a set of design modules, which can be selected and
linked together to provide tailored modeling solutions to a variety of design problems.

Key Words: Simulated Annealing, 3D Modeling, Design Simulation and Concurrent

Optimization.

1. Introduction

Space optimization for an assembly of components in complex hybrid systems is a
challenging structural design task. Experience and common sense have been usual
engineering tools in the optimization process. Although CAD environment helps designers to
achieve compact designs to a certain degree, it is still time consuming and the solution is less
than optimal.

Modeling and simulation techniques allow flexible and optimal handling of a complex n
dimensional design space. Thus it becomes essential to create an intelligent design
environment which gives the benefit of SA optimization in loop with the comprehensive Solid
Works model. Development of capable optimization tool for structural design is a
contribution towards improving a feasibility of engineering efforts.

SA [1, 2, 3, 4] mimics the physical annealing process and is successfully used to obtain an
intelligent solution for a variety of combinatorial optimization problems. The process can be
formulated as the problem of finding – among a potentially very large number of solutions – a
layout solution with lowest energy or cost function. In other words, an example of a
combinational optimization problem can be formulated as a pair (R, C), where R is the finite

 2

or possibly countable infinite set of configurations and C is a cost function. It is assumed that
C is defined such that the lower the value of C, the better the corresponding configuration,
with respect to the optimization criteria.

During the past decades, SA technique has been utilized in such diverse areas as, for example,
electrical engineering, nesting problem, packing problem, operation research, code design,
image processing, and molecular physics. In many of these areas the exiting algorithms
performed poorly whilst SA has shown such salient features as general applicability,
flexibility, ease of implementation and a modicum of sophistication. Embedding annealing
optimization procedure into a CAD system will be an exciting challenge to achieve an
intelligent design environment of significant potential for a wide range of possible
engineering applications.

This paper presents the concept of space optimization methodology for mechatronic devices
within a 3D envelope. Design requirements and constraints are based on a number of different
components and interfaces within a device. The embedded optimization procedure
intelligently creates an optimal solution for a minimized, highly integrated assembly. This
optimized solution is then fully designed in Solid Works CAD environment using the
identified envelope as the design space.

2. Related Research Work

SA is a general method for a wide variety of combinatorial problems. The method is flexible
as well as powerful.

Simulated Annealing algorithms have shown great success in the circuit layout design and
significant work in the mechanical component layout area has been motivated by the circuit
layout technology. The performance of the SA algorithm has been compared to other facility
layout methods and shown to yield either equal or better quality for each of classical test
problems. The efficiency of the SA approach is recognized to be insensitive to initial starting
states.

Szykman [5] and Cagan [6] extended the technology from 2-D VLSI to 3-D mechanical and
electro-mechanical layout. Their approach can deal with blocks and cylinders with rotations
constrained to multiples of 90º. A perturbation-based approach was used in which infeasible
states with component overlap and constraint violations were allowed and penalized.

An integrated SA approach to 3-D layout and routing was introduced in Szykman and Cagan
[7] and Szykman et al [8], and the experiments showed that concurrent layout and routing
results in superior solutions over the traditional layout–then–rout approach. Routing problems
are abundant in engineering applications such as routing of pipes, wires and air ducts. The
routing cost can be influential in the manufacturing of certain products such as HVAC (Heat,
Ventilation and Air Conditioning) products. Taking the routing cost into account during the
component placement stage of the layout could significantly improve the quality and reduce
the cost of the product layout.

Rao and Iyengar [9] applied SA to a variety of the bin-packing problems. The extensive
simulation experiments demonstrated that the solutions obtained by SA showed a significant
improvement over those obtained by any other well-known heuristic methods. Han and Na
[10] proposed a nesting approach with two stages: initial layout stage and layout improvement

 3

stage. A self-organizing layout algorithm generates a ‘good’ initial layout then Simulated
Annealing was used to improve the initial layout. In short, it has been demonstrated that the
Simulated Annealing is capable of successfully solving bin-packing problems. However, in
all applications the performance, in terms of efficiency and effectiveness, depends greatly on
the solution space, implementation strategies and objective functions.

3. Simulated Annealing

SA is a generally applicable, stochastic technique based on the analogy between simulating
the metallurgical annealing process and solving large combinational optimization problems.
The algorithm was first derived by Metroplis et al. [11] in 1953 then was further extended by
Kirkaptrick et al. [12] in 1983.

SA is a kind of hill-climbing search for finding a good solution. A simple hill-climber
searches in the neighborhood of the best solution found to date, and jumps to a new solution
whenever one is found that improves upon the best to date. Formally, Simulated Annealing is
a Markov Chain Monte Carlo method. That is, the probability of jumping from one point to
another depends only on the last point and not on the entire previous history.

Within the algorithm, an initial design state is chosen and the value of the cost function for
that state is evaluated. A step is taken to a new state by applying a move, or operator, from an
available move set. This new state is evaluated; if the step leads to an improvement in the cost
function, the new design is accepted and becomes the current design state. If the step leads to
an inferior state, the step may still be accepted with Boltzmann probability. This probability is
a function of a decreasing parameter called temperature, based on an analogy with the
annealing of metals, given by:

 Probability accept = e –∆C/T (1)

Where ∆C is the change in cost function due to the move and T is the current temperature.
The Probability accept would be a uniform random number between 0 and 1 (0 < Probability
accept ≤ 1).

Applications of SA algorithms require specifications of three distinct items: (1) a concise
problem representation- (2) a transition mechanism; and (3) a cooling schedule. The problem
representation consists of a configuration representation and an expression for the cost
function. The cost function represents the cost effectiveness of different layouts. The
transition mechanism generates a new configuration from a current one. The difference in cost
between the two configurations must be calculated and a decision is made whether or not the
new configuration is to be accepted. The cooling schedule is used to control the temperature
in the algorithm, and specify the starting value, decrement function, length of generation and
the stopping criterion.

The temperature starts out high and decreases with time. At each temperature, the system is
perturbed several times. The set of iterations carried out at each value of the temperature is
called a Markov Chain. The number of iterations in a chain is sometimes referred to as the
chain length. Initially, steps taken through the state space (and, therefore, the cost function
space) are almost random, resulting in a broad exploration of the cost function space. As the
probability of accepting inferior steps decreases, those steps tend to get rejected, allowing the
algorithm to converge to an optimum once promising areas of the cost function space have

 4

been found. And, as the temperature freezes, Simulated Annealing completes its search like a
simple hill climber.

The process has the objective to find an optimal solution with the minimal associated cost.
Sorkin [13] has revealed that the behavior of simulated annealing depends heavily on the cost
function landscape associated with the optimization problem. The success of annealing relies
on the overall ‘cost difference’ of collections of states being large compared with the barriers
dividing these collections. A large number of evaluations are necessary for SA to converge to
good solutions. When the cost function is complex, the computation can be expensive and
time-consuming.

4. Three-Dimensional Design Layout Optimization

Space optimization for electric-mechanical assemblies is a time-consuming and challenging
task for designers. Although CAD environment can help designers to achieve compact
designs to a certain degree, the solutions are still less than optimal. Embedding annealing
optimization procedure into CAD system is an exciting challenge aiming to achieve an
intelligent design environment of significant potential for a wide range of applications. The
undertaken research is a new trial of using SA technique embedded in SolidWorks
environment to optimize complex mechatronic assemblies. Such space optimization method
can be used as an optimization tool to intelligently minimize the housing space for many
complex devices where a number of different sections and components are interfaced in the
assembly.

4.1 Problem formulation and solution strategy

In this work, the 3D layout problem can be described as packing a batch of components of
different sizes into an ‘envelope’. The packing tasks are characterized by the following four
objectives:

• Fitting the components into the specified envelope;
• Observing topological connections or assembly relationships between components;
• Avoiding any overlap between components and the envelope protrusion;
• Achieving high packing density, or minimizing the overall space of the envelope.

Obviously, this layout problem is non-liner, combinational and discontinuous. That makes SA
algorithm a promising approach in finding the global, or at least very good, local optimum.
The strategy is to move components around within a pre-defined space and analyze each move
on its effectives towards minimizing a combined cost function. The function includes design
goals such as minimizing the packing density, the relationships between components, and the
penalty terms, that evaluate the amount of components overlaps, envelope penetrations and
spatial constraint violations.

The move set can be defined as following:

• Rotate – to change the orientation of a component without changing the location of the
component center. There are six possible orientations to be selected.

• Stroll – to randomly change the location of the center of the component in ±x, ±y, ±z
directions. The moving distance depends on the current temperature. A longer distance

 5

of movement will be selected at a higher temperature to achieve a greater change in
the cost function and to avoid local minimum.

• Swap – to switch the locations of two components. The two components are selected
randomly.

• Move towards the origin (0, 0, 0) – to move a randomly selected component along
with the x, y, z coordinate directions of the packing envelope, so that the overall
envelope could be decreased accordingly.

• Move against wall – to move a randomly selected component towards the nearest wall
of the packing envelope until it touches other component or the wall, and then reduce
the packing envelope.

• Eliminate overlap – to calculate the overlap vector between components then move
each component along the corresponding vector towards decreasing the overall
overlaps.

Upon the nature of Simulated Annealing, large numbers of evaluations must be performed
throughout the hundreds of thousands of moves. Therefore, the evaluation of the cost function
must be performed quickly and effectively. The detection of overlaps and its quantification is
the most computationally expensive task. Thus, to minimize the overall running time, the
algorithm must minimize the complexity within this operation.

4.2 Overlap detection and evaluation

During the annealing process, components are permitted to overlap under the assumption that
the future moves will lead the infeasible layouts to superior feasible layouts.

The easiest way to detect an overlap between two components is to detect the overlaps of their
projections in every 2-D planes (x-y, y-z, or z-x plane). If there is no overlap between the
projections in any 2-D plane, then there is no overlap between these two components. A
multi-resolution detection scheme [14, 15] could be adapted to obtain reasonable running
time. Rough analyses are performed at the start of the algorithm (low-resolution) and more
refine analyses (high-resolution) are performed towards the end of the algorithm where more
accurate evaluations are required. The following five figures illustrate the concept of
decomposition levels of a component in 2-D plane, and the principle of the resolution levels
of an overlap.

Figure 1 First level of decomposition of 2-D model

 6

Figure 2 Second level of decomposition of 2-D model

Figure 3 Third level of decomposition of 2-D model

Figures1-3 show three different levels of decomposition for a 2-D model. The first level of
decomposition is defined as having a single rectangular, which is used to completely contain
the model. Consequently, the higher levels (Figures 2 and 3) are defined as having multi-
rectangular which are equally divided from the single rectangular of the first level. The more
sub-rectangular are used by the decomposition process, the higher the level is. Further more, it
is assumed that each rectangular at each level has its unique color label- white or black (or say
binary number 0, 1). The white color indicates that no part of the model sits inside the
rectangular; while the black color indicates the entire or partial model rests inside the
rectangular.

At each iteration in the optimization process, the annealing algorithm perturbs (moves) the
position of components and requires overlap detection and evaluation. The amount of overlap
is calculated as the sum of the area of overlap projected at each 2-D plane at a specified level
of resolution, giving an accurate evaluation at that level of resolution. Figures 4 and 5 show a
configuration of an overlap projected at a 2-D plane for two levels of resolution.

 7

Figure 4 Detected overlap at a low level of resolution

Figure 5 Detected no overlap at a higher level of resolution

Figure 4 represents a lower level of resolution, where two objects are detected overlapping.
Figure 5 illustrates the same objects at a higher level of resolution, where no overlap is
detected. It is easy to see, that as the resolution level increases, the accuracy of overlap
calculation increases as well.

Because of the efficiency and generality, the developed concepts can be used to evaluate the
overlaps within the Simulated Annealing process for arbitrary shapes of arbitrary components
with any moves.

It is found that early in the annealing process, nearly all layout state perturbations are
accepted as new layout states and thus the algorithm does not require a very accurate estimate
of the cost function. Conversely, later in the process, layout perturbations are smaller and
more accurate evaluations of the cost function are necessary. By changing the resolution level
at each move a more or less accurate evaluation of the amount of overlap is determined. At

 8

lower levels, less accurate calculations are obtained with minimal computation, while at
higher levels, more accurate evaluations take longer to calculate. Thus it allows specify the
precision of overlap calculations needed for each stage during the running of the algorithm
and therefore significantly save the overall computational time. To determine which
resolution level should be used at each stage, the simplest way is to increase the accuracy of
the calculations as a function of decreasing of the temperature.

4.3 Spatial constraint and annealing violation

There are special relationships between particular components or housing constraints, such as
the placement constraints of a component, the assembly constraints, the electronic
interference avoidances, the electro-mechanical-interface match-ups, the wiring restrictions,
etc. It is necessary to constrain components with respect to the envelope and each other.

For those particular components with restrictions in a given direction (a particular absolute
position or orientation with respect to a linear combination of global coordinate axes), it is
simple to place the component in a feasible initial position and its moves are restricted in such
a way that it cannot be moved to an infeasible point or be rotated along an infeasible axis.
Similarly, for those components with particular restrictions to the global coordinate axes, the
constraints may be violated under the assumption that allows the annealing to ‘pass through’
infeasible layouts and lead to feasible layouts. The constraints are violated at the beginning of
the algorithm and the layouts are pushed into the feasible range as the algorithm processes.

Figure 6 Spatial constraints by centre

x

Figure 7 Spatial constraints by extents

B

A

B

A

 9

In this work, two types of such constraints would be adopted [5] with the employment of
violation process, which is constrained by centers or by extents. Constrained by center is to
restrict the position of component based upon its origin of coordinate system (Figure 6). For
instance, components A and B are restricted with x distance, which is measured from their
own origin of coordinate system. Constrained by extent is to restrict the position of all points
of the component rather than only its origin (Figure 7). These constraints could be
implemented to firstly separate the constraint into x, y, z directions to restrict the parallel
transfers of a component and its rotations, then the annealing violation for each component is
calculated and a penalty function could be created that penalize the cost function for the
constraint violation.

5. Software Implementation and Embedment

The optimization algorithm / procedure would be programmed in Visual C++ [14, 15, 16] and
would be embedded into SolidWorks [19, 20, 21] so that the designer can concurrently recall
the optimization software while drafting in a CAD environment. The algorithm parameters
can be adjusted through the provided User Graphic Interface. All interfaced components can
be filled into a ‘3D-envelope’ in a piecewise fashion and produce a minimized ‘envelope’
representing the design space.

Figure 8 indicates the logical flow chart for an algorithm implementation. Firstly, it creates an
initial layout specified by the designer or by using a suitable knowledge-based method. The
designer is then asked to input the initial parameters in order to start the algorithm, such as the
initial temperature, the final temperature, the maximum iterations for each temperature, the
spatial constraints, etc. Once the initial settings are specified, the Simulated Annealing
process is initiated to calculate overlaps between components and that, in turn, starts the inner
move loop. If the termination condition -- final temperature -- is reached, then the best
solution is taken and the optimization process is stopped. Otherwise the inner move loop is
continued from the current layout until it reaches the acceptable criteria. The newly accepted
layout is further checked at the outer loop to see if the equilibrium condition has been
reached. If it is, then the algorithm reduces the temperature following the cooling schedule;
starts a new inner move loop and repeats the previous steps again. Otherwise, with the same
temperature the algorithm returns to the existing inner loop and continues to move sets.
Obviously, these annealing steps finally lead to the optimal layout.

Below are some major parameters and definitions of the algorithm:

• Initial temperature – Our initial temperature To is based on the acceptance rate. As we
measured overlap in percentage, so the initial temperature To is set at 100. If the new
layout has 50% worse than the old one at To, then the Probability accept =0.606, that
means there is still a relatively large chance that the inferior solutions can be accepted
at the beginning of the process.

• Final temperature -- The final temperature Tf is set at 0.8. If the new solution has 1%
worse than the old one at Tf, then the Probability accept =0.287, that means there is not
many chance that the inferior solutions can be accepted at the final stage of process.

• Maximum iterations for each temperature — To achieve an efficient processing time
and capability of finding reasonably good local optimum, we set the maximum
number of iterations at 2000.

 10

• Equilibrium condition – There is a variety of ways to define if the equilibrium has
been achieved. We set an upper boundary for the possible number of neighborhood
moves. If there is no improvement in the foregoing 10 moves, we decide that the
equilibrium has been attained at that temperature.

• Cooling schedule – The performance of this algorithm also depends on the cooling
schedule which is essentially the temperature updating function. Two schedules are
employed in this work.

 -- Proportional decrement scheme,
 Tk+1= αTk, where 0<α<1. (2)

 -- Lundy and Mees scheme [20],
 Tk+1= Tk / (1+βTk), where β>0, a suitable chosen parameter. (3)

Figure 8 Logical flow chart of Space Optimization Algorithm / Procedure Using SA

6. Design with Intelligence

Once this optimization algorithm has been embedded in SolidWorks, an intelligent CAD
design environment is established ready for design of a wide range of portable mechatronic
devices and also other compact equipment, if it requires high density of packing performance.
While drafting, the designer could concurrently recall the software, and change the input
parameters through the GUI at any time to simultaneously run more than one optimization

First create an initial
layout, decode it
using a suitable

decode knowledge

Calculate the overlap
between components, set the

initial temperature

Yes If maximum number of
iterations has been exceeded,
i.e. at final temperature

No

Accept
current
solution

End Suitable
neighborhood
move from the
current string

Check if the
equilibrium has been

reached

Take the
best

solution

If the new layout has less
overlap; or has more overlap

but within acceptable
probability

No

Yes
No

Reduce the
temperature

Yes

Start

 11

processes. That intelligent system allows the designer to develop different configurations of
assembly and compare its packing performances before selecting a detail design. The
development time could be significantly saved and an efficient design procedure could be
achieved. More over, with this intelligent system, the designer is enabled to link pre-
processed modules or subassemblies into a new envelope to provide integrative tailored
modeling solutions for even much complex assembly space in a systematic manner. Figures 9,
10 and 11 are just an illustration of this potential.

Figure 9 Pre-processed subassemblies of gear train

Figure 10 Pre-processed configuration modules

 12

Figure 11 Integrative tailored modeling solutions

7. Conclusions

This paper presented a novel space optimization algorithm for design of mechatronic
assemblies based on Simulated Annealing technique. This algorithm can be used as an
optimization tool to intelligently minimize the housing space for such devices where a large
number of different sections and components are interfaced in the assembly. The optimization
algorithm / procedure was in turn programmed in Visual C++ and embedded into SolidWorks
environment. All interfaced components can be filled into a ‘3D-envelope’ in a piecewise
fashion and intelligently produce a minimized ‘envelope’ representing the design space.

As an intelligent design tool, SA algorithm / procedure can be used for the optimal design of a
wide range of portable devices and also other compact equipment which require high density
packing performance. An interesting future work would be to test the algorithm in application
to other complex problems and to improve the detection of overlap in order to minimize the
computational time.

REFERENCES

1. Emile Aarts, Jan Korst, “Simulated Annealing and Boltzmann Machines: a stochastic
approach to combinational optimization and neural computing”, John Wiley & Sons Ltd,
1989.

2. P.J.M. van Laarhoven, E.H.L.Aarts, “Simulated Annealing: Theory and Applications”,
D.Reidel Publishing Company.

3. Kathryn A. Dowsland, “Some Experiments With Simulated Annealing Techniques for
Packing Problems”, 0377-2217/93, Elsevier Science Publishers B. V.

4. P.Jain, P.Fenyes, et al., “Optimal Blank Nesting Using Simulated Annealing”, Journal of
Mechanical Design, 160 / Vol.114, March 1992.

5. Szykman S, Cagan J. “Constrained three dimensional component layouts using simulated
annealing.” ASME Journal of Mechanical Design 1997, 119 (1): 28-35.

 13

6. Szykman S, Cagan J. “A simulated annealing approach to three-dimensional component
packing.” ASME Journal of Mechanical Design 1995, 117 (2A): 308-14.

7. Szykman S, Cagan J. “Synthesis of optimal non-orthogonal routes.” ASME Journal of
Mechanical Design 1996, 118 (3): 419-24.

8. Szykman S, Cagan J, Weisser P. “An integrated approach to optimal three dimensional
layouts and routing.” ASME Journal of Mechanical Design 1998, 120 (3): 510-2.

9. Rao RL, Iyengar SS. “Bin-packing by simulated annealing.” Compute Mach Appl 1994;
27(5): 71-89.

10. Han G.C, Na S. J. “two-stage approach for nesting in two-dimensional cutting problem
using neural network and simulated annealing.” Journal of Engineering Manufacturing
1996:509-19.

11. Metropolis, N. Rosenbluth, et al. “Equations of state calculation by fast computing
machines.” Journal of Chemical Physics, 1953, 21, 1087-1092.

12. Kirkpatrick, S., Gelatt, C.D. Jr. and Vecchi, M.P., “Optimization by simulated
annealing”, Science, 1983, 220(4598), 671-679.

13. Sorkin GB. “Efficiennt simulated annealing on fractal energy landscapes.” Algorithmic a
1991; 6:367-418.

14. Meagher, D., “Geometric modeling using octree encoding.” Computer Graphics and
Image Processing, 1982. 19(2), 129-147.

15. Aref, W.G. and samet, H., “An algorithm for perspective viewing of objects represented
by octrees.” Computer Graphics Forum, 1985, 14(1), 59-66.

16. Steve Holzner, “Fast Track Visual C++ 6.0 Programming”, John Wiley & Sons, Inc.
1998.

17. Pappas Christ, H “Visual C++6: the complete reference” Berkeley, Calif.:
Osborne/McGraw-Hill, c1998.

18. Zaratian, Beck, “Microsoft Visual C++ 6.0 programmer's guide.” Redmond, Wash.:
Microsoft Press, c1998.

19. Planchard, David C., “Engineering design with SolidWorks 2004 : a step-by-step project
based approach utilizing 3D solid modeling”, Schroff Development Corporation, c2004.

20. Lueptow, Richard M. “Graphics concepts with SolidWorks.” Edition: 2nd ed. Date:
Upper Saddle River, NJ: Pearson/Prentice Hall,c2004.

21. Tickoo, Sham. “SolidWorks for designers Release 2004.” Date: Schererville, IN:
CADCIM Technologies, 2004.

22. Lundy, M., Mees, A. “Convergence of an annealing algorithm.” Mathematical
Programming, 34, 111-124.

23. Erik K. Antonsson, Jonathan Cagan, “Formal Engineering Design Synthesis”,
Cambridge University Press, 2001.

24. T.W. Leung, C.H. Yung, Marvin D. Troutt, Applications of genetic search and simulated
annealing to the two-dimensional non-guillotine cutting stock problem. Computers &
Industrial Engineering 40 (2001) 201-214.

