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ABSTRACT 
It is well known that for any sort of evolutionary search we must represent the problem 
solution in a suitable manner since the choice of representation has a large impact on the type 
and efficiency of the evolutionary search procedure applied. Usually in evolutionary design 
applications either bit strings or real number parameters are used to encode the problem. 
However, during the initial design phase a ‘design’ may not be decomposable into real 
number parameters since the nature of the search space is not well understood and / or the 
designer wishes to maintain a highly flexible approach whilst establishing an initial 
configuration. The paper introduces the overall objectives of the project and discusses 
representation issues before presenting an object-based representation which tries to 
incorporate the ambiguity present during the initial design phase by working with design 
elements and objects as members of the chromosome. Ambiguity is particularly acute in this 
case as the overall project objective is the development of a user-centric evolutionary design 
system that includes aesthetic criteria evaluation. Following that we briefly describe the 
integration of user evaluation and simple rule based aesthetics 

KEYWORDS: Agents, Engineering Design, Interactive Evolutionary Design, Representation 
techniques. 

1. Introduction 
The research described in the paper relates to user-centric intelligent design systems and 
creativity in design. Creativity is initially considered through the inclusion of aesthetics as 
additional design criteria within a planned, semi-autonomous machine-based design 
environment. The proposed system brings together agent-based machine learning, 
evolutionary computing and subjective evaluation in design space search and exploration for 
aesthetically pleasing, structurally feasible and usable designs.  The aim is that the system will 
be capable of learning basic characteristics relating to aesthetically pleasing designs from 
user-evaluation within an evolutionary search process.  It is intended that as the search 
progresses there will be a gradual lessening of the degree of user interaction allied with an 
increasing degree of autonomous machine-based solution evaluation involving both aesthetic 
and structural criteria. 
 
Although research relating to artificial design environments is evident in the literature [1], [2], 
[3], [4],[5] there is little evidence of the integration of user evaluation, evolutionary search 
and exploration and  agent-based machine learning  With respect to the addition of aesthetics 
into computer-based design, much theoretical work (in the form of the development of 
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computer models) is evident in this field but little application-based research has been done 
[6],[7],[8].  
 
The figure above shows the main components of the IDS and how they interact with each 
other to create the User-System interaction loop. The primary purpose of the user is to define 
initial design requirements and to aesthetically evaluate the designs generated by the 
Evolutionary Search Exploration and Optimisation System (ESEO) during the initial 
 

 

Figure 1. The Interactive Design System (IDS) 

generations. The agents have multiple tasks which include the creation of the initial 
population based on design requirements, the monitoring of designs for feasibility during the 
ESEO processes and evaluation of aesthetics. The ESEO identifies design solutions that can 
be considered high performance in terms of the following: 

1. Structural Feasibility and Stability: this includes the identification of solutions which 
represent ‘feasible’ designs and then categorising them on the basis of design stability. 
When using agents to assemble the initial population (e.g. CARA) whether or not to 
have infeasible solutions in the population depends on the rules supplied by the user to 
the assembly agents. 

2. Materials Cost: this could be a primary objectives especially when dealing with the 
design of mass produced items where cost per unit is a critical criteria.. 

3. Aesthetics: this design criteria is very difficult to define [9] since aesthetic evaluation 
is a highly subjective activity. While structural stability and materials cost might be 
important factors, often it is just as important for the final product to be aesthetically 
pleasing. In the present work we aim to look at both the specific as well as the generic 
aspects of aesthetics. 

 
The project is initially considering three test domains: bridges; liquid containers such as 
vases, wine glasses; chemical tanks, etc and street furniture in the form, initially, of bench 
type structures. These three domains have been chosen because of their differing design 
criteria and the need for differing forms of representation. The first domain is highly 
constrained, the second potentially requires some complex, non-linear shapes and the third 
looks similar to bridges but is actually far less constrained and offers interesting challenges re 
flexibility of reasoning 
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This joint research project involves the ACDDM Lab at Bristol UWE and the Institute of 
Machines and Structures at Cardiff University. The paper concentrates upon the primary 
stages of the overall research project and upon the first test domain i.e. bridges. These early 
stages have largely involved the development of highly flexible and robust representations of 
simple bridge structures and the subsequent identification of high-performance solutions via 
basic evolutionary algorithms. Evaluation of solutions has been solely in terms of spatial 
feasibility, simple structural analysis, cost / material weight considerations and simple 
aesthetic guidelines coupled with user evaluation. 

2. Theoretical Overview 
According to Rosenman [10] ‘a recurring issue in all design research is the issue of 
representation’. This statement best describes the problem at hand. The issue of representation 
is central to any evolutionary system since the efficiency of the search as well as effectiveness 
of the evolutionary operators such as mutation and crossover is directly linked with the 
representation [11], [10].  
 
Traditionally, in the case of genetic algorithms (GA), evolutionary strategies (ES) and 
evolutionary programming (EP) representations are based on binary or real number variable 
parameter strings. Such representations have their own advantages and disadvantages but 
many alternatives are also available [10], [11] and [12]. Bentley [13] states that component 
based representations ‘allow increased freedom for evolution’ whereas others (e.g. [14], [15]) 
have proposed hierarchical representations since design objects are complex entities with 
many related sub-systems / components that cannot be efficiently represented by a simple 
variable string.  Peysakhov et al [16] use a messy GA to assemble structures from LEGO™ 
blocks using a representation based on assembly graphs. These representations indicate that 
for a representation to be flexible as well as robust a component based hierarchical 
representation is necessary. Coupled with this it is also necessary to examine what kind of 
stochastic search process would best suit this representation in terms of efficient negotiation 
of the design space which is equally important as the efficient encoding of the variable 
parameters. 
 
Assuming we wish to achieve a high degree of solution search and exploration, population 
based approaches (i.e. approaches that search from many trial points initially well-distributed 
across the design space) would seem most appropriate. Genetic algorithms (GAs), 
evolutionary programming (EP) and evolutionary strategies (ES) appear to offer high utility. 
The basic difference between the three is their usage of evolutionary operators. GAs use 
crossover as the main exploratory operator [17]. ES is similar to a real parameter GA without 
crossover although ‘recent ES studies have introduced crossover like operators’ [17]. Finally 
EP [18] is a purely mutation based evolutionary algorithm where mutation is the only 
exploratory operator. 

 
EP could be considered to represent the simplest of the above algorithms since it has just one 
operator namely mutation. Thus the representation is not restricted by the need to support 
crossover between differing variable strings. GAs are at the other end of the spectrum where 
the representation has to be robust enough to handle repeated crossovers while ensuring the 
validity of the children. ES, in its many varieties, such as (µ, λ) and (µ +λ) lies somewhere 
between them. It is clear that it is necessary to assess the utility of the above algorithms in 
terms of the representations under development. Since EP and GA represent two ends of the 
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spectrum it would be prudent to test the representation on these two before moving on to ES 
and hybrid methods.  

2.1 Aesthetics 
Aesthetics are defined by the Online Oxford Dictionary (www.askoxford.com) as ‘the branch 
of philosophy which deals with questions of beauty and artistic taste’. Aesthetics have been 
governing humans from ‘time immemorial’ according to Staudek [19]. Furthermore, a 
common observation is that criteria for aesthetic evaluation are highly subjective. The New 
South Wales Road and Traffic Authority (RTA) report [9] states ‘there are no hard and fast 
rules for what is good proportion’ although ‘guidelines’ can be provided to make the design 
more aesthetic. It is therefore very difficult to integrate aesthetic criteria with machine-based 
design unless user interaction plays a significant role.. 
 
Many people have tried to quantify aesthetics. One of the pioneers of this field, George D. 
Birkhoff, proposed ‘aesthetic measure theory’ (Birkhoff cited in [19]) which based aesthetic 
perception on two properties: complexity and order. While order depends on the geometrical 
aspects of the design being evaluated complexity depends, as the name suggests, upon the 
overall complexity of the design. According to Birkhoff, symmetry and balance is important 
while complexity is not desirable. Thus Birkhoff’s aesthetic measure ‘M’ is defined as the 
ratio of Order and Complexity (or Order divided by Complexity). To obtain the value of ‘M’ 
for any design we would need a suitable evaluation technique for the particular type of design 
(to obtain Order and Complexity values) [20]. 
 
In our particular case we are initially interested in aesthetic evaluation of bridges. Much work 
has been done in this particular topic by Miles et al [6], [7] at the University of Cardiff. 
Building on this and other works on bridge aesthetics the RTA have prepared an excellent set 
of guidelines on bridge aesthetics [9]. 

2.2 Interactive Evolutionary Design 
Interactive Evolutionary Design (IED) [21], [5] as the name suggests combines interactive 
designing process with evolutionary search and optimization techniques. According to Parmee 
[4] ‘interactive evolutionary design strategies support the extraction of optimal design 
information, its presentation to the designer and subsequent human-based modification of the 
problem domain based upon knowledge gained from the information received’. This cyclic 
process is supported by continuous interaction between the designer and an evolutionary 
search and exploration system. IED can be considered to be part of the Interactive 
Evolutionary Computing (IEC) field as described in Parmee and Abraham [22]. Much  work 
is evident  in the IEC field e.g. Carnahan and Dorris [23], Gero and Rosenmann [24], Takagi 
[25], Sims [26] to mention a few.  

 

Figure 2. An interactive design system. 
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This generic design system has two sub-components, namely the designer interface and the 
search and exploration engine. Research in both these sub-components can be found in the 
literature. But the problem lies at the interface of the two sub-components, in other words how 
best to combine the interactive part with the evolutionary part so that information extraction 
from the evolutionary search and subsequent modification of the problem through user 
feedback can be done in the most user friendly and efficient manner. As Parmee [27] states 
‘best utility can be achieved from systems that enhance the designer’s inherent 
capabilities…’. One such novel system is the Interactive Evolutionary Design System (IEDS) 
[21]. A novel concept in the IEDS is to use software agents [27] as a buffer between the user 
and the evolutionary process to help in design information extraction and control of the 
evolutionary process.  

3. Representation Issues 
In any evolutionary optimisation process we find that the representation chosen plays a very 
important role in determining search efficiency and the quality of the solutions obtained. 
Mainly there are two classes of representations, string based and tree based. While tree based 
representations are used with Genetic Programming systems, variable strings are used with 
GA/EP/ES systems.  
 
Our initial goal was to create a representation which not only was flexible in terms of the 
possible designs that it could represent but also robust enough to be used for design search, 
exploration and optimisation.[28]. To ensure a high degree of flexibility it is best to avoid 
pure string based real number representation (see section 3.2). A collection based object 
oriented representation has therefore been developed. Here a single population member 
(chromosome) is a collection of primitive elements that represent a design. For example any 
structure made up of LEGO™ bricks can be represented as a collection of primitive design 
objects each with a specific x and y position and a pre-defined length (along X) and height 
(along Y). Here the LEGO™ bricks are the primitive design objects which when used again 
and again at different positions and orientations give us a complete structure. We also have 
the flexibility of using different elements with different design properties by just including 
them in the set of possible design primitives.  When it comes to the evaluation of fitness of 
the structure and checking the structural integrity we use secondary properties of the 
particular primitive element type. An argument was initially made for the use of a design 
grammar based GP system but initial investigations in this direction indicated that such a 
system would take away the flexibility by trying to force the mapping of the design onto a 
tree structure and by the complexity relating to maintaining feasibility during evolutionary 
operations. 

 
Figure 3 further clarifies the idea of using an object based representation. A simple bridge 
design is basically divided into two separate collections. These are the Span Element  

 

Figure 3. Details of the object based representation. 
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collection containing elements which form the span of the bridge and the Support Element 
collection containing elements which form the support of the bridge. In the case of a free span 
bridge the Support Element collection will be empty. 
 
Each Element is basically a rectangle with properties as previously described. An Element can 
either be part of a supporting element collection or a span element collection. Since initially 
we are looking at a simple beam span bridge with and without supports and a bridge with 
angled beam span sections there are only two basic types of Elements required. These are the 
angled section Element (to be used as a span element only) and a simple rectangle Element 
which can be used as both spanning and supporting element. To extend the design into the 
third dimension all elements have a constant width. Thus only the profile of the bridge is 
relevant. An addition benefit of using an object based representation is that it can take 
advantage of the principles of object oriented programming such as inheritance. Thus if we 
wanted to add a new kind of element, say curved span section, we could easily do so by 
extending the basic properties of Element and adding the extra properties required for a 
curved section. To further elaborate on the representation we describe the manner in which a 
mutation operator acts on it. 

3.1 Mutation 
Let us assume the chromosome to be mutated represents the following design: 

 

Figure 4. Design before mutation. 

The above is a simple beam bridge with a single support (B3) and two span elements (B1, 
B2). L is the span and H is the maximum height of the bridge.  

 

Figure 5. Structure of a design chromosome. 

The mutation is rule based and a rule is selected randomly. There are separate rules for the 
two arrays of elements. The supports can only move left or right. Their height is based upon 
the thickness of the spanning element they support . Hence there are only 4 rules for supports 
i.e. two rules for left and right movement and two for increasing and decreasing width. The 
depth of each span element can vary but they must have a level upper surface and must be 
continuous with no overlap or space between them. Thus for a simple Element in a span there 
are just two rules namely to increase or decrease the span depth. Now for example if the 
selected rule for support (B3) is to move it left by a constant distance (say 2 units) and for 
span to decrease thickness of B2 support by constant units (say 2 units again) then the B3 
object in the support array will have its X value attribute decreased by 2 units and B2 object 
in span array its height value attribute decreased by 2 units. The height attribute of the support 
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will be automatically adjusted to make it continuous and remove any overlap at its new 
position. 

 

Figure 6. Design after mutation. 

3.2 Advantages over bit / real number representation 
The major argument against using real number/bit-string chromosomes is that at the start of 
the design activity it may not be desirable or possible to strictly parameterize a design. As the 
design process continues designs make the transition from abstract concepts to well defined 
specifications. Object based representation has the advantage that it can represent designs at 
all the levels. At the abstract level by using high level objects like Elements and at the design 
maturity level as a set of specifications. Their functionality can be added to, based on the 
changing requirements. Thus objects offer a relatively straightforward way to cover design 
activity at all levels. To produce the same in a simple string based chromosome we would 
require additional checks to ensure consistency of the chromosome is not violated once a bit 
or real number is added or removed or its functionality modified. The overall system would 
be overly complex and difficult to manipulate. 

4. Introduction of Agency 
Initial testing of the representation involved freeform assembly of simple structures such as a 
linear span and stepped arch using GA, EP and agents (for comparison). It was found that 
agents are able to assemble free form structures quite easily and with respect to agent based 
assembly, evolutionary methods are slow. Thus we decided to merge the evolutionary and 
agency approach. Since agents were good at building structures and evolutionary methods are 
efficient in terms of search and optimisation it was decided that the agents would create the 
initial population of bridge structures and an evolutionary system would perform search, 
exploration and optimisation within the space of possible structures. Also during these 
potentially disruptive processes any changes made in the structure would be monitored by the 
construction agent to ensure that the resulting structure is correct.    
    
These Construction and Repair Agents (CARAs) at present have a simple task of assembling 
various structures with various sizes and shapes of span and supports. There are no 
restrictions on the placement of supports and other design characteristics. But as part of the 
future work agents will be given specifications of the designs to be built including restrictions 
on placement of supports and types of span sections used. Thus the CARAs will be told what 
the design environment is and they will create initial population designs within it. Then the 
evolutionary process will take care of the SEO process with the CARAs keep a check on 
design changes. 

5. Introducing Simple Structural Criteria  
Having demonstrated how the object based representation can be used to assemble simple 
structures it is now necessary to test the feasibility of the approach in terms of subsequent 
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SEO processes. The CARAs can currently create three kinds of bridges. These are: Simple 
beam bridges without support (Type 1a), Simple beam bridges with supports (Type 1b) and 
Simple beam bridges with sloping span sections and supports (Type II). 
 
Thus an initial population can consist of a mixture of three designs.  In the next section these 
designs will be assessed in terms of the designer’s aesthetic preferences in addition to 
structural and cost criteria.  However, during this initial establishment of a flexible, feasible 
representation solution fitness is assessed by applying simple length depth ratios whilst also 
minimising material used. Column design is assessed via simple buckling criteria. It is not 
considered necessary to include loading other than beam weight during this preliminary work 
which is merely evaluating the developed representation.   

5.1 Fitness Evaluation for Type 1A 
Type 1a consists of a simple concrete span bridge without supports. This is treated as a simple 
beam deflection problem under UDL. For analysis purposes we use a simple heuristic that the 
ideal length to height ratio for a span element is 20:1. The closer a span section is to this deal 
ratio (R) better is its fitness. ‘Li’ and ‘Hi’ are the length and height of the ith span element. 
  

To ensure the overall integrity of the structure the above equations are used. As we can see 
the closer the dimensions of the span elements are to the ideal ratio (R) the lower will be the 
value of Fi. At the minimum all Fi’s are equal to zero and thus stability is equal to one. Taking 
into account material usage (M) the net fitness function then becomes: 

5.2 Fitness Evaluation for Type 1b and Type 2 
Type 1b is a simple span bridge with supports. Here we take into account the buckling in the 
columns due to the weight of the loaded beam. The formula for buckling load is: 

 
In equation 3, P’ gives the maximum possible load, E is the modulus of Elasticity, I the 
moment of inertia and H the height of the column. Thus if the load on a column is greater than 
P’ it will buckle. The load on column is simply determined by first finding the length of the 
beam between the supports on left and right of the main column and then calculating the load 
on that length of the beam and the weight of the section (using density of concrete). This is 
then divided by two to give the loading for the central column. If a column has thickness 
sufficient to prevent buckling then it can both increase and decrease in thickness. Otherwise 
when selecting mutation rules for a support which is in danger of buckling, the only option 
available is to increase the thickness. Here the fitness of the structure is calculated as above. 
In the  case of the sloping element the only difference is that the length taken is the sloping 
length and the height taken is the ‘thickness’ attribute of the sloping element (instead of the 
actual height).  

                                                                                                                  (1) 

                                                                                                 (2)      

                                                                2

2

'
H
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6. Test Results 
The test problem was to span a 50m gap. A simple EP system was used with a population size 
of 100 designs. Tournament selection was used as the selection operator with a tournament 
size of 10. The system was run for 100 generations. A few members from the initial 
population are shown below. 

 

 

Figure 7. Sample of mixed initial population of bridge shapes. 

We can see that the initial population consists of three different kinds of designs namely a 
simple unsupported span, a simple supported span and an angled span bridge. After 100 
generations the optimal designs shown in figure 8 and 9 are achieved. 

 

Figure 8. Run 1 optimized bridges. 

Here we can see that angled span bridges turned out to be most efficient in terms of stability 
and material usage. This means that the other two design types have been evolved out of the 
population. A second run again produces optimal angled span bridges but in a different 
configuration suggesting that there may be several optimal configurations in this category. 

 

Figure 9. Run 2 optimized bridges. 

7. Aesthetics and User Evaluation 
Due to the subjective nature of aesthetics their evaluation can only be partially quantified 
through generic guidelines and rules [9]. Thus while aesthetically pleasing shapes can be 
explicitly specified to some extent complete aesthetic evaluation must also involve the 
designer. i.e. Aesthetic evaluation must take into account both rule-based and subjective 
factors.  In the present system the following aesthetics have been coded: 
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1. Symmetry of support placement   (A1) 

2. Slenderness Ratio  [9]     (A2) 

3. Uniformity in thickness of supports   (A3) 

4. Uniformity in thickness of span sections  (A4) 

Many other quantitative rules exist but, aesthetic evaluation has been kept relatively simple 
during these formative stages of the study where current design representation does not 
support detailed aesthetic evaluation. Each aesthetic is evaluated by a separate ‘Aesthetic 
Agent’. The ‘Aesthetic Fitness’ is calculated as: 

∑
=

=
4

1
_

i
ii AwFitnessAesthetic                                                                                                (4) 

Where wi are the weights for each of the aesthetic rules (Ai = A1 to A4) which can be 
modified at run time too. The ‘User assigned fitness’ (Ufit) is the ranking or fitness given to a 
design by the user on a scale of 0 to 10 (10 being the best). Furthermore the user can mark 
solutions for preservation into the next generation. Overall user evaluation operates thus: 

1. User stipulates the frequency of user interaction (e.g. once every 10 generations). 

2. User evaluates a preset number of population members from the initial population 
(usually the top 10 members in terms of stability, material usage and explicitly defined 
aesthetic criteria). 

3. The EP system runs. 

4. Population members are evaluated by the user every n generations. 

5. Repeat steps 3 and 4 until user terminates the evolutionary process. 

The fitness evaluation as given earlier has been extended by adding two more objectives 
called ‘Aesthetic Fitness’ and ‘User Assigned Fitness’ (Ufit), furthermore all objectives are 
normalized (between 0 and 1) and weights are added (w1 to w4) to each of the objectives 
which the user can modify at run time to steer the course of evolution.   

)*4()_*3()
_
2()*1( UfitwFitnessAestheticw

UsageMaterial
wStabilitywFitness +++=     (5) 

 
Figure 10 shows a few aesthetically pleasing shapes (after 30 generations with user evaluation 
at every tenth generation - see Figure 11). The aesthetic objectives (A1 to A4) are clearly  
reflected in them. The span elements are of the same size. The supports are of nearly uniform 
thickness and their placement is also symmetric.  

 

Figure 10. Aesthetics optimized shapes. 
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Figure 11. Variation of Aesthetic fitness with Generations (over 15 runs) 

Furthermore comparing Figures 7, 8, 9 and 10 we find that as the user starts interacting with 
the system, the optimized shapes are not limited to angled sections but take on a variety of 
different aesthetically pleasing shapes. These satisfy the explicitly defined aesthetic guidelines 
(A1 to A4) as well as the implicit aesthetics of the user (Ufit).  

7.1 Incorporating Learning 
The next stage has been to implement some form of supervised learning system which takes 
user evaluation into account. A two level learning system has been adopted. Since there is a 
natural classification in the designs (i.e. angled spans, supported beams and unsupported 
beams) learning is attempted at two levels. The first level determines user preference for one 
of the three types of bridge design. This is achieved by evaluating the relative difference 
between user assigned fitness (or rank) for each type of design. The second level assesses 
what kind of features the user finds pleasing in the different designs. Again looking at figures 
7, 8, 9 and 10 we find that for the angled spans there are two features which strike the eye 
immediately. These are the peak of the bridge (that is the location of the rise point) and the 
thickness of the span sections. We can convert such features into fuzzy variables to create an 
aesthetic model of the particular bridge type. For the angled section we use the following 
fuzzy variables to specify the aesthetic model: 

1. Peak: Left, Central, Right 
2. Difference in Span Thickness: Left Thicker, Equal Thickness, Right Thicker 
3. Average Thickness: Low, Medium, High 
4. Column Thickness: Low, Medium, High 
5. User assigned fitness (Ufit): Low, Medium, High 

 
Similarly models can be created for supported beam spans and unsupported beam spans. 
Based on this model a fuzzy rule generator has been implemented. 
 
Given below are a few example rules generated by the rule generator component: 
IF peak = Left AND delta-thickness = Right AND avg. thickness = High AND  
col. thickness = Low THEN ufit = Low 
IF peak = Right AND delta-thickness = Equal AND avg. thickness = Mid AND  
col. thickness = Mid THEN ufit = High 
IF peak = Central AND delta-thickness = Right AND avg. thickness = High AND  
col. thickness = High THEN ufit = High  
 
Using the above the system will attempt to build a rule based model of the user’s aesthetic 
preferences. 
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8. Further Work 
The results shown above plus additional thorough testing of the developed representation 
confirm a significant potential although it is intended to further explore alternative 
representations that may offer increased utility in terms of flexibility and robustness. In 
addition, further possible bridge types will be considered for inclusion in the initial 
population.  It will be necessary to develop the structural evaluation procedures to some 
degree whilst avoiding conflicts relating to usability and computational expense.  Ultimately 
the system will be required to give a comparative indication in terms of aesthetically pleasing 
design and likely cost whilst indicating structural feasibility. Best alternatives generated by 
the system could then be subjected to further, more rigorous analysis off-line.  
 
The introduction of such an interactive process also poses many questions such as: 

• How many designs from each population should be presented to the user?  
• How should these be selected? 
• How many evaluations can a user be expected to perform before becoming bored and / or 

fatigued? 
• Should our evolutionary algorithm be able to cope with small populations to reduce new 

solution numbers or would a steady-state approach be more appropriate? 
• How detailed should the visual presentation of the designs shown to the user be? At present 

we are using simple stick diagrams. While these are adequate for initial testing processes, it 
is envisaged that designers would want to see much more realistic visualizations. 

These questions are not new and have been repeatedly posed but seldom successfully 
addressed within the interactive evolutionary computing (IEC) community. The reader is 
directed to http://www.ad-comtech.co/Workshops.htm where output from three recent IEC 
Workshops held at the Genetic and Evolutionary Computing Conferences (2001, 2002, 2003) 
can be found along with extensive references to IEC applications. Takagi [25] provides an 
excellent overview of the area in his review paper. However, more recent developments are 
also of interest. 
 
The integration of user preference and user adjustable objective weights is seen as the first 
step in achieving the ultimate goal of transferring aesthetic evaluations from the user to the 
design system. A profile based machine learning system is required which learns the 
preferences of the user as they use the design system. The assimilated information will be 
tagged under the profile name of the user. In this way whenever a particular user is using the 
system, the design system knows which set of assimilated aesthetic rules could be used.. 
Much work is also required to develop a fully functioning machine learning sub-system for 
the proposed design system. While first steps have been taken towards a fuzzy rule based 
learning system other techniques such as back-propagation also require investigation to 
facilitate the creation of aesthetic models for different classes of designs. Thus a generic rule 
generation system or a neural network based learning technique may be required. The CARA-
EP representation will allow us to commence further exploration of these and other issues.  
The overall intention of the study is to significantly decrease the evaluation load on the 
designer as early as possible in the evolutionary process by introducing a multi-agent based 
learning environment that supplements and eventually takes over the aesthetic criteria 
evaluation.  
 
Agent based learning could also be adopted. The following procedure is envisaged. A 
'negotiating agent' approach [27] identifies those aspects of given sample designs which do or 
do not have aesthetic merit. The software agents will each represent a particular established 
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aesthetic such as those proposed by Moore et al [7], Ngo et al [29] and [30] and these will be 
ranked by the user in terms of preference [31]. The agents will negotiate to determine the 
relative performance of the solutions of each population and return the 'best' solutions to the 
user in rank order. If the user disagrees with the ranking then changes to aesthetic preferences 
can be made. The system will then analyze the user preferences and adjust the agents’ 
weightings to match.  Thus rather than assessing each solution the designer can scan the 
characteristics of the best designs, assess whether the aesthetic preferences are operating 
appropriately and adjust as necessary. This procedure may initially occur at every generation 
but at a lesser frequency as the agents converge upon the designer’s aesthetic preferences. The 
eventual outcome should be the identification of solutions that satisfy structural and cost 
criteria whilst also being considered by the designer to be aesthetically pleasing. 
 
The eventual outcome should be the identification of solutions that satisfy structural and cost 
criteria whilst also being considered by the designer to be aesthetically pleasing. The basic 
thrust of the work is to establish whether or not this coupling of multi-agent activity to 
evolutionary search can be developed into a learning capability where agent memory 
contributes to preference selection. This would lead to semi-autonomous activity that, whilst 
significantly reducing the load upon the designer, ultimately results in viable and aesthetically 
pleasing solutions. The introduction of more than one designer each independently assessing 
aesthetic value is a natural progression which will add further layers of complexity that 
require investigation. 

9. Conclusion 
A comparative investigation of a number of evolutionary algorithms and associated problem 
representations has been carried out. An object based representation that allows the flexible 
generation of simple structures whilst being easily implemented within an evolutionary 
process (EP) has been developed.  The effectiveness of an associated rule-based agency 
approach to develop initial solution populations and maintain and repair solutions in 
subsequent generations has been illustrated.   The overall implementation has been tested in 
terms of the construction of three basic bridge structures, their simple analysis and the 
evolution of high performance solutions. 
 
The tests showed that the CARA-EP system performed as expected. Thus it is worth further 
exploring this representation. Specifically there is need to formalise this representation and 
the surrounding framework to develop a standard EP based system. There is also need to 
expand the library of shapes used to include more complicated shapes to truly harness the 
systems potential.  
 
With the addition of user interaction flexibility has been introduced into the system. The user 
can steer the evolutionary process towards aesthetically pleasing solutions. The addition of 
simple rule based aesthetics provides the user with a point of reference which s/he can use to 
guide the path of the evolutionary process. For example if the user finds the rule based 
aesthetics produces pleasing shapes then s/he can increase the weight of the Aesthetic Fitness 
objective and just allow the evolutionary process to continue without assigning fitness to 
solutions. At the other end of the spectrum if the user dislikes the shapes s/he can reduce the 
weight of Aesthetic Fitness and increase the weight of User Assigned Fitness while actively 
evaluating solutions.  
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